1
|
Zhao Y, Yuan C, Shi Y, Liu X, Luo L, Zhang L, Pešić M, Yao H, Li L. Drug screening approaches for small-molecule compounds in cancer-targeted therapy. J Drug Target 2025; 33:368-383. [PMID: 39575843 DOI: 10.1080/1061186x.2024.2427185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 02/08/2025]
Abstract
Small-molecule compounds exhibit distinct pharmacological properties and clinical effectiveness. Over the past decade, advances in covalent drug discovery have led to successful small-molecule drugs, such as EGFR, BTK, and KRAS (G12C) inhibitors, for cancer therapy. Researchers are paying more attention to refining drug screening methods aiming for high throughput, fast speed, high specificity, and accuracy. Therefore, the discovery and development of small-molecule drugs has been facilitated by significantly reducing screening time and financial resources, and increasing promising lead compounds compared with traditional methods. This review aims to introduce classical and emerging methods for screening small-molecule compounds in targeted cancer therapy. It includes classification, principles, advantages, disadvantages, and successful applications, serving as valuable references for subsequent researchers.
Collapse
Affiliation(s)
- Yelin Zhao
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenyu Yuan
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuchen Shi
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaohong Liu
- Guang'anmen Hospital, Chinese Academy of Chinese Medical Sciences, Xicheng District, Beijing, China
| | - Liaoxin Luo
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Li Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research, 'Siniša Stanković'- National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Hongjuan Yao
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liang Li
- State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Biotechnology for Microbial Drugs, Department of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Dhyani K, Dash S, Joshi S, Garg A, Pal D, Nishant K, Muniyappa K. The ATPase activity of yeast chromosome axis protein Hop1 affects the frequency of meiotic crossovers. Nucleic Acids Res 2025; 53:gkae1264. [PMID: 39727188 PMCID: PMC11797056 DOI: 10.1093/nar/gkae1264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Saccharomyces cerevisiae meiosis-specific Hop1, a structural constituent of the synaptonemal complex, also facilitates the formation of programmed DNA double-strand breaks and the pairing of homologous chromosomes. Here, we reveal a serendipitous discovery that Hop1 possesses robust DNA-independent ATPase activity, although it lacks recognizable sequence motifs required for ATP binding and hydrolysis. By leveraging molecular docking combined with molecular dynamics simulations and biochemical assays, we identified an ensemble of five amino acid residues in Hop1 that could potentially participate in ATP-binding and hydrolysis. Consistent with this premise, we found that Hop1 binds to ATP and that substitution of amino acid residues in the putative ATP-binding site significantly impaired its ATPase activity, suggesting that this activity is intrinsic to Hop1. Notably, K65A and N67Q substitutions in the Hop1 N-terminal HORMA domain synergistically abolished its ATPase activity, noticeably impaired its DNA-binding affinity and reduced its association with meiotic chromosomes, while enhancing the frequency of meiotic crossovers (COs). Overall, our study establishes Hop1 as a DNA-independent ATPase and reveals a potential biological function for its ATPase activity in the regulation of meiotic CO frequency.
Collapse
Affiliation(s)
- Kshitiza M Dhyani
- Department of Biochemistry, Indian Institute of Science, CV Raman Road, Bengaluru 560012, India
| | - Suman Dash
- School of Biology, Indian Institute of Science Education and Research, Maruthamala(PO), Vithura, Thiruvananthapuram 695551, India
| | - Sameer Joshi
- School of Biology, Indian Institute of Science Education and Research, Maruthamala(PO), Vithura, Thiruvananthapuram 695551, India
| | - Aditi Garg
- Computational and Data Sciences, Indian Institute of Science, CV Raman Road, Bengaluru 560012, India
| | - Debnath Pal
- Computational and Data Sciences, Indian Institute of Science, CV Raman Road, Bengaluru 560012, India
| | - Koodali T Nishant
- School of Biology, Indian Institute of Science Education and Research, Maruthamala(PO), Vithura, Thiruvananthapuram 695551, India
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, CV Raman Road, Bengaluru 560012, India
| |
Collapse
|
3
|
Spiewla T, Grab K, Depaix A, Ziemkiewicz K, Warminski M, Jemielity J, Kowalska J. An MST-based assay reveals new binding preferences of IFIT1 for canonically and noncanonically capped RNAs. RNA (NEW YORK, N.Y.) 2025; 31:181-192. [PMID: 39643445 PMCID: PMC11789485 DOI: 10.1261/rna.080089.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/22/2024] [Indexed: 12/09/2024]
Abstract
IFITs (interferon-induced proteins with tetratricopeptide repeats) are components of the innate immune response that bind to viral and cellular RNA targets to inhibit translation and replication. The RNA target recognition is guided by molecular patterns, particularly at the RNA 5' ends. IFIT1 preferably binds RNAs modified with the m7G cap-0 structure, while RNAs with cap-1 structure are recognized with lower affinity. Less is known about the propensity of IFIT1 to recognize noncanonical RNA 5' ends, including hypermethylated and noncanonical RNA caps. Further insights into the structure-function relationship for IFIT1-RNA interactions are needed but require robust analytical methods. Here, we report a biophysical assay for quick, direct, in-solution affinity assessment of differently capped RNAs with IFIT1. The procedure, which relies on measuring microscale thermophoresis of fluorescently labeled protein as a function of increasing ligand concentration, is applicable to RNAs of various lengths and sequences without the need for their labeling or affinity tagging. Using the assay, we examined 13 canonically and noncanonically 5'-capped RNAs, revealing new binding preferences of IFIT1. The 5' terminal m6A mark in the m7G cap had a protective function against IFIT1, which was additive with the effect observed for the 2'-O position (m6Am cap-1). In contrast, an increased affinity for IFIT1 was observed for several noncanonical caps, including trimethylguanosine, unmethylated (G), and flavin-adenine dinucleotide caps. The results suggest new potential cellular targets of IFIT1 and may contribute to broadening the knowledge of the innate immune response mechanisms and the more effective design of chemically modified mRNAs.
Collapse
Affiliation(s)
- Tomasz Spiewla
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
- Doctoral School of Exact and Natural Sciences, University of Warsaw, 02-089 Warsaw, Poland
| | - Katarzyna Grab
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
- Doctoral School of Exact and Natural Sciences, University of Warsaw, 02-089 Warsaw, Poland
| | - Anais Depaix
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Kamil Ziemkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
- Doctoral School of Exact and Natural Sciences, University of Warsaw, 02-089 Warsaw, Poland
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-093 Warsaw, Poland
| |
Collapse
|
4
|
Samulevich ML, Carman LE, Aneskievich BJ. Investigating Protein-Protein Interactions of Autophagy-Involved TNIP1. Methods Mol Biol 2025; 2879:63-82. [PMID: 38441723 DOI: 10.1007/7651_2024_525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
Abstract
Myriad proteins are involved in the process of autophagy, which they participate in via their protein-protein interactions (PPI). Herein we outline a methodology for examining such interactions utilizing the case of intrinsically disordered protein (IDP) TNIP1 and its interaction with linear M1-linked polyubiquitin. This includes methods for recombinant production, purification, immuno-identification, and analysis of an IDP associated with autophagy, its ordered binding partner, and means of quantitatively analyzing their interaction.
Collapse
Affiliation(s)
- Michael L Samulevich
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, CT, USA
| | - Liam E Carman
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, CT, USA
| | - Brian J Aneskievich
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
5
|
Ahiadorme D, Crich D. Entropy-enthalpy compensation in the methyl 5-thio-α-d-galactopyranoside-Jacalin interaction. Carbohydr Res 2025; 547:109305. [PMID: 39577320 PMCID: PMC11620909 DOI: 10.1016/j.carres.2024.109305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 11/24/2024]
Abstract
Methyl 5-thio-α-d-galactopyranoside was synthesized and found to have a more favorable enthalpy of binding to Jacalin than methyl α-d-galactopyranoside, which is attributed to the greater magnitude of sulfur-π over oxygen-π interactions. This increase in enthalpy, however, was offset by a less favorable entropy of binding, arising from the need to constrain the more flexible thiosugar, thereby highlighting the complexities inherent in the design of effective sugar mimetics.
Collapse
Affiliation(s)
- Daniil Ahiadorme
- Department of Chemistry, University of Georgia, 302 East Campus Road, Athens, GA, 30602, United States; Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA, 30602, United States
| | - David Crich
- Department of Chemistry, University of Georgia, 302 East Campus Road, Athens, GA, 30602, United States; Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 West Green Street, Athens, GA, 30602, United States; Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, United States.
| |
Collapse
|
6
|
Hou D, Mu Q, Chen W, Cao W, Zhang XF. Nano-Biomechanical Investigation of Phosphatidylserine-Mediated Ebola Viral Attachment via Human Gas6 and Axl. Viruses 2024; 16:1700. [PMID: 39599815 PMCID: PMC11599018 DOI: 10.3390/v16111700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/20/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The Ebola virus is a deadly pathogen that has been threatening public health for decades. Recent studies have revealed alternative viral invasion routes where Ebola virus approaches cells via interactions among phosphatidylserine (PS), PS binding ligands such as Gas6, and TAM family receptors such as Axl. In this study, we investigate the interactions among phosphatidylserine on the Ebola viral-like particle (VLP) membrane, human Gas6, and human Axl using atomic force microscope-based single molecule force spectroscopy to compare their binding strength and affinity from a biomechanical perspective. The impact of calcium ions on their interactions is also studied and quantified to provide more details on the calcium-dependent phosphatidylserine-Gas6 binding mechanism. Our results indicate that, in the presence of calcium ions, the binding strengths of VLP-Gas6 and VLP-Gas6-Axl increase but are still weaker than that of Gas6-Axl, and the binding affinity of VLP-Gas6 and VLP-Gas6-Axl is largely improved. The binding strength and affinity of Gas6-Axl basically remain the same, indicating no impact in the presence of calcium ions. Together, our study suggests that, under physiological conditions with calcium present, the Ebola virus can utilize its membrane phosphatidylserine to dock on cell surface via Gas6-Axl bound complex.
Collapse
Affiliation(s)
- Decheng Hou
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA;
- Department of Biomedical Engineering, University of Massachusetts at Amherst, Amherst, MA 01003, USA; (Q.M.); (W.C.)
| | - Qian Mu
- Department of Biomedical Engineering, University of Massachusetts at Amherst, Amherst, MA 01003, USA; (Q.M.); (W.C.)
| | - Weixuan Chen
- Department of Biomedical Engineering, University of Massachusetts at Amherst, Amherst, MA 01003, USA; (Q.M.); (W.C.)
| | - Wenpeng Cao
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA;
| | - Xiaohui Frank Zhang
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA;
- Department of Biomedical Engineering, University of Massachusetts at Amherst, Amherst, MA 01003, USA; (Q.M.); (W.C.)
| |
Collapse
|
7
|
Wang TY, Rukundo JL, Mao Z, Krylov SN. Maximizing the Accuracy of Equilibrium Dissociation Constants for Affinity Complexes: From Theory to Practical Recommendations. ACS Chem Biol 2024; 19:1852-1867. [PMID: 39121869 DOI: 10.1021/acschembio.4c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
The equilibrium dissociation constant (Kd) is a major characteristic of affinity complexes and one of the most frequently determined physicochemical parameters. Despite its significance, the values of Kd obtained for the same complex under similar conditions often exhibit considerable discrepancies and sometimes vary by orders of magnitude. These inconsistencies highlight the susceptibility of Kd determination to large systematic errors, even when random errors are small. It is imperative to both minimize and quantitatively assess the systematic errors inherent in Kd determination. Traditionally, Kd values are determined through nonlinear regression of binding isotherms. This analysis utilizes three variables: concentrations of two reactants and a fraction R of unbound limiting reactant. The systematic errors in Kd arise directly from systematic errors in these variables. Therefore, to maximize the accuracy of Kd, this study thoroughly analyzes the sources of systematic errors within the three variables, including (i) non-additive signals to calculate R, (ii) mis-calibrated experimental instruments, (iii) inaccurate calibration parameters, (iv) insufficient incubation time, (v) unsaturated binding isotherm, (vi) impurities in the reactants, and (vii) solute adsorption onto surfaces. Through this analysis, we illustrate how each source contributes to inaccuracies in the determination of Kd and propose strategies to minimize these contributions. Additionally, we introduce a method for quantitatively assessing the confidence intervals of systematic errors in concentrations, a crucial step toward quantitatively evaluating the accuracy of Kd. While presenting original findings, this paper also reiterates the fundamentals of Kd determination, hence guiding researchers across all proficiency levels. By shedding light on the sources of systematic errors and offering strategies for their mitigation, our work will help researchers enhance the accuracy of Kd determination, thereby making binding studies more reliable and the conclusions drawn from such studies more robust.
Collapse
Affiliation(s)
- Tong Ye Wang
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
- Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Jean-Luc Rukundo
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
- Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Zhiyuan Mao
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
- Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Sergey N Krylov
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
- Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
8
|
Pike S, Wuest M, Lopez-Campistrous A, Hu MY, Derda R, Wuest F, McMullen T. First-Generation Radiolabeled Cyclic Peptides for Molecular Imaging of Platelet-Derived Growth Factor Receptor α. Mol Pharm 2024; 21:4648-4663. [PMID: 39152916 DOI: 10.1021/acs.molpharmaceut.4c00549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Occult nodal spread and metastatic disease require longstanding imaging and biochemical assessments for thyroid cancer, a disease that has a propensity for diffuse, small-volume disease. We have developed a 64Cu-labeled platelet-derived growth factor receptor α (PDGFRA) antibody for immuno-PET of PDGFRA in metastatic papillary thyroid cancer (PTC). The present work describes the discovery of small cyclic PDGFRA-targeting peptides, their binding features, and radiolabeling with positron emitter gallium-68 (68Ga) for in vitro and in vivo characterization in thyroid cancer models. Phage-display technology with two separate libraries and seven different cell lines was used through three rounds of biopanning as well as flow cytometry and comparative analysis with recombinant protein to select specific peptide sequences. Phenotypic binding analysis was completed by using phosphorylation and cell migration assays. In vitro protein binding was analyzed with thermophoresis and flow cytometry using the fluorescent-labeled PDGFRA peptide. Peptide candidates were modified with the NOTA chelator for radiolabeling with 68Ga. In vitro cell uptake was studied in various thyroid cancer cell lines. In vivo studies of 68Ga-labeled peptides included metabolic stability and PET imaging. From the original library (1013 compounds), five different peptide groups were identified based on biopanning experiments with and without the α subunit of PDGFR, leading to ∼50 peptides. Subsequent phenotypic screening revealed two core peptide sequences (CP16 and CP18) that demonstrated significant changes in the level of PDGFRA phosphorylation and cell migration. Alanine scan sublibraries were created from these two lead peptide sequences, and peptides were radiolabeled using 68Ga-GaCl3 at pH 4.5, resulting in RCP > 95% within 34-40 min, including SPE purification. Cyclic peptide CP18.5 showed the strongest effects on cell migration, flow cytometry, and binding by visual interference color assay. 68Ga-labeled PDGFRA-targeting peptides showed elevated cell and tumor uptake in models of thyroid cancer, with 68Ga-NOTA-CP18.5 being the lead candidate. However, metabolic stability in vivo was compromised for 68Ga-NOTA-CP18.5 vs 68Ga-NOTA-CP18 but without impacting tumor uptake or clearance profiles. First-generation radiolabeled cyclic peptides have been developed as novel radiotracers, particularly 68Ga-NOTA-CP18.5, for the molecular imaging of PDGFRA in thyroid cancer.
Collapse
Affiliation(s)
- Susan Pike
- Department of Oncology, University of Alberta, Edmonton, Canada T6G 1Z2
| | - Melinda Wuest
- Department of Oncology, University of Alberta, Edmonton, Canada T6G 1Z2
| | | | - Mi Yao Hu
- Department of Oncology, University of Alberta, Edmonton, Canada T6G 1Z2
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, Canada T6G 2N4
| | - Frank Wuest
- Department of Oncology, University of Alberta, Edmonton, Canada T6G 1Z2
| | - Todd McMullen
- Department of Surgery, University of Alberta, Edmonton, Canada T6G 2B7
| |
Collapse
|
9
|
Wu C, Zhang C, Li F, Yan Y, Wu Y, Li B, Tong H, Lang J. Fucoxanthin Mitigates High-Fat-Induced Lipid Deposition and Insulin Resistance in Skeletal Muscle through Inhibiting PKM1 Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18013-18026. [PMID: 39088205 DOI: 10.1021/acs.jafc.4c03677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Glucose and lipid metabolism dysregulation in skeletal muscle contributes to the development of metabolic disorders. The efficacy of fucoxanthin in alleviating lipid metabolic disorders in skeletal muscle remains poorly understood. In this study, we systematically investigated the impact of fucoxanthin on mitigating lipid deposition and insulin resistance in skeletal muscle employing palmitic acid-induced lipid deposition in C2C12 cells and ob/ob mice. Fucoxanthin significantly alleviated PA-induced skeletal muscle lipid deposition and insulin resistance. In addition, fucoxanthin prominently upregulated the expression of lipid metabolism-related genes (Pparα and Cpt-1), promoting fatty acid β-oxidation metabolism. Additionally, fucoxanthin significantly increased the expression of Pgc-1α and Tfam, elevated the mtDNA/nDNA ratio, and reduced ROS levels. Further, we identified pyruvate kinase muscle isozyme 1 (PKM1) as a high-affinity protein for fucoxanthin by drug affinity-responsive target stability and LC-MS and confirmed their robust interaction by CETSA, microscale thermophoresis, and circular dichroism. Supplementation with pyruvate, the product of PKM1, significantly attenuated the beneficial effects of fucoxanthin on lipid deposition and insulin resistance. Mechanistically, fucoxanthin reduced glucose glycolysis rate and enhanced mitochondrial biosynthesis and fatty acid β-oxidation through inhibiting PKM1 activity, thereby alleviating lipid metabolic stress. These findings present a novel clinical strategy for treating metabolic diseases using fucoxanthin.
Collapse
Affiliation(s)
- Congcong Wu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Cheng Zhang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Fang Li
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Yawei Yan
- College of Pharmacy, Wenzhou Medical University, Wenzhou 325000, China
| | - Yu Wu
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Boyang Li
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China
| | - Junzhe Lang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
10
|
Mata Calidonio J, Maddox AI, Hamad-Schifferli K. A novel immunoassay technique using principal component analysis for enhanced detection of emerging viral variants. LAB ON A CHIP 2024; 24:3985-3995. [PMID: 39046406 DOI: 10.1039/d4lc00505h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Rapid diagnostics are critical infectious disease tools that are designed to detect a known biomarker using antibodies specific to that biomarker. However, a way to detect unknown disease variants has not yet been achieved in a paper test format. We describe here a route to make an adaptable paper immunoassay that can detect an unknown biomarker, demonstrating it on SARS-CoV-2 variants. The immunoassay repurposes cross reactive antibodies raised against the alpha variant. Gold nanoparticles of two different colors conjugated to two different antibodies create a colorimetric signal, and machine learning of the resulting colorimetric pattern is used to train the assay to discriminate between variants of alpha and Omicron BA.5. By using principal component analysis, the colorimetric test patterns can pick up and discriminate an unknown variant that it has not encountered before, Omicron BA.1. The test has an accuracy of 100% and a potential calculated discriminatory power of 900. We show that it can be used adaptively and that it can be used to pick up emerging variants without the need to raise new antibodies.
Collapse
Affiliation(s)
| | - Arianna I Maddox
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Kimberly Hamad-Schifferli
- Department of Engineering, University of Massachusetts Boston, Boston, MA, USA.
- School for the Environment, University of Massachusetts Boston, Boston, MA, USA
| |
Collapse
|
11
|
Płocińska R, Struś K, Korycka-Machała M, Płociński P, Kuzioła M, Żaczek A, Słomka M, Dziadek J. MnoSR removal in Mycobacterium smegmatis triggers broad transcriptional response to 1,3-propanediol and glucose as sole carbon sources. Front Cell Infect Microbiol 2024; 14:1427829. [PMID: 39113823 PMCID: PMC11303327 DOI: 10.3389/fcimb.2024.1427829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction The two-component signal transduction systems play an essential role in the adaptation of bacteria to changing environmental conditions. One of them is the MnoSR system involved in the regulation of methylotrophic metabolism in M. smegmatis. Methods Mycobacterium smegmatis mutant strains ΔmnoS, ΔmnoR and ΔmnoS/R lacking functional mnoS, mnoR and both genes were generated using a homologous recombination approach. MnoR recombinant protein was purified by affinity column chromatography. The present study employs molecular biology techniques: cloning strategies, global RNA sequencing, qRT-PCR, EMSA, Microscale thermophoresis, and bioinformatics analysis. Results and discussion The ∆mnoS, ∆mnoR, and ∆mnoS/R mutant strains were generated and cultured in the presence of defined carbon sources. Growth curve analysis confirmed that inactivation of the MnoSR impairs the ability of M. smegmatis cells to use alcohols such as 1,3-propanediol and ethanol but improves the bacterial growth on ethylene glycol, xylitol, and glycerol. The total RNA sequencing method was employed to understand the importance of MnoSR in the global responses of mycobacteria to limited carbon access and in carbon-rich conditions. The loss of MnoSR significantly affected carbon utilization in the case of mycobacteria cultured on glucose or 1,3-propanediol as sole carbon sources as it influenced the expression of multiple metabolic pathways. The numerous transcriptional changes could not be linked to the presence of evident MnoR DNA-binding sites within the promotor regions for the genes outside of the mno operon. This was confirmed by EMSA and microscale thermophoresis with mutated MnoR binding consensus region. Our comprehensive analysis highlights the system's vital role in metabolic adaptability, providing insights into its potential impact on the environmental survival of mycobacteria.
Collapse
Affiliation(s)
- Renata Płocińska
- Institute of Medical Biology of the Polish Academy of Sciences, Łódź, Poland
| | - Katarzyna Struś
- Institute of Medical Biology of the Polish Academy of Sciences, Łódź, Poland
| | | | - Przemysław Płociński
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Łódz, Łódź, Poland
| | - Magdalena Kuzioła
- Institute of Medical Biology of the Polish Academy of Sciences, Łódź, Poland
- BioMedChem Doctoral School of the UL and Łódź Institutes of the Polish Academy of Sciences, Łódź, Poland
| | - Anna Żaczek
- Department of Microbiology, College of Medical Sciences, University of Rzeszów, Rzeszów, Poland
| | - Marcin Słomka
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Jarosław Dziadek
- Institute of Medical Biology of the Polish Academy of Sciences, Łódź, Poland
| |
Collapse
|
12
|
Dascalu AE, Furman C, Landrieu I, Cantrelle FX, Mortelecque J, Grolaux G, Gillery P, Tessier F, Lipka E, Billamboz M, Boulanger E, Ghinet A. Development of Receptor for Advanced Glycation End Products (RAGE) ligands through target directed dynamic combinatorial chemistry: a novel class of possible antagonists. Chemistry 2024; 30:e202303255. [PMID: 38317623 DOI: 10.1002/chem.202303255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/07/2024]
Abstract
RAGE is a transmembrane receptor of immunoglobulin family that can bind various endogenous and exogenous ligands, initiating the inflammatory downstream signaling pathways, including inflammaging. Therefore, RAGE represents an attractive drug target for age-related diseases. For the development of small-molecule RAGE antagonists, we employed protein-templated dynamic combinatorial chemistry (ptDCC) using RAGE's VC1 domain as a template, the first application of this approach in the context of RAGE. The affinities of DCC hits were validated using microscale thermophoresis. Subsequent screening against AGE2 (glyceraldehyde-modified AGE)-sRAGE (solubleRAGE) (AGE2-BSA/sRAGE) interaction using ELISA tests led to the identification of antagonists with micromolar potency. Our findings not only demonstrate the successful application of ptDCC on RAGE but also highlight its potential to address the pressing need for alternative strategies for the development of small-molecule RAGE antagonists, an area of research that has experienced a slowdown in recent years.
Collapse
Affiliation(s)
- Anca-Elena Dascalu
- Junia, Health and Environment, Laboratory of Sustainable Chemistry and Health, F-59000, Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
- 'Alexandru Ioan Cuza' University of Iasi, Faculty of Chemistry, Bd. Carol I, Nr. 11, 700506, Iasi, Romania
| | - Christophe Furman
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
- Univ. Lille, UFR Pharmacie, BP 83, F-59006, Lille, France
| | - Isabelle Landrieu
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
- CNRS EMR9002 Integrative Structural Biology, F-59000, Lille, France
| | - François-Xavier Cantrelle
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
- CNRS EMR9002 Integrative Structural Biology, F-59000, Lille, France
| | - Justine Mortelecque
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
- CNRS EMR9002 Integrative Structural Biology, F-59000, Lille, France
| | - Gaëlle Grolaux
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
| | - Philippe Gillery
- Univ. Reims Champagne-Ardenne, Laboratory of Biochemistry and Molecular Biology CNRS/URCA UMR 7369 MEDyC, Faculty of Medicine, F-51095, Reims, France
| | - Frédéric Tessier
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
- Univ. Lille, UFR Pharmacie, BP 83, F-59006, Lille, France
| | - Emmanuelle Lipka
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
- Univ. Lille, UFR Pharmacie, BP 83, F-59006, Lille, France
| | - Muriel Billamboz
- Junia, Health and Environment, Laboratory of Sustainable Chemistry and Health, F-59000, Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
| | - Eric Boulanger
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
| | - Alina Ghinet
- Junia, Health and Environment, Laboratory of Sustainable Chemistry and Health, F-59000, Lille, France
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, F-59000, Lille, France
- 'Alexandru Ioan Cuza' University of Iasi, Faculty of Chemistry, Bd. Carol I, Nr. 11, 700506, Iasi, Romania
| |
Collapse
|
13
|
Yurkina DM, Romanova EA, Tvorogova AV, Naydenysheva ZK, Feoktistov AV, Yashin DV, Sashchenko LP. The 12-Membered TNFR1 Peptide, as Well as the 16-Membered and 6-Membered TNF Peptides, Regulate TNFR1-Dependent Cytotoxic Activity of TNF. Int J Mol Sci 2024; 25:3900. [PMID: 38612709 PMCID: PMC11011327 DOI: 10.3390/ijms25073900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Understanding the exact mechanisms of the activation of proinflammatory immune response receptors is very important for the targeted regulation of their functioning. In this work, we were able to identify the sites of the molecules in the proinflammatory cytokine TNF (tumor necrosis factor) and its TNFR1 (tumor necrosis factor receptor 1), which are necessary for the two-stage cytotoxic signal transduction required for tumor cell killing. A 12-membered TNFR1 peptide was identified and synthesized, interacting with the ligands of this receptor protein's TNF and Tag7 and blocking their binding to the receptor. Two TNF cytokine peptides interacting with different sites of TNFR1 receptors were identified and synthesized. It has been demonstrated that the long 16-membered TNF peptide interferes with the binding of TNFR1 ligands to this receptor, and the short 6-membered peptide interacts with the receptor site necessary for the transmission of a cytotoxic signal into the cell after the ligands' interaction with the binding site. This study may help in the development of therapeutic approaches to regulate the activity of the cytokine TNF.
Collapse
Affiliation(s)
- Daria M. Yurkina
- Institute of Gene Biology (RAS), Moscow 119334, Russia; (D.M.Y.); (E.A.R.); (Z.K.N.); (L.P.S.)
| | - Elena A. Romanova
- Institute of Gene Biology (RAS), Moscow 119334, Russia; (D.M.Y.); (E.A.R.); (Z.K.N.); (L.P.S.)
| | - Anna V. Tvorogova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia;
| | - Zlata K. Naydenysheva
- Institute of Gene Biology (RAS), Moscow 119334, Russia; (D.M.Y.); (E.A.R.); (Z.K.N.); (L.P.S.)
| | - Alexey V. Feoktistov
- Institute of Gene Biology (RAS), Moscow 119334, Russia; (D.M.Y.); (E.A.R.); (Z.K.N.); (L.P.S.)
- Engelhardt Institute of Molecular Biology (RAS), Moscow 119334, Russia
| | - Denis V. Yashin
- Institute of Gene Biology (RAS), Moscow 119334, Russia; (D.M.Y.); (E.A.R.); (Z.K.N.); (L.P.S.)
| | - Lidia P. Sashchenko
- Institute of Gene Biology (RAS), Moscow 119334, Russia; (D.M.Y.); (E.A.R.); (Z.K.N.); (L.P.S.)
| |
Collapse
|
14
|
Kumar V, Chunchagatta Lakshman PK, Prasad TK, Manjunath K, Bairy S, Vasu AS, Ganavi B, Jasti S, Kamariah N. Target-based drug discovery: Applications of fluorescence techniques in high throughput and fragment-based screening. Heliyon 2024; 10:e23864. [PMID: 38226204 PMCID: PMC10788520 DOI: 10.1016/j.heliyon.2023.e23864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024] Open
Abstract
Target-based discovery of first-in-class therapeutics demands an in-depth understanding of the molecular mechanisms underlying human diseases. Precise measurements of cellular and biochemical activities are critical to gain mechanistic knowledge of biomolecules and their altered function in disease conditions. Such measurements enable the development of intervention strategies for preventing or treating diseases by modulation of desired molecular processes. Fluorescence-based techniques are routinely employed for accurate and robust measurements of in-vitro activity of molecular targets and for discovering novel chemical molecules that modulate the activity of molecular targets. In the current review, the authors focus on the applications of fluorescence-based high throughput screening (HTS) and fragment-based ligand discovery (FBLD) techniques such as fluorescence polarization (FP), Förster resonance energy transfer (FRET), fluorescence thermal shift assay (FTSA) and microscale thermophoresis (MST) for the discovery of chemical probe to exploring target's role in disease biology and ultimately, serve as a foundation for drug discovery. Some recent advancements in these techniques for compound library screening against important classes of drug targets, such as G-protein-coupled receptors (GPCRs) and GTPases, as well as phosphorylation- and acetylation-mediated protein-protein interactions, are discussed. Overall, this review presents a landscape of how these techniques paved the way for the discovery of small-molecule modulators and biologics against these targets for therapeutic benefits.
Collapse
Affiliation(s)
| | | | - Thazhe Kootteri Prasad
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Kavyashree Manjunath
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Sneha Bairy
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Akshaya S. Vasu
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - B. Ganavi
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Subbarao Jasti
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| | - Neelagandan Kamariah
- Centre for Chemical Biology & Therapeutics, inStem & NCBS, Bellary Road, Bangalore, 560065, India
| |
Collapse
|
15
|
Gonneau M, Schoenaers S, Broyart C, Vissenberg K, Santiago J, Höfte H. Microscale Thermophoresis (MST) to Study Rapid Alkalinization Factor (RALF)-Receptor Interactions. Methods Mol Biol 2024; 2731:279-293. [PMID: 38019442 DOI: 10.1007/978-1-0716-3511-7_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Microscale thermophoresis (MST) is a simple but powerful tool to study the in vitro interaction among biomolecules, and to quantify binding affinities. MST curves describe the change in the fluorescence level of a fluorescent target as a result of an IR-laser-induced temperature change. The degree and nature of the change in fluorescence signal depends on the size, charge, and solvation shell of the molecules, properties that change in function of the binding of a ligand to the fluorescent target.We used MST to describe the interaction between components of a regulatory module involved in plant cell wall integrity control. This module comprises the secreted peptide Rapid Alkalinization Factor 23 (RALF23) and its receptor complex consisting of the GPI-anchored receptor Lorelei-Like Glycoprotein 1 (LLG1) and a receptor kinase of the CrRLK1L family, FERONIA. Here we show how MST can also be used to study three-partner interactions.
Collapse
Affiliation(s)
- Martine Gonneau
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France.
| | - Sébastjen Schoenaers
- Biology Department, Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerpen, Belgium
| | - Caroline Broyart
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Kris Vissenberg
- Biology Department, Integrated Molecular Plant Physiology Research, University of Antwerp, Antwerpen, Belgium
- Plant Biochemistry and Biotechnology Lab, Department of Agriculture, Hellenic Mediterranean University, Crete, Greece
| | - Julia Santiago
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Herman Höfte
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), Versailles, France.
| |
Collapse
|
16
|
Nydegger DT, Pujol-Giménez J, Kandasamy P, Vogt B, Hediger MA. Applications of the Microscale Thermophoresis Binding Assay in COVID-19 Research. Viruses 2023; 15:1432. [PMID: 37515120 PMCID: PMC10386446 DOI: 10.3390/v15071432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
As the COVID-19 pandemic progresses, new variants of SARS-CoV-2 continue to emerge. This underscores the need to develop optimized tools to study such variants, along with new coronaviruses that may arise in the future. Such tools will also be instrumental in the development of new antiviral drugs. Here, we introduce microscale thermophoresis (MST) as a reliable and versatile tool for coronavirus research, which we demonstrate through three different applications described in this report: (1) binding of the SARS-CoV-2 spike receptor binding domain (RBD) to peptides as a strategy to prevent virus entry, (2) binding of the RBD to the viral receptor ACE2, and (3) binding of the RBD to ACE2 in complex with the amino acid transporter SLC6A20/SIT1 or its allelic variant rs61731475 (p.Ile529Val). Our results demonstrate that MST is a highly precise approach to studying protein-protein and/or protein-ligand interactions in coronavirus research, making it an ideal tool for studying viral variants and developing antiviral agents. Moreover, as shown in our results, a unique advantage of the MST assay over other available binding assays is the ability to measure interactions with membrane proteins in their near-native plasma membrane environment.
Collapse
Affiliation(s)
- Damian T Nydegger
- Department of Nephrology and Hypertension, Inselspital, University of Bern, Kinderklinik, Freiburgstrasse 15, 3010 Bern, Switzerland
- Department of Biomedical Research, Inselspital, University of Bern, Kinderklinik, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Jonai Pujol-Giménez
- Department of Nephrology and Hypertension, Inselspital, University of Bern, Kinderklinik, Freiburgstrasse 15, 3010 Bern, Switzerland
- Department of Biomedical Research, Inselspital, University of Bern, Kinderklinik, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Palanivel Kandasamy
- Department of Nephrology and Hypertension, Inselspital, University of Bern, Kinderklinik, Freiburgstrasse 15, 3010 Bern, Switzerland
- Department of Biomedical Research, Inselspital, University of Bern, Kinderklinik, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Bruno Vogt
- Department of Nephrology and Hypertension, Inselspital, University of Bern, Kinderklinik, Freiburgstrasse 15, 3010 Bern, Switzerland
- Department of Biomedical Research, Inselspital, University of Bern, Kinderklinik, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Matthias A Hediger
- Department of Nephrology and Hypertension, Inselspital, University of Bern, Kinderklinik, Freiburgstrasse 15, 3010 Bern, Switzerland
- Department of Biomedical Research, Inselspital, University of Bern, Kinderklinik, Freiburgstrasse 15, 3010 Bern, Switzerland
| |
Collapse
|
17
|
Recent Advances in Protein-Protein Interactions. Int J Mol Sci 2023; 24:ijms24021282. [PMID: 36674795 PMCID: PMC9864157 DOI: 10.3390/ijms24021282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Protein-protein interactions (PPIs) lead to formation of complexes and aggregates between a pair or multiple protein molecules [...].
Collapse
|
18
|
The Inhibitory Properties of a Novel, Selective LMTK3 Kinase Inhibitor. Int J Mol Sci 2023; 24:ijms24010865. [PMID: 36614307 PMCID: PMC9821308 DOI: 10.3390/ijms24010865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 01/05/2023] Open
Abstract
Recently, the oncogenic role of lemur tyrosine kinase 3 (LMTK3) has been well established in different tumor types, highlighting it as a viable therapeutic target. In the present study, using in vitro and cell-based assays coupled with biophysical analyses, we identify a highly selective small molecule LMTK3 inhibitor, namely C36. Biochemical/biophysical and cellular studies revealed that C36 displays a high in vitro selectivity profile and provides notable therapeutic effect when tested in the National Cancer Institute (NCI)-60 cancer cell line panel. We also report the binding affinity between LMTK3 and C36 as demonstrated via microscale thermophoresis (MST). In addition, C36 exhibits a mixed-type inhibition against LMTK3, consistent with the inhibitor overlapping with both the adenosine 5'-triphosphate (ATP)- and substrate-binding sites. Treatment of different breast cancer cell lines with C36 led to decreased proliferation and increased apoptosis, further reinforcing the prospective value of LMTK3 inhibitors for cancer therapy.
Collapse
|