1
|
Duczmal D, Bazan-Wozniak A, Niedzielska K, Pietrzak R. Cannabinoids-Multifunctional Compounds, Applications and Challenges-Mini Review. Molecules 2024; 29:4923. [PMID: 39459291 PMCID: PMC11510081 DOI: 10.3390/molecules29204923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Cannabinoids represent a highly researched group of plant-derived ingredients. The substantial investment of funds from state and commercial sources has facilitated a significant increase in knowledge about these ingredients. Cannabinoids can be classified into three principal categories: plant-derived phytocannabinoids, synthetic cannabinoids and endogenous cannabinoids, along with the enzymes responsible for their synthesis and degradation. All of these compounds interact biologically with type 1 (CB1) and/or type 2 (CB2) cannabinoid receptors. A substantial body of evidence from in vitro and in vivo studies has demonstrated that cannabinoids and inhibitors of endocannabinoid degradation possess anti-inflammatory, antioxidant, antitumour and antifibrotic properties with beneficial effects. This review, which spans the period from 1940 to 2024, offers an overview of the potential therapeutic applications of natural and synthetic cannabinoids. The development of these substances is essential for the global market of do-it-yourself drugs to fully exploit the promising therapeutic properties of cannabinoids.
Collapse
Affiliation(s)
- Dominik Duczmal
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
- Polygen Sp. z o.o., Górnych Wałów 46/1, 44-100 Gliwice, Poland;
| | - Aleksandra Bazan-Wozniak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| | | | - Robert Pietrzak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland;
| |
Collapse
|
2
|
Ofori P, Zemliana N, Zaffran I, Etzion T, Sionov RV, Steinberg D, Mechoulam R, Kogan NM, Levi-Schaffer F. Antifungal properties of abnormal cannabinoid derivatives: Disruption of biofilm formation and gene expression in Candida species. Pharmacol Res 2024; 209:107441. [PMID: 39368567 DOI: 10.1016/j.phrs.2024.107441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024]
Abstract
Abnormal cannabinoids (including comp 3) are a class of synthetic lipid compounds with non-psychoactive properties and regioisomer configurations, but distinct from traditional cannabinoids since they do not interact with the established CB1 and CB2 receptors. Previous research showed the cardioprotective and anti-inflammatory potentials of comp 3 and more recently its antimicrobial effect on methicillin-resistant Staphylococcus aureus (MRSA). Given the escalating challenges posed by Candida infections and the rise of antifungal drug resistance, the exploration of novel therapeutic avenues is crucial. This study aimed to assess the anti-Candida properties of newly synthesized AbnCBD derivatives. AbnCBD derivatives were synthesized by acid catalysis-induced coupling and further derivatized. We evaluated the potential of the AbnCBD derivatives to inhibit the growth stages of various Candida species. By in vitro colorimetric assays and in vivo mice experiments, we have shown that AbnCBD derivatives induce differential inhibition of Candida growth. The AbnCBD derivatives, especially comp 3, comp 10, and comp 9 significantly reduced the growth of C. albicans, including FLC-resistant strains, and of C. tropicalis and C. parapsilosis but not of C auris compared to their controls (FLC and 0.5 % DMSO). Comp 3 also disrupted C. albicans biofilm formation and eradicated mature biofilms. Notably, other derivatives of AbnCBD disrupted the biofilm formation and maturation of C. albicans but did not affect yeast growth. In a murine model of VVC, comp 3 demonstrated significant fungal clearance and reduced C. albicans burden compared to vehicle and FLC controls. These findings highlight the potential of AbnCBDs as promising antifungal agents against Candida infections.
Collapse
Affiliation(s)
- Prince Ofori
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute of Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Natalia Zemliana
- Institute of Personalized and Translational Medicine, Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Ilan Zaffran
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute of Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tatiana Etzion
- Medicinal Chemistry Unit, School of Pharmacy, Institute of Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ronit Vogt Sionov
- Biofilm Research Laboratory, The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Doron Steinberg
- Biofilm Research Laboratory, The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Raphael Mechoulam
- Medicinal Chemistry Unit, School of Pharmacy, Institute of Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Natalya M Kogan
- Institute of Personalized and Translational Medicine, Department of Molecular Biology, Ariel University, Ariel, Israel; Medicinal Chemistry Unit, School of Pharmacy, Institute of Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Francesca Levi-Schaffer
- Pharmacology and Experimental Therapeutics Unit, School of Pharmacy, Institute of Drug Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
3
|
Zhang N, Xu Y, Sun D, Li Y, Li H, Chen L. Chromene meroterpenoids from Rhododendron dauricum L. and their anti-inflammatory effects. PHYTOCHEMISTRY 2024; 225:114200. [PMID: 38936530 DOI: 10.1016/j.phytochem.2024.114200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
Rhododendron dauricum L. is a perennial herb belonging to the genus Rhododendron, commonly utilized in formulations for treating coughs and bronchitis, as well as in herbal teas for enhancing immunity and preventing tracheitis. In this study, fifteen previously undescribed chromene meroterpenoids (1a/1b-4a/4b, 5-8, 9b, 10a, 11b), along with twenty-one known compounds were isolated from the dried twigs and leaves of Rhododendron dauricum L. Of these, (-)-rhodonoid E (9b), (+)-confluentin (10a), and (-)-rubiginosin D (11b) were separated for the first time by chiral HPLC separation. The elucidation of their structures, including absolute configurations, was achieved through a combination of techniques such as NMR, HRESIMS, modified Mosher's method and quantum-chemical calculation of electronic circular dichroism (ECD) spectra. Seven pairs of enantiomers, compounds 1a/1b-4a/4b and 9a/9b-11a/11b, were initially obtained in a racemic manner and were further separated by chiral HPLC preparation. The biological assessment of these compounds against NO production was conducted in the LPS-induced RAW264.7 macrophage cells model. Compounds 9a, 9b, and 11a displayed inhibitory rates exceeding 80%, with IC50 values ranging from 8.69 ± 0.94 to 13.01 ± 1.11 μM. A preliminary examination of the structure-activity relationship (SAR) for these isolates indicated that chromene meroterpenoids with α, β-unsaturated ketone carbonyl and Δ12(13) double bond functionalities exhibited enhanced anti-inflammatory properties.
Collapse
Affiliation(s)
- Na Zhang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yang Xu
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dejuan Sun
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yuxia Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China.
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
4
|
Alves P, Amaral C, Gonçalves MS, Teixeira N, Correia-da-Silva G. Cannabidivarin and cannabigerol induce unfolded protein response and angiogenesis dysregulation in placental trophoblast HTR-8/SVneo cells. Arch Toxicol 2024; 98:2971-2984. [PMID: 38748041 PMCID: PMC11324689 DOI: 10.1007/s00204-024-03781-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/08/2024] [Indexed: 08/15/2024]
Abstract
Cannabidivarin (CBDV) and cannabigerol (CBG) are minor phytocannabinoids from Cannabis sativa, whose health benefits have been reported. However, studies about the impact of these cannabinoids on fundamental cellular processes in placentation are scarce. Placental development involves physiological endoplasmic reticulum (ER) stress, however when exacerbated it can lead to altered angiogenesis and pregnancy disorders, such as intrauterine growth restriction and preeclampsia. In this work, the effects of CBDV and CBG (1-10 µM) on placental extravillous trophoblasts were studied, using the in vitro model HTR-8/SVneo cells. Both cannabinoids induced anti-proliferative effects and reactive oxygen/nitrogen species generation, which was dependent on transient receptor potential vanilloid 1 (TRPV1) activation. Moreover, CBDV and CBG significantly upregulated, in a TRPV-1 dependent manner, the gene expression of HSPA5/Glucose-regulated protein 78 (GRP78/BiP), a critical chaperone involved in ER stress and unfolded protein response (UPR) activation. Nevertheless, the UPR pathways were differentially activated. Both cannabinoids were able to recruit the IRE branch, while only CBDV enhanced the expression of downstream effectors of the PERK pathway, namely p-eIF2α, ATF4 and CHOP. It also augmented the activity of the apoptotic initiator caspases-8 and -9, though the effector caspases-3/-7 were not activated. TRB3 expression was increased by CBDV, which may hinder apoptosis termination. Moreover, both compounds upregulated the mRNA levels of the angiogenic factors VEGFA, PGF and sFLT1, and disrupted the endothelial-like behavior of HTR-8/SVneo cells, by reducing tube formation. Thus, CBDV and CBG treatment interferes with EVTs functions and may have a negative impact in placentation and in pregnancy outcome.
Collapse
Affiliation(s)
- Patrícia Alves
- Faculty of Pharmacy, Laboratory of Biochemistry, UCIBIO, Applied Molecular Biosciences Unit, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Cristina Amaral
- Faculty of Pharmacy, Laboratory of Biochemistry, UCIBIO, Applied Molecular Biosciences Unit, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Faculty of Pharmacy, Laboratory of Biochemistry, REQUIMTE, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Marina S Gonçalves
- Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Natércia Teixeira
- Faculty of Pharmacy, Laboratory of Biochemistry, UCIBIO, Applied Molecular Biosciences Unit, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Georgina Correia-da-Silva
- Faculty of Pharmacy, Laboratory of Biochemistry, UCIBIO, Applied Molecular Biosciences Unit, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal.
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University of Porto, Rua Jorge de Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
5
|
Baldino L, Sarnelli S, Scognamiglio M, Reverchon E. Production of Biopolymeric Microparticles to Improve Cannabigerol Bioavailability. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4227. [PMID: 39274617 PMCID: PMC11396190 DOI: 10.3390/ma17174227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/16/2024]
Abstract
Cannabigerol's (CBG) therapeutic effects are limited by its poor water solubility and low dissolution rate. To improve these properties, supercritical CO2-assisted atomization (SAA) was applied to produce coprecipitates, i.e., CBG nanoparticles coprecipitated in polyvinylpyrrolidone (PVP) microparticles. The experiments were performed by varying the CBG/PVP mass ratio (R) and the overall concentration of solutes CBG+PVP to study the influence of these parameters on particle morphology, particle size, and size distribution. Periodic dynamic light scattering (DLS) analysis was performed at regular time intervals to measure the size of CBG nanoparticles in PVP microparticles. It showed that CBG nanoparticles down to 105 nm were successfully produced through SAA. Dissolution tests were used to verify that a reduction of CBG particle size significantly increased its dissolution rate. In the liquid medium adopted, untreated CBG powder was released in 210 min, whereas CBG nanoparticles of 105 nm were completely dissolved in only 15 min.
Collapse
Affiliation(s)
- Lucia Baldino
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Sonia Sarnelli
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Mariarosa Scognamiglio
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Ernesto Reverchon
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
6
|
Enríquez DJ, Alonso JC, Hille L, Brand S, Holzgrabe U, Vergara D, Montoya G, Ramírez YA. Unveiling Colombia's medicinal Cannabis sativa treasure trove: Phenotypic and Chemotypic diversity in legal cultivation. PHYTOCHEMICAL ANALYSIS : PCA 2024. [PMID: 39169651 DOI: 10.1002/pca.3436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 08/23/2024]
Abstract
INTRODUCTION Cannabis sativa is a highly versatile plant with a long history of cultivation and domestication. It produces multiple compounds that exert distinct and valuable therapeutic effects by modulating diverse biological systems, including the endocannabinoid system (ECS). Access to standardized, metabolically diverse, and reproducible C. sativa chemotypes and chemovars is essential for physicians to optimize individualized patient treatment and for industries to conduct drug-discovery campaigns. OBJECTIVE This study aimed to characterize and assess the phytochemical diversity of C. sativa chemotypes in diverse ecological regions of Colombia, South America. METHODOLOGY Ten cannabinoids and 23 terpenes were measured using liquid and gas chromatography, in addition to other phenotypic traits, in 156 C. sativa plants that were grown in diverse ecological regions in Colombia, a hotspot for global biodiversity. RESULTS Our results reveal significant phytochemical diversity in Colombian-grown C. sativa plants, with four distinct chemotypes based on cannabinoid profile. The significant amount of usually uncommon terpenes suggests that Colombia's environments may have unique capabilities that allow the plant to express these compounds. Colombia's diverse climates offer enormous cultivation potential, making it a key player in both domestic and international medicinal and recreational C. sativa trade. CONCLUSION These findings underscore Colombia's capacity to pioneer global C. sativa production diversification, particularly in South America with new emerging markets.
Collapse
Affiliation(s)
- Diego J Enríquez
- Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Cali, Valle del Cauca, Colombia
| | - Julio C Alonso
- Facultad de Ciencias Administrativas y Económicas, Universidad Icesi, Cali, Valle del Cauca, Colombia
| | - Lucas Hille
- Institute for Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany
| | - Stefan Brand
- Symrise AG, Mühlenfeldstrasse1, Holzminden, Germany
| | - Ulrike Holzgrabe
- Institute for Pharmacy and Food Chemistry, University of Würzburg. Am Hubland 97074, Würzburg, Germany
| | - Daniela Vergara
- Harvest New York, Cornell Cooperative Extension, Geneva, New York, USA
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Guillermo Montoya
- Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Cali, Valle del Cauca, Colombia
| | - Yesid A Ramírez
- Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Cali, Valle del Cauca, Colombia
- Institute for Pharmacy and Food Chemistry, University of Würzburg. Am Hubland 97074, Würzburg, Germany
| |
Collapse
|
7
|
Classen N, Pitakbut T, Schöfbänker M, Kühn J, Hrincius ER, Ludwig S, Hensel A, Kayser O. Cannabigerol and Cannabicyclol Block SARS-CoV-2 Cell Fusion. PLANTA MEDICA 2024; 90:717-725. [PMID: 38885660 DOI: 10.1055/a-2320-8822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The search for new active substances against SARS-CoV-2 is still a central challenge after the COVID-19 pandemic. Antiviral agents to complement vaccination are an important pillar in the clinical situation. Selected cannabinoids such as cannabigerol, cannabicyclol, cannabichromene, and cannabicitran from Cannabis sativa and synthetic homologues of cannabigerol and cannabicyclol were evaluated for effects on the cell viability of Vero cells (CC50 of cannabigerol and cannabicyclol 40 resp. 38 µM) and reduced virus entry of vesicular stomatitis pseudotyped viruses with surface-expressed SARS-CoV-2 spike protein at 20 µM. In addition to a reduction of pseudotyped virus entry, a titer reduction assay on Vero cells after preincubation of Wuhan SARS-CoV-2 significantly confirmed antiviral activity. Investigations on the molecular targets addressed by cannabigerol and cannabicyclol indicated that both compounds are inhibitors of SARS-CoV-2 spike protein-mediated membrane fusion, as could be shown by a virus-free reporter fusion inhibition assay (EC50 for cannabigerol 5.5 µM and for cannabicyclol 10.8 µM) and by monitoring syncytia formation in Vero reporter cells. Selectivity indices were calculated as 7.4 for cannabigerol and 3.5 for cannabicyclol. Systematic semisynthetic alterations of cannabigerol and cannabicyclol indicated that the side chains of both compounds do not contribute to the observed anti-membrane fusion activity.
Collapse
Affiliation(s)
- Nica Classen
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Germany
| | - Thanet Pitakbut
- Technical Biochemistry Laboratory, Faculty of Biochemical and Chemical Engineering, Technical University of Dortmund, Germany
| | | | - Joachim Kühn
- Institute of Virology Münster (IVM), University of Münster, Germany
| | - Eike R Hrincius
- Institute of Virology Münster (IVM), University of Münster, Germany
| | - Stephan Ludwig
- Institute of Virology Münster (IVM), University of Münster, Germany
| | - Andreas Hensel
- Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Germany
| | - Oliver Kayser
- Technical Biochemistry Laboratory, Faculty of Biochemical and Chemical Engineering, Technical University of Dortmund, Germany
| |
Collapse
|
8
|
Sip S, Stasiłowicz-Krzemień A, Sip A, Szulc P, Neumann M, Kryszak A, Cielecka-Piontek J. Development of Delivery Systems with Prebiotic and Neuroprotective Potential of Industrial-Grade Cannabis sativa L. Molecules 2024; 29:3574. [PMID: 39124978 PMCID: PMC11314201 DOI: 10.3390/molecules29153574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
This study delves into the transformative effects of supercritical carbon dioxide (scCO2) cannabis extracts and prebiotic substances (dextran, inulin, trehalose) on gut bacteria, coupled with a focus on neuroprotection. Extracts derived from the Białobrzeska variety of Cannabis sativa, utilising supercritical fluid extraction (SFE), resulted in notable cannabinoid concentrations (cannabidiol (CBD): 6.675 ± 0.166; tetrahydrocannabinol (THC): 0.180 ± 0.006; cannabigerol (CBG): 0.434 ± 0.014; cannabichromene (CBC): 0.490 ± 0.017; cannabinol (CBN): 1.696 ± 0.047 mg/gD). The assessment encompassed antioxidant activity via four in vitro assays and neuroprotective effects against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The extract boasting the highest cannabinoid content exhibited remarkable antioxidant potential and significant inhibitory activity against both enzymes. Further investigation into prebiotic deliveries revealed their proficiency in fostering the growth of beneficial gut bacteria while maintaining antioxidant and neuroprotective functionalities. This study sheds light on the active compounds present in the Białobrzeska variety, showcasing their therapeutic potential within prebiotic systems. Notably, the antioxidant, neuroprotective, and prebiotic properties observed underscore the promising therapeutic applications of these extracts. The results offer valuable insights for potential interventions in antioxidant, neuroprotective, and prebiotic domains. In addition, subsequent analyses of cannabinoid concentrations post-cultivation revealed nuanced changes, emphasising the need for further exploration into the dynamic interactions between cannabinoids and the gut microbiota.
Collapse
Affiliation(s)
- Szymon Sip
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznań University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland; (S.S.); (A.S.-K.)
| | - Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznań University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland; (S.S.); (A.S.-K.)
| | - Anna Sip
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Wojska Polskiego 48, 60-627 Poznań, Poland;
| | - Piotr Szulc
- Department of Agronomy, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (P.S.); (M.N.)
| | - Małgorzata Neumann
- Department of Agronomy, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (P.S.); (M.N.)
| | - Aleksandra Kryszak
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznań, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznań University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland; (S.S.); (A.S.-K.)
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznań, Poland;
| |
Collapse
|
9
|
Gorbenko AA, Cohen AA. On the use of open-label studies for the evaluation of cannabis-based products for the treatment of long COVID. Br J Clin Pharmacol 2024. [PMID: 38964752 DOI: 10.1111/bcp.16169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/30/2024] [Accepted: 06/19/2024] [Indexed: 07/06/2024] Open
Affiliation(s)
- Andriy A Gorbenko
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Centre, Leiden, The Netherlands
| | - Adam A Cohen
- Centre for Human Drug Research, Leiden, The Netherlands
- Leiden University Medical Centre, Leiden, The Netherlands
| |
Collapse
|
10
|
Bielawiec P, Dziemitko S, Konstantynowicz-Nowicka K, Sztolsztener K, Chabowski A, Harasim-Symbor E. Cannabigerol-A useful agent restoring the muscular phospholipids milieu in obese and insulin-resistant Wistar rats? Front Mol Biosci 2024; 11:1401558. [PMID: 38919749 PMCID: PMC11196617 DOI: 10.3389/fmolb.2024.1401558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Numerous strategies have been proposed to minimize obesity-associated health effects, among which phytocannabinoids appear to be effective and safe compounds. In particular, cannabigerol (CBG) emerges as a potent modulator of the composition of membrane phospholipids (PLs), which plays a critical role in the development of insulin resistance. Therefore, here we consider the role of CBG treatment on the composition of PLs fraction with particular emphasis on phospholipid subclasses (e.g., phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), and phosphatidylinositol (PI)) in the red gastrocnemius muscle of Wistar rats fed the standard or high-fat, high-sucrose (HFHS) diet. The intramuscular PLs content was determined by gas-liquid chromatography and based on the composition of individual FAs, we assessed the stearoyl-CoA desaturase 1 (SCD1) index as well as the activity of n-3 and n-6 polyunsaturated fatty acids (PUFAs) pathways. Expression of various proteins engaged in the inflammatory pathway, FAs elongation, and desaturation processes was measured using Western blotting. Our research has demonstrated the important association of obesity with alterations in the composition of muscular PLs, which was significantly improved by CBG supplementation, enriching the lipid pools in n-3 PUFAs and decreasing the content of arachidonic acid (AA), which in turn influenced the activity of PUFAs pathways in various PLs subclasses. CBG also inhibited the local inflammation development and profoundly reduced the SCD1 activity. Collectively, restoring the PLs homeostasis of the myocyte membrane by CBG indicates its new potential medical application in the treatment of obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Patrycja Bielawiec
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | | | | | | | | | | |
Collapse
|
11
|
Yang S, Sun M. Recent Advanced Methods for Extracting and Analyzing Cannabinoids from Cannabis-Infused Edibles and Detecting Hemp-Derived Contaminants in Food (2013-2023): A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38857901 DOI: 10.1021/acs.jafc.4c01286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Cannabis-infused edibles are food products infused with a cannabis extract. These edibles include baked goods, candies, and beverages, offering an alternative way to consume cannabis instead of smoking or vaporizing it. Ensuring the accurate detection of cannabis-infused edibles and identification of any contaminants is crucial for public health and safety. This is particularly important for compliance with legal regulations as these substances can have significant psychoactive effects, especially on unsuspecting consumers such as children or individuals with certain medical conditions. Using efficient extraction methods can greatly improve detection accuracy, ensuring that the concentration of cannabinoids in edibles is measured correctly and adheres to dosage guidelines and legal limits. This review comprehensively examines the preparation and extraction techniques for cannabinoid edibles. It covers methods such as solid-phase extraction, enhanced matrix removal-lipid, QuEChERS, dissolution and dispersion techniques, liquid-phase extraction, and other emerging methodologies along with analytical techniques for cannabinoid analysis. The main analytical techniques employed for the determination of cannabinoids include liquid chromatography (LC), gas chromatography (GC), direct analysis in real time (DART), and mass spectrometry (MS). The application of these extraction and analytical techniques is further demonstrated through their use in analyzing specific edible samples, including oils, candies, beverages, solid coffee and tea, snacks, pet food, and contaminated products.
Collapse
Affiliation(s)
- Siyun Yang
- Department of Biology, Kean University, Union, New Jersey 07083, United States
| | - Mingjing Sun
- Department of Chemistry and Physics, Kean University, Union, New Jersey 07083, United States
| |
Collapse
|
12
|
Davis M, Cyr C, Crawford GB, Case AA. Should Cannabis be Used for Anorexia in Patients With Cancer? J Pain Symptom Manage 2024; 67:e487-e492. [PMID: 38272379 DOI: 10.1016/j.jpainsymman.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/27/2024]
Abstract
Healthcare professionals are frequently asked about the benefits of cannabis for appetite or anorexia-cachexia syndrome. In popular culture, cannabis has a reputation of causing an increased hunger, slang termed "the munchies," so many patients consume this with the hope that it may improve the loss of appetite associated with serious illness such as cancer. There have only been a few randomized, controlled trials studying the controversial question as to if cannabis improves appetite. These studies are small and show no statistically significant benefit for appetite and one small study showed improvement of taste for foods. Due to regulation barriers, the studies have use synthetic products, not the products that represent what is more commonly used in the population, often whole flower smoked, vaporized or oral products. Despite the popularity of cannabis in culture, often touted as a panacea for all maladies, the evidence and education for several adverse effects and potential drug interactions have has yet to catch up with the cultural craze. International cannabis experts in the United States and Australia do not routinely certify patients for medical cannabis off trial for anorexia-cachexia, but one expert in Canada would consider use in selected cancer patients.
Collapse
Affiliation(s)
- Mellar Davis
- Professor of Palliative Medicine (M.D.), Geisinger Medical Center, Danville, Pennsylvania, USA
| | - Claude Cyr
- McGill University Health Center (C.C.), Montreal, Quebec, Canada
| | - Gregory B Crawford
- Senior Consultant in Palliative Medicine and Director of Research & Education (G.B.C.), Northern Adelaide Local Health Network, South Australia, Australia; Professor of Palliative Medicine, Faculty of Health & Medical Sciences (G.B.C.), University of Adelaide, Adelaide, Australia
| | - Amy A Case
- Chair Department of Supportive and Palliative Care (A.A.C.), Professor of Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA; Professor of Medicine (A.A.C.), University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA.
| |
Collapse
|
13
|
Pathak S, Jeyabalan JB, Liu K, Cook P, Lange B, Kim S, Nadar R, Ward K, Watts Alexander CS, Kumar A, Dua K, Moore T, Govindasamy J, Dhanasekaran M. Assessing effects of Cannabis on various neuropathologies: A systematic review. J Ayurveda Integr Med 2024; 15:100911. [PMID: 38876946 PMCID: PMC11282377 DOI: 10.1016/j.jaim.2024.100911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/12/2024] [Accepted: 02/19/2024] [Indexed: 06/16/2024] Open
Abstract
Natural bioactives possess a wide range of chemical structures that can exert a plethora of pharmacological and toxicological actions, resulting in neuroprotection or neurotoxicity. These pharmacodynamic properties can positively or negatively impact human and animal global healthcare. Remarkably, Ayurvedic botanical Cannabis has been used worldwide by different ethnicities and religions for spiritual, commercial, recreational, nutraceutical, cosmeceutical, and medicinal purposes for centuries. Cannabis-based congeners have been approved by the United States of America's (USA) Food & Drug Administration (FDA) and other global law agencies for various therapeutic purposes. Surprisingly, the strict laws associated with possessing cannabis products have been mitigated in multiple states in the USA and across the globe for recreational use. This has consequently led to a radical escalation of exposure to cannabis-related substances of abuse. However, there is a lacuna in the literature on the acute and chronic effects of Cannabis and its congeners on various neuropathologies. Moreover, in the post-COVID era, there has been a drastic increase in the incidence and prevalence of numerous neuropathologies, leading to increased morbidity and mortality. There is an impending necessity for a safe, economically viable, multipotent, natural bioactive to prevent and treat various neuropathologies. The ayurvedic herb, Cannabis is one of the oldest botanicals known to humans and has been widely used. However, the comprehensive effect of Cannabis on various neuropathologies is not well established. Hence, this review presents effects of Cannabis on various neuropathologies.
Collapse
Affiliation(s)
- Suhrud Pathak
- Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Jeyaram Bharathi Jeyabalan
- Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA; Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Nilgiris, Ooty, Tamil Nadu, 643 001, India
| | - Keyi Liu
- Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Preston Cook
- Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Bennett Lange
- Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Shannon Kim
- Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Rishi Nadar
- Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Kiersten Ward
- Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | | | - Ashwani Kumar
- Patanjali Herbal Research Department, Patanjali Research Foundation, Haridwar, 249405, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, Australia
| | - Timothy Moore
- Harrison College of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | | | | |
Collapse
|
14
|
Bęben D, Siwiela O, Szyjka A, Graczyk M, Rzepka D, Barg E, Moreira H. Phytocannabinoids CBD, CBG, and their Derivatives CBD-HQ and CBG-A Induced In Vitro Cytotoxicity in 2D and 3D Colon Cancer Cell Models. Curr Issues Mol Biol 2024; 46:3626-3639. [PMID: 38666957 PMCID: PMC11048930 DOI: 10.3390/cimb46040227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/11/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Phytocannabinoids, compounds found in Cannabis sativa L., are used in oncology and palliative care to reduce the adverse reactions of standard therapies. Cancer patients use formulations of Cannabis sativa L. to manage the anxiety, pain, and nausea associated with cancer treatment, and there is growing evidence that some of them may exhibit anticancer properties. In this study, we tested the anticancer potential of selected cannabinoids CBD (cannabidiol) and its quinone derivative CBD-HQ (cannabidiol hydroquinone), CBG (cannabigerol) and its acid derivative CBG-A (cannabigerolic acid), as well as a combination of CBD+CBG on the colon cancer cell line SW-620. The MTT assay was used to determine the cannabinoids' ability to induce colon cancer cell death. All cannabinoids were cytotoxic at the lowest concentration (3 μg/mL). The half maximal inhibitory concentration (IC50) ranged from 3.90 to 8.24 μg/mL, depending on the substance. Cytotoxicity was confirmed in a 3D spheroidal cell culture with calcein and propidium iodide staining. The amount of intracellular reactive oxygen species (ROS) was examined using a DCF-DA assay. CBG showed the lowest antioxidant activity of all the cannabinoids tested. The level of intracellular ROS decreased only by 0.7-18%. However, CBG-A induced the strongest reduction in ROS level by 31-39%. Our results suggest that cannabinoids represent an interesting research direction with great implementation potential. These preliminary results represent the beginning of research into the potential of these substances for anticancer treatment and underscore the potential for further research.
Collapse
Affiliation(s)
- Dorota Bęben
- Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211, 50-556 Wroclaw, Poland; (D.B.); (O.S.)
| | - Oliwia Siwiela
- Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211, 50-556 Wroclaw, Poland; (D.B.); (O.S.)
| | - Anna Szyjka
- Department of Basic Medical Sciences and Immunology, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211, 50-556 Wroclaw, Poland; (A.S.); (H.M.)
| | - Michał Graczyk
- Department of Palliative Care, Faculty of Health Sciences, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, 87-100 Torun, Poland;
| | | | - Ewa Barg
- Department of Basic Medical Sciences and Immunology, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211, 50-556 Wroclaw, Poland; (A.S.); (H.M.)
| | - Helena Moreira
- Department of Basic Medical Sciences and Immunology, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211, 50-556 Wroclaw, Poland; (A.S.); (H.M.)
| |
Collapse
|
15
|
Blebea NM, Pricopie AI, Vlad RA, Hancu G. Phytocannabinoids: Exploring Pharmacological Profiles and Their Impact on Therapeutical Use. Int J Mol Sci 2024; 25:4204. [PMID: 38673788 PMCID: PMC11050509 DOI: 10.3390/ijms25084204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Phytocannabinoids, a diverse group of naturally occurring compounds extracted from the Cannabis plant, have attracted interest due to their potential pharmacological effects and medicinal uses. This comprehensive review presents the intricate pharmacological profiles of phytocannabinoids while exploring the diverse impacts these substances have on biological systems. From the more than one hundred cannabinoids which were identified in the Cannabis plant so far, cannabidiol (CBD) and tetrahydrocannabinol (THC) are two of the most extensively studied phytocannabinoids. CBD is a non-psychoactive compound, which exhibits potential anti-inflammatory, neuroprotective, and anxiolytic properties, making it a promising candidate for a wide array of medical conditions. THC, known for its psychoactive effects, possesses analgesic and antiemetic properties, contributing to its therapeutic potential. In addition to THC and CBD, a wide range of additional phytocannabinoids have shown intriguing pharmacological effects, including cannabichromene (CBC), cannabigerol (CBG), and cannabinol (CBN). The endocannabinoid system, made up of the enzymes involved in the production and breakdown of endocannabinoids, cannabinoid receptors (CB1 and CB2), and endogenous ligands (endocannabinoids), is essential for preserving homeostasis in several physiological processes. Beyond their effects on the endocannabinoid system, phytocannabinoids are studied for their ability to modify ion channels, neurotransmitter receptors, and anti-oxidative pathways. The complex interaction between phytocannabinoids and biological systems offers hope for novel treatment approaches and lays the groundwork for further developments in the field of cannabinoid-based medicine. This review summarizes the state of the field, points out information gaps, and emphasizes the need for more studies to fully realize the therapeutic potential of phytocannabinoids.
Collapse
Affiliation(s)
- Nicoleta Mirela Blebea
- Department of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, “Ovidius” University from Constanța, 900470 Constanța, Romania;
| | - Andreea Iulia Pricopie
- Biochemistry and Chemistry of Environmental Factors Department, Faculty of Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania
| | - Robert-Alexandru Vlad
- Pharmaceutical Technology and Cosmetology Department, Faculty of Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania
| | - Gabriel Hancu
- Pharmaceutical and Therapeutic Chemistry Department, Faculty of Pharmacy, “George Emil Palade” University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mures, Romania
| |
Collapse
|
16
|
Zhang Q, Zhao Y, Wu J, Zhong W, Huang W, Pan Y. The progress of small molecules against cannabinoid 2 receptor (CB 2R). Bioorg Chem 2024; 144:107075. [PMID: 38218067 DOI: 10.1016/j.bioorg.2023.107075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/03/2023] [Accepted: 12/27/2023] [Indexed: 01/15/2024]
Abstract
The two subtypes of cannabinoid receptors (CBR), namely CB1R and CB2R, belong to the G protein-coupled receptor (GPCR) superfamily and are confirmed as potential therapeutic targets for a variety of diseases such as inflammation, neuropathic pain, and immune-related disorders. Since CB1R is mainly distributed in the central nervous system (CNS), it could produce severe psychiatric adverse reactions and addiction. In contrast, CB2R are predominantly distributed in the peripheral immune system with minimal CNS-related side effects. Therefore, more attention has been devoted to the discovery of CB2R ligands. In view of the favorable profile of CB2R, many high-binding affinity and selectivity CB2R ligands have been developed recently. This paper reviews recent research progress on CB2R ligands, including endogenous CB2R ligands, natural compounds, and novel small molecules, in order to provide a reference for subsequent CB2R ligand development.
Collapse
Affiliation(s)
| | - Ying Zhao
- Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianan Wu
- Hangzhou Medical College, Hangzhou, Zhejiang, China
| | | | - Wenhai Huang
- Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Youlu Pan
- Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
17
|
Dawidowicz AL, Typek R, Dybowski MP, Holowinski P, Rombel M. Cannabigerol (CBG) signal enhancement in its analysis by gas chromatography coupled with tandem mass spectrometry. Forensic Toxicol 2024; 42:31-44. [PMID: 37755669 PMCID: PMC10808273 DOI: 10.1007/s11419-023-00673-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023]
Abstract
PURPOSE According to recent reports, cannabigerol (CBG) concentration level in blood and body fluids may have forensic utility as a highly specific albeit insensitive biomarker of recent cannabis smoking. While the analytical sensitivity of cannabidiol (CBD), Δ9-tetrahydrocannabinol (Δ9-THC), cannabichromene (CBC) or cannabinol (CBN) estimation by gas chromatography-mass spectrometry (GC-MS) is similar and sufficiently high, it is exceptionally low in the case of CBG (ca. 25 times lower than for the other mentioned cannabinoids). The purpose of this study is to explain the reasons for the extremely low analytical sensitivity of GC-MS in estimating CBG and to present possible ways of its improvement. METHODS Nuclear magnetic resonance (NMR) data and GC-MS responses to CBG and its various derivatization and transformation products were studied. RESULTS The validation data of individual derivatives of CBG and its transformation products were established. CBG silylation/acylation or hydration allows to decrease LOD about 3 times, whereas the formation of pyranic CBG derivative leads to 10-times decrease of LOD. The paper enriches the literature of the subject by providing MS and NMR spectra, not published so far, for derivatives of CBG and its transformation products. The most likely cause of low GC-MS response to CBG is also presented. CONCLUSIONS The presented results shows that although the signal increase of CBG can be obtained through its derivatization by silylation and/or acylation, the greatest increase is observed in the case of its cyclization to the pyranic CBG form during the sample preparation process. The CBG cyclization procedure is very simple and workable in estimating this cannabinoid in blood/plasma samples.
Collapse
Affiliation(s)
- Andrzej L Dawidowicz
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, 20-031, Lublin, Poland.
| | - Rafal Typek
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, 20-031, Lublin, Poland
| | - Michal P Dybowski
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, 20-031, Lublin, Poland
| | - Piotr Holowinski
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, 20-031, Lublin, Poland
| | - Michal Rombel
- Department of Chromatography, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, 20-031, Lublin, Poland
| |
Collapse
|
18
|
Casanova F, Pereira CF, Ribeiro AB, Castro PM, Freixo R, Martins E, Tavares-Valente D, Fernandes JC, Pintado ME, Ramos ÓL. Biological Potential and Bioaccessibility of Encapsulated Curcumin into Cetyltrimethylammonium Bromide Modified Cellulose Nanocrystals. Pharmaceuticals (Basel) 2023; 16:1737. [PMID: 38139863 PMCID: PMC10747507 DOI: 10.3390/ph16121737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Curcumin is a natural phenolic compound with important biological functions. Despite its demonstrated efficacy in vitro, curcumin biological activities in vivo are dependent on its bioaccessibility and bioavailability, which have been highlighted as a crucial challenge. Cetyltrimethylammonium bromide-modified cellulose nanocrystals (CNC-CTAB) have been shown to be effective in curcumin encapsulation, as they have the potential to enhance biological outcomes. This study evaluated the biological effects of curcumin encapsulated within CNC-CTAB structures, namely its antioxidant, anti-inflammatory and antimicrobial properties, as well as the release profile under digestion conditions and intestinal permeability. Encapsulated curcumin demonstrated antioxidant and anti-inflammatory properties, effectively reducing reactive oxygen species and cytokine production by intestinal cells. The delivery system exhibited antimicrobial properties against Campylobacter jejuni bacteria, further suggesting its potential in mitigating intestinal inflammation. The system showed the ability to protect curcumin from degradation and facilitate its interaction with the intestinal epithelium, highlighting the potential of CNC-CTAB as carrier to enhance curcumin intestinal biological functions.
Collapse
Affiliation(s)
- Francisca Casanova
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Carla F Pereira
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Alessandra B Ribeiro
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Pedro M Castro
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Ricardo Freixo
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Eva Martins
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Diana Tavares-Valente
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - João C Fernandes
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Manuela E Pintado
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Óscar L Ramos
- CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
19
|
Gęgotek A, Jarocka-Karpowicz I, Atalay Ekiner S, Skrzydlewska E. The Anti-Inflammatory Action of Cannabigerol Accompanied by the Antioxidant Effect of 3-O-ethyl Ascorbic Acid in UVA-Irradiated Human Keratinocytes. J Pharmacol Exp Ther 2023; 387:170-179. [PMID: 37652708 DOI: 10.1124/jpet.123.001731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023] Open
Abstract
Excessive daily exposure of human skin to natural UVA radiation leads to impaired redox homeostasis in epidermal keratinocytes, resulting in changes in their proteome. Commonly used antioxidants usually exhibit protection in a narrowed range, which makes it necessary to combine their effects. Therefore, the aim of this study was to analyze the protective effect of cannabigerol (CBG) and 3-O-ethyl ascorbic acid (EAA), used separately and together, on the proteomic profile of UVA irradiated keratinocytes. Proteomic analysis with the use of the Q Exactive HF mass spectrometer, combined with biostatistic tests, performed on UVA-irradiated keratinocytes indicated enhanced and lowered expression of 186 and 160 proteins, respectively. CBG treatment after UVA irradiation reduced these numbers to 110 upregulated and 49 downregulated proteins, while EAA eliminated all these changes. CBG completely eliminated the UV-induced effect on the expression of pro-inflammatory proteins and significantly increased the level of proteins responsible for cellular locomotion. On the other hand, CBG reduced the level of UVA-induced 4-hydroxynonenal protein adducts fivefold, whereas EAA had no effect on this modification. At the same time, CBG and EAA did not modify the expression/structure of proteins in relation to the nonirradiated control keratinocytes in the case of an unaccompanied use or slightly modified the protein profile when used in a mixture. The combined protective effects of CBG on protein structure and EAA on protein expression profile allowed us to obtain a wider protection of cells against UVA radiation, compared with when the compounds were used alone. SIGNIFICANCE STATEMENT: Proteomic analysis of human skin cells allows to conclude that 3-O-ethyl ascorbic acid eliminates UVA-induced changes in the expression of keratinocyte proteins, while cannabigerol significantly reduces 4-hydroxynonenal protein adducts. The combined protective effects of cannabigerol on protein structure and of 3-O-ethyl ascorbic acid on protein expression profile allowed to obtain a wider protection of cells against UVA radiation.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Poland
| | | | | | | |
Collapse
|
20
|
Beleggia R, Iannucci A, Menga V, Quitadamo F, Suriano S, Citti C, Pecchioni N, Trono D. Impact of Chitosan-Based Foliar Application on the Phytochemical Content and the Antioxidant Activity in Hemp ( Cannabis sativa L.) Inflorescences. PLANTS (BASEL, SWITZERLAND) 2023; 12:3692. [PMID: 37960049 PMCID: PMC10648115 DOI: 10.3390/plants12213692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
In the present study, the phytochemical content and the antioxidant activity in the inflorescences of the monoecious hemp cultivar Codimono grown in southern Italy were assessed, and their elicitation was induced by foliar spray application of 50 mg/L and 250 mg/L of chitosan (CHT) at three different molecular weights (low, CHT L; medium, CHT M; high CHT H). The analysis of the phytochemical profile confirmed that cannabinoids were the most abundant class (54.2%), followed by flavonoids (40.3%), tocopherols (2.2%), phenolic acids (1.9%), and carotenoids (1.4%). Cannabinoids were represented almost exclusively by cannabidiol, whereas cannabigerol and Δ9-tetrahydrocannabinol were detected at very low levels (the latter was below the legal limit of 0.3%). The most abundant flavonoids were orientin and vitexin, whereas tocopherols were mainly represented by α-tocopherol. The antioxidant activity was found to be positively correlated with flavonoids and tocopherols. Statistical analysis revealed that the CHT treatments significantly affected the phytochemical content and the antioxidant activity of hemp inflorescences. Notably, a significant increase in the total phenolic content (from +36% to +69%), the α-tocopherol (from +45% to +75%) and β+γ-tocopherol (from +35% to +82%) contents, and the ABTS radical scavenging activity (from +12% to +28%) was induced by all the CHT treatments. In addition, treatments with CHT 50 solutions induced an increase in the total flavonoid content (from +12% to +27%), as well as in the vitexin (from +17% to +20%) and orientin (from +20% to +30%) contents. Treatment with CHT 50 L almost always resulted in the greatest increases. Overall, our findings indicated that CHT could be used as a low-cost and environmentally safe elicitor to improve the health benefits and the economic value of hemp inflorescences, thus promoting their employment in the food, pharmaceutical, nutraceutical, and cosmetic supply chains.
Collapse
Affiliation(s)
- Romina Beleggia
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (R.B.); (V.M.); (F.Q.); (S.S.); (N.P.)
| | - Anna Iannucci
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (R.B.); (V.M.); (F.Q.); (S.S.); (N.P.)
| | - Valeria Menga
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (R.B.); (V.M.); (F.Q.); (S.S.); (N.P.)
| | - Filippo Quitadamo
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (R.B.); (V.M.); (F.Q.); (S.S.); (N.P.)
| | - Serafino Suriano
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (R.B.); (V.M.); (F.Q.); (S.S.); (N.P.)
| | - Cinzia Citti
- Department of Life Science, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy;
- CNR NANOTEC-Institute of Nanotechnology, Via Monteroni, 73100 Lecce, Italy
| | - Nicola Pecchioni
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (R.B.); (V.M.); (F.Q.); (S.S.); (N.P.)
| | - Daniela Trono
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (R.B.); (V.M.); (F.Q.); (S.S.); (N.P.)
| |
Collapse
|
21
|
Boulebd H, Spiegel M. Computational assessment of the primary and secondary antioxidant potential of alkylresorcinols in physiological media. RSC Adv 2023; 13:29463-29476. [PMID: 37818267 PMCID: PMC10561184 DOI: 10.1039/d3ra05967g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/29/2023] [Indexed: 10/12/2023] Open
Abstract
Alkylresorcinols are a group of natural phenolic compounds found in various foods such as whole grain cereals, bread, and certain fruits. They are known for their beneficial health effects, such as anti-inflammatory and anti-cancer properties. This study aimed to evaluate the antioxidant activity of two typical alkylresorcinols namely olivetol and olivetolic acid (Oli and OliA) under physiological conditions. The free radical scavenging capacity of Oli and OliA toward oxygenated free radicals (HO˙ and HOO˙ radicals) was investigated using thermodynamic and kinetic calculations. The results revealed that Oli and OliA are potent scavengers of HO˙ radical in both polar and lipid media, acting exclusively via the FHT (formal hydrogen transfer) mechanism. Moreover, they demonstrated excellent scavenging activity toward HOO˙ radical in water via the SET (single electron transfer) mechanism, outperforming the common antioxidant BHT. In lipid media, Oli and OliA showed moderate scavenging activity toward HOO˙ radical via the FHT mechanism. Significant prooxidant potential of OliA- was also demonstrated through the formation of complexes with copper ions. Additionally, docking studies indicate that the compounds exhibited a good affinity for ROS-producing enzymes, including myeloperoxidase (MP), cytochrome P450 (CP450), lipoxygenase (LOX), and xanthine oxidase (XO), highlighting their potential as natural antioxidants with promising therapeutic applications.
Collapse
Affiliation(s)
- Houssem Boulebd
- Department of Chemistry, Faculty of Exact Science, University of Constantine 1 Constantine 25000 Algeria
| | - Maciej Spiegel
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University Borowska 211A 50-556 Wroclaw Poland
| |
Collapse
|
22
|
Stasiłowicz-Krzemień A, Sip S, Szulc P, Walkowiak J, Cielecka-Piontek J. The Antioxidant and Neuroprotective Potential of Leaves and Inflorescences Extracts of Selected Hemp Varieties Obtained with scCO 2. Antioxidants (Basel) 2023; 12:1827. [PMID: 37891906 PMCID: PMC10604441 DOI: 10.3390/antiox12101827] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Cannabis sativa, a versatile plant with numerous varieties, holds promising potential for a wide range of biological activity. As raw materials for research, we chose leaves and inflorescences of hemp varieties such as Białobrzeskie, Henola, and Tygra, which are cultivated mainly for their fibers or seeds. The choice of extraction is a key step in obtaining the selected compositions of active compounds from plant material. Bearing in mind the lipophilic nature of cannabinoids, we performed supercritical carbon dioxide (scCO2) extraction at 50 °C under 2000 (a) and 6000 PSI (b). The cannabinoid contents were determined with the use of the HPLC-DAD method. The antioxidant capabilities were assessed through a series of procedures, including the DPPH, ABTS, CUPRAC, and FRAP methods. The capacity to inhibit enzymes that play a role in the progression of neurodegenerative diseases, such as acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and tyrosinase was also studied. The dominant cannabinoids in the extracts were cannabidiol (CBD) and cannabidiolic acid (CBDA). The highest concentration of eight cannabinoids was detected in the Tygra inflorescences extract (b). The most notable antioxidant properties were provided by the Tygra inflorescences extract (b). Nonetheless, it was the Henola inflorescences extract (b) that demonstrated the most efficient inhibition of AChE and BChE, and tyrosinase was inhibited the most significantly by the Białobrzeskie inflorescences extract (b). Multidimensional comparative analysis enrolled all assays and revealed that the Henola inflorescences extract (b) showed the most substantial neuroprotective potential.
Collapse
Affiliation(s)
- Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Szymon Sip
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
| | - Piotr Szulc
- Department of Agronomy, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland;
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland;
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| |
Collapse
|
23
|
Xu Q, Tian W, He S, Zhou M, Gao Y, Liu X, Sun C, Ding R, Wang G, Chen H. Apocarotenoids from Equisetum debile Roxb. ex Vaucher regulate the lipid metabolism via the activation of the AMPK/ACC/SREBP-1c signaling pathway. Bioorg Chem 2023; 138:106639. [PMID: 37276680 DOI: 10.1016/j.bioorg.2023.106639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/14/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
Sixteen undescribed apocarotenoids (1-16), along with 22 known analogues, were isolated from the aerial parts of Equisetum debile. Their structures, including absolute configurations, were elucidated by NMR, HRESIMS, X-ray diffraction analysis, the modified Mosher's method and the quantum-chemical calculation of electronic circular dichroism (ECD) spectra. Compounds 1-9, 11-12 are the first example of C16-apocarotenoids appeared in nature. The plausible biosynthetic pathway of 1-16 was proposed. Moreover, the isolates were evaluated for their lipid-lowering activity, and the results showed that 13, 14, 15, 22, 31, 32 and 33 could remarkably decrease the levels of both TC and TG in FFA induced HepG2 cells at 20 μM. The oil red staining assay further demonstrated the lipid-lowering effects of 13, 14 and 15. The western blot results indicated that compounds 13, 14 and 15 could regulate the lipid metabolism via the activation of the AMPK/ACC/SREBP-1c signaling pathway. A preliminary structure-activity relationship (SAR) study of the isolates indicated that the apocarotenoids with 6/5 ring system displayed more potent lipid-lowering effects.
Collapse
Affiliation(s)
- Qiannan Xu
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Wenjing Tian
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China.
| | - Shoulun He
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Mi Zhou
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Yue Gao
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Xiangzhong Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Cuiling Sun
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Rong Ding
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Guanghui Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China
| | - Haifeng Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, People's Republic of China.
| |
Collapse
|
24
|
Wroński A, Dobrzyńska I, Sękowski S, Łuczaj W, Olchowik-Grabarek E, Skrzydlewska E. Cannabidiol and Cannabigerol Modify the Composition and Physicochemical Properties of Keratinocyte Membranes Exposed to UVA. Int J Mol Sci 2023; 24:12424. [PMID: 37569799 PMCID: PMC10418984 DOI: 10.3390/ijms241512424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The action of UVA radiation (both that derived from solar radiation and that used in the treatment of skin diseases) modifies the function and composition of keratinocyte membranes. Therefore, this study aimed to assess the effects of phytocannabinoids (CBD and CBG), used singly and in combination, on the contents of phospholipids, ceramides, lipid rafts and sialic acid in keratinocyte membranes exposed to UVA radiation, together with their structure and functionality. The phytocannabinoids, especially in combination (CBD+CBG), partially prevented increased levels of phosphatidylinositols and sialic acid from occurring and sphingomyelinase activity after the UVA exposure of keratinocytes. This was accompanied by a reduction in the formation of lipid rafts and malondialdehyde, which correlated with the parameters responsible for the integrity and functionality of the keratinocyte membrane (membrane fluidity and permeability and the activity of transmembrane transporters), compared to UVA-irradiated cells. This suggests that the simultaneous use of two phytocannabinoids may have a protective effect on healthy cells, without significantly reducing the therapeutic effect of UV radiation used to treat skin diseases such as psoriasis.
Collapse
Affiliation(s)
- Adam Wroński
- Dermatological Specialized Center “DERMAL” NZOZ in Białystok, Nowy Swiat 17/5, 15-453 Białystok, Poland;
| | - Izabela Dobrzyńska
- Laboratory of Bioanalysis, Faculty of Chemistry, University in Białystok, Ciołkowskiego 1K, 15-245 Białystok, Poland;
| | - Szymon Sękowski
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University in Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland; (S.S.); (E.O.-G.)
| | - Wojciech Łuczaj
- Department of Analytical Chemistry, Medical University of Białystok, Mickiewicza 2D, 15-222 Białystok, Poland;
| | - Ewa Olchowik-Grabarek
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University in Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland; (S.S.); (E.O.-G.)
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Białystok, Mickiewicza 2D, 15-222 Białystok, Poland;
| |
Collapse
|
25
|
Stasiłowicz-Krzemień A, Sip S, Szulc P, Cielecka-Piontek J. Determining Antioxidant Activity of Cannabis Leaves Extracts from Different Varieties-Unveiling Nature's Treasure Trove. Antioxidants (Basel) 2023; 12:1390. [PMID: 37507928 PMCID: PMC10376652 DOI: 10.3390/antiox12071390] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Cannabis leaves contain a diverse range of antioxidants, including cannabinoids, flavonoids, and phenolic compounds, which offer significant health benefits. Utilising cannabis leaves as a source of antioxidants presents a cost-effective approach because they are typically discarded during the cultivation of cannabis plants for their seeds or fibres. Therefore, this presented study aimed to assess the antioxidant activity of the leaves of selected hemp cultivars, such as Białobrzeska, Tygra, and Henola, based on the results obtained with the 2,2'-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid, ferric reducing antioxidant power, cupric reducing antioxidant capacity, and 2,2-Diphenyl-1-picrylhydrazyl assays. The cannabinoid profile was analysed for the antioxidant activity to the contents of cannabidiol (CBD), cannabigerol (CBG), Δ9-tetrahydrocannabinol (Δ9-THC), and cannabichromene (CBC), determined based on chromatographic assays. The following variables were tested: the impact of various extractants (methanol, ethanol, and isopropanol), and their mixtures (50:50, v/v, as well as extraction methods (maceration and ultra-sound-assisted extraction) significant in obtaining hemp extracts characterised by different cannabinoid profiles. The results revealed that the selection of extractant and extraction conditions significantly influenced the active compounds' extraction efficiency and antioxidant activity. Among the tested conditions, ultrasound-assisted extraction using methanol yielded the highest cannabinoid profile: CBD = 184.51 ± 5.61; CBG = 6.10 ± 0.21; Δ9-THC = 0.51 ± 0.01; and CBC = 0.71 ± 0.01 μg/g antioxidant potential in Białobrzeska leaf extracts.
Collapse
Affiliation(s)
- Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Szymon Sip
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
| | - Piotr Szulc
- Department of Agronomy, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznan, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego 71b, 60-630 Poznan, Poland
| |
Collapse
|
26
|
Maly M, Benes F, Binova Z, Zlechovcova M, Kastanek P, Hajslova J. Effective isolation of cannabidiol and cannabidiolic acid free of psychotropic phytocannabinoids from hemp extract by fast centrifugal partition chromatography. Anal Bioanal Chem 2023:10.1007/s00216-023-04782-9. [PMID: 37382652 DOI: 10.1007/s00216-023-04782-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/30/2023]
Abstract
Cannabidiol (CBD), together with its precursor cannabidiolic acid (CBDA), is the major phytocannabinoid occurring in most hemp cultivars. To ensure the safe use of these compounds, their effective isolation from hemp extract is required, with special emphasis on the elimination of ∆9-tetrahydrocannabinol (∆9-THC) and ∆9-tetrahydrocannabinolic acid (∆9-THCA-A). In this study, we demonstrate the applicability of fast centrifugal partition chromatography (FCPC) as a challenging format of counter-current preparative chromatography for the isolation of CBD and CBDA free of psychotropic compounds that may occur in Cannabis sativa L. plant extracts. Thirty-eight solvent mixtures were tested to identify a suitable two-phase system for this purpose. Based on the measured partition coefficients (KD) and separation factors (α), the two-phase system consisting of n-heptane:ethyl acetate:ethanol:water (1.5:0.5:1.5:0.5; v:v:v:v) was selected as an optimal solvent mixture. Employing UHPLC-HRMS/MS for target analysis of collected fractions, the elution profiles of 17 most common phytocannabinoids were determined. Under experimental conditions, the purity of isolated CBD and CBDA was 98.9 and 95.1% (w/w), respectively. Neither of ∆9-THC nor of ∆9-THCA-A were present; only trace amounts of other biologically active compounds contained in hemp extract were detected by screening against in-house spectral library using UHPLC-HRMS.
Collapse
Affiliation(s)
- Matej Maly
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic
| | - Frantisek Benes
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic
| | - Zuzana Binova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic
| | - Marie Zlechovcova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic
| | - Petr Kastanek
- Ecofuel Laboratories s.r.o., Ocelářská 9, 190 00, Prague 9, Czech Republic
| | - Jana Hajslova
- Department of Food Analysis and Nutrition, University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic.
| |
Collapse
|
27
|
Beleggia R, Menga V, Fulvio F, Fares C, Trono D. Effect of Genotype, Year, and Their Interaction on the Accumulation of Bioactive Compounds and the Antioxidant Activity in Industrial Hemp ( Cannabis sativa L.) Inflorescences. Int J Mol Sci 2023; 24:ijms24108969. [PMID: 37240314 DOI: 10.3390/ijms24108969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The phytochemical content and the antioxidant activity in the inflorescences of six industrial hemp (Cannabis sativa L.) genotypes, four monoecious (Codimono, Carmaleonte, Futura 75, and Santhica 27), and two dioecious (Fibrante and Carmagnola Selezionata), were assessed for three consecutive years from 2018 to 2020. The total phenolic content, total flavonoid content, and antioxidant activity were determined by spectrophotometric measurements, whereas HPLC and GC/MS were used to identify and quantify the phenolic compounds, terpenes, cannabinoids, tocopherols, and phytosterols. All the measured traits were significantly affected by genotype (G), cropping year (Y), and their interaction (G × Y), although the Y effect prevailed as a source of variation, ranging from 50.1% to 88.5% for all the metabolites except cannabinoids, which were equally affected by G, Y, and G × Y interaction (33.9%, 36.5%, and 21.4%, respectively). The dioecious genotypes presented a more constant performance over the three years compared to the monoecious genotypes, with the highest and most stable phytochemical content observed in the inflorescences of Fibrante, which was characterized by the highest levels of cannabidiol, α-humulene and β-caryophyllene, which may confer on the inflorescences of this genotype a great economic value due to the important pharmacological properties of these metabolites. Conversely, the inflorescences of Santhica 27 were characterized by the lowest accumulation of phytochemicals over the cropping years, with the notable exception of cannabigerol, a cannabinoid that exhibits a wide range of biological activities, which was found at its highest level in this genotype. Overall, these findings can be used by breeders in future programs aimed at the selection of new hemp genotypes with improved levels of phytochemicals in their inflorescences, which can provide better health and industrial benefits.
Collapse
Affiliation(s)
- Romina Beleggia
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy
| | - Valeria Menga
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy
| | - Flavia Fulvio
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, Via di Corticella, 133, 40128 Bologna, Italy
| | - Clara Fares
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy
| | - Daniela Trono
- Council for Agricultural Research and Economics (CREA), Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy
| |
Collapse
|
28
|
Abudalu M, Aqawi M, Sionov RV, Friedman M, Gati I, Munz Y, Ohana G, Steinberg D. Polyglactin 910 Meshes Coated with Sustained-Release Cannabigerol Varnish Inhibit Staphylococcus aureus Biofilm Formation and Macrophage Cytokine Secretion: An In Vitro Study. Pharmaceuticals (Basel) 2023; 16:ph16050745. [PMID: 37242528 DOI: 10.3390/ph16050745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/02/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Synthetic surgical meshes are commonly used in abdominal wall reconstruction surgeries to strengthen a weak abdominal wall. Common mesh-related complications include local infection and inflammatory processes. Because cannabigerol (CBG) has both antibacterial and anti-inflammatory properties, we proposed that coating VICRYL (polyglactin 910) mesh with a sustained-release varnish (SRV) containing CBG would prevent these complications. We used an in vitro infection model with Staphylococcus aureus and an in vitro inflammation model of lipopolysaccharide (LPS)-stimulated macrophages. Meshes coated with either SRV-placebo or SRV-CBG were exposed daily to S. aureus in tryptic soy medium (TSB) or macrophage Dulbecco's modified eagle medium (DMEM). Bacterial growth and biofilm formation in the environment and on the meshes were assessed by changes in optical density, bacterial ATP content, metabolic activity, crystal violet staining, spinning disk confocal microscopy (SDCM), and high-resolution scanning electron microscopy (HR-SEM). The anti-inflammatory effect of the culture medium that was exposed daily to the coated meshes was analyzed by measuring the release of the cytokines IL-6 and IL-10 from LPS-stimulated RAW 264.7 macrophages with appropriate ELISA kits. Additionally, a cytotoxicity assay was performed on Vero epithelial cell lines. We observed that compared with SRV-placebo, the segments coated with SRV-CBG inhibited the bacterial growth of S. aureus in the mesh environment for 9 days by 86 ± 4% and prevented biofilm formation and metabolic activity in the surroundings for 9 days, with respective 70 ± 2% and 95 ± 0.2% reductions. The culture medium that was incubated with the SRV-CBG-coated mesh inhibited LPS-induced secretion of IL-6 and IL-10 from the RAW 264.7 macrophages for up to 6 days without affecting macrophage viability. A partial anti-inflammatory effect was also observed with SRV-placebo. The conditioned culture medium was not toxic to Vero epithelial cells, which had an IC50 of 25 µg/mL for CBG. In conclusion, our data indicate a potential role of coating VICRYL mesh with SRV-CBG in preventing infection and inflammation in the initial period after surgery.
Collapse
Affiliation(s)
- Mustafa Abudalu
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research (IBOR), The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Department of General Surgery, Barzilai Medical Center, Ashkelon 7830604, Israel
| | - Muna Aqawi
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research (IBOR), The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- The Institute of Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ronit Vogt Sionov
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research (IBOR), The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Michael Friedman
- The Institute of Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Irith Gati
- The Institute of Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Yaron Munz
- Department of General Surgery, Barzilai Medical Center, Ashkelon 7830604, Israel
| | - Gil Ohana
- Department of General Surgery, Barzilai Medical Center, Ashkelon 7830604, Israel
| | - Doron Steinberg
- The Biofilm Research Laboratory, The Institute of Biomedical and Oral Research (IBOR), The Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
29
|
Filipiuc LE, Ştefănescu R, Solcan C, Ciorpac M, Szilagyi A, Cojocaru D, Stanciu GD, Creangă I, Caratașu CC, Ababei DC, Gavrila RE, Timofte AD, Filipiuc SI, Bild V. Acute Toxicity and Pharmacokinetic Profile of an EU-GMP-Certified Cannabis sativa L. in Rodents. Pharmaceuticals (Basel) 2023; 16:ph16050694. [PMID: 37242477 DOI: 10.3390/ph16050694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
The conundrum of Cannabis sativa's applications for therapeutical purposes is set apart by the hundreds of known and commercially available strains, the social, cultural and historical context, and the legalization of its use for medical purposes in various jurisdictions around the globe. In an era where targeted therapies are continuously being developed and have become the norm, it is imperative to conduct standardized, controlled studies on strains currently cultivated under Good Manufacturing Practices (GMP) certification, a standard that guarantees the quality requirements for modern medical and therapeutic use. Thus, the aim of our study is to evaluate the acute toxicity of a 15.6% THC: <1% CBD, EU-GMP certified, Cannabis sativa L. in rodents, following the OECD acute oral toxicity guidelines, and to provide an overview of its pharmacokinetic profile. Groups of healthy female Sprague-Dawley rats were treated orally with a stepwise incremental dose, each step using three animals. The absence or presence of plant-induced mortality in rats dosed at one step determined the next step. For the EU GMP-certified Cannabis sativa L. investigated, we determined an oral LD50 value of over 5000 mg/kg in rats and a human equivalent oral dose of ≈806.45 mg/kg. Additionally, no significant clinical signs of toxicity or gross pathological findings were observed. According to our data, the toxicology, safety and pharmacokinetic profile of the tested EU-GMP-certified Cannabis sativa L. support further investigations through efficacy and chronic toxicity studies in preparation for potential future clinical applications and especially for the treatment of chronic pain.
Collapse
Affiliation(s)
- Leontina-Elena Filipiuc
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Raluca Ştefănescu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Carmen Solcan
- Faculty of Veterinary Medicine, Ion Ionescu de la Brad University of Life Sciences, 700490 Iasi, Romania
| | - Mitică Ciorpac
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Andrei Szilagyi
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Dana Cojocaru
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Gabriela Dumitrita Stanciu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Ioana Creangă
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Cătălin-Cezar Caratașu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Daniela-Carmen Ababei
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Roxana-Elena Gavrila
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Andrei-Daniel Timofte
- Histology Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Silviu-Iulian Filipiuc
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| | - Veronica Bild
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Pharmacodynamics and Clinical Pharmacy Department, Grigore T. Popa University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
| |
Collapse
|
30
|
Rague JM, Ma M, Dooley G, Sam Wang G, Friedman K, Henthorn TK, Brooks-Russell A, Kosnett MJ. The minor cannabinoid cannabigerol (CBG) is a highly specific blood biomarker of recent cannabis smoking. Clin Toxicol (Phila) 2023; 61:363-369. [PMID: 36939145 PMCID: PMC10428941 DOI: 10.1080/15563650.2023.2173076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/02/2023] [Accepted: 01/22/2023] [Indexed: 03/21/2023]
Abstract
INTRODUCTION The determination of recent cannabis use is of forensic interest in the investigation of automotive crashes, workplace incidents and other mishaps. Because Δ9-tetrahydrocannabinol may persist in blood after psychoactive effects of intoxication resolve, particularly in regular users, short-lived minor cannabinoids such as cannabigerol have merited examination as adjunct indicators of recent cannabis inhalation. METHODS As part of an observational cohort study, whole blood cannabinoids including cannabigerol were measured in whole blood by liquid chromatography with tandem mass spectrometry at baseline, and 30 minutes after initiation of a 15-minute supervised interval of ad libitum cannabis smoking in occasional (1-2 days/week over the past 30 days) (n = 24) and daily cannabis smokers (n = 32). Per protocol, subjects self-reported abstention from inhaling cannabis (>8 h) or ingesting cannabis (>12 h) prior to baseline measurement. RESULTS At baseline, none of the occasional users had detectable cannabigerol (limit of detection = 0.2 µg/L), whereas cannabigerol was detectable post-smoking in 7 of 24 (29%). Among daily cannabis users, 2 of 32 (6%) had detectable cannabigerol at baseline, increasing to 21 of 32 (66%) post-smoking. The odds ratio for recent cannabis smoking associated with a detectable cannabigerol was 27 (95% confidence interval: 6.6, 110.3). In this mixed cohort of occasional and daily cannabis users, receiver operator characteristic curve analysis indicated that whole blood cannabigerol concentration of ≥ 0.2 µg/L had 96% specificity, 50% sensitivity, and 73% accuracy for identifying a 15-minute interval of ad libitum cannabis smoking initiated 30 minutes earlier. Post smoking blood Δ9-tetrahydrocannabinol (median = 5.6 µg/L in occasional users, 21.3 µg/L in daily users) was significantly correlated with post-smoking cannabigerol (P < 0.0001). CONCLUSION Whole blood cannabigerol may have forensic utility as a highly specific albeit insensitive biomarker of recent cannabis smoking.
Collapse
Affiliation(s)
- John M. Rague
- Rocky Mountain Poison and Drug Safety, Denver Health, Denver, CO, United States
| | - Ming Ma
- Department of Community and Behavioral Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Gregory Dooley
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - George Sam Wang
- Department of Pediatrics, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kyle Friedman
- Rocky Mountain Poison and Drug Safety, Denver Health, Denver, CO, United States
| | - Thomas K. Henthorn
- Department of Anesthesiology and Pharmaceutical Sciences, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO United States
| | - Ashley Brooks-Russell
- Department of Community and Behavioral Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Michael J. Kosnett
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Medicine, University of Colorado School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
31
|
Silva-Reis R, Silva AMS, Oliveira PA, Cardoso SM. Antitumor Effects of Cannabis sativa Bioactive Compounds on Colorectal Carcinogenesis. Biomolecules 2023; 13:764. [PMID: 37238634 PMCID: PMC10216468 DOI: 10.3390/biom13050764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Cannabis sativa is a multipurpose plant that has been used in medicine for centuries. Recently, considerable research has focused on the bioactive compounds of this plant, particularly cannabinoids and terpenes. Among other properties, these compounds exhibit antitumor effects in several cancer types, including colorectal cancer (CRC). Cannabinoids show positive effects in the treatment of CRC by inducing apoptosis, proliferation, metastasis, inflammation, angiogenesis, oxidative stress, and autophagy. Terpenes, such as β-caryophyllene, limonene, and myrcene, have also been reported to have potential antitumor effects on CRC through the induction of apoptosis, the inhibition of cell proliferation, and angiogenesis. In addition, synergy effects between cannabinoids and terpenes are believed to be important factors in the treatment of CRC. This review focuses on the current knowledge about the potential of cannabinoids and terpenoids from C. sativa to serve as bioactive agents for the treatment of CRC while evidencing the need for further research to fully elucidate the mechanisms of action and the safety of these compounds.
Collapse
Affiliation(s)
- Rita Silva-Reis
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (R.S.-R.); (A.M.S.S.)
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
| | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (R.S.-R.); (A.M.S.S.)
| | - Paula A. Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal;
- Clinical Academic Center of Trás-os-Montes and Alto Douro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (R.S.-R.); (A.M.S.S.)
| |
Collapse
|
32
|
Polanska HH, Petrlakova K, Papouskova B, Hendrych M, Samadian A, Storch J, Babula P, Masarik M, Vacek J. Safety assessment and redox status in rats after chronic exposure to cannabidiol and cannabigerol. Toxicology 2023; 488:153460. [PMID: 36796712 DOI: 10.1016/j.tox.2023.153460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
Cannabidiol (CBD) and cannabigerol (CBG) are the two main non-psychotropic phytocannabinoids with high application potential in drug development. Both substances are redox-active and are intensively investigated for their cytoprotective and antioxidant action in vitro. In this study, we focused on an in vivo safety evaluation and the effect of CBD and CBG on the redox status in rats in a 90-d experiment. The substances were administered orogastrically in a dose of 0.66 mg synthetic CBD or 0.66 mg/1.33 mg CBG/kg/day. CBD produced no changes in the red or white blood count or biochemical blood parameters in comparison to the control. No deviations in the morphology or histology of the gastrointestinal tract and liver were observed. After 90 d of CBD exposure, a significant improvement in redox status was found in the blood plasma and liver. The concentration of malondialdehyde and carbonylated proteins was reduced compared to the control. In contrast to CBD, total oxidative stress was significantly increased and this was accompanied by an elevated level of malondialdehyde and carbonylated proteins in CBG-treated animals. Hepatotoxic (regressive changes) manifestations, disruption in white cell count, and alterations in the ALT activity, level of creatinine and ionized calcium were also found in CBG-treated animals. Based on liquid chromatography-mass spectrometry analysis, CBD/CBG accumulated in rat tissues (in the liver, brain, muscle, heart, kidney and skin) at a low ng level per gram. Both CBD and CBG molecular structures include a resorcinol moiety. In CBG, there is an extra dimethyloctadienyl structural pattern, which is most likely responsible for the disruption to the redox status and hepatic environment. The results are valuable to further investigation of the effects of CBD on redox status and should contribute towards opening up critical discussion on the applicability of other non-psychotropic cannabinoids.
Collapse
Affiliation(s)
- Hana Holcova Polanska
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Katerina Petrlakova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Barbora Papouskova
- Department of Analytical Chemistry, Faculty of Science, Palacky University, 17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Michal Hendrych
- First Department of Pathology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Pekarska 664/53, 656 91 Brno, Czech Republic
| | - Amir Samadian
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Jan Storch
- Department of Advanced Materials and Organic Synthesis, Institute of Chemical Process Fundamentals of the Czech Academy of Sciences, v. v. i., Rozvojova 135, 165 02 Prague 6, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Michal Masarik
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00 Brno, Czech Republic
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic.
| |
Collapse
|
33
|
Cheng Y, Ning K, Chen Y, Hou C, Yu H, Yu H, Chen S, Guo X, Dong L. Identification of histone acetyltransferase genes responsible for cannabinoid synthesis in hemp. Chin Med 2023; 18:16. [PMID: 36782242 PMCID: PMC9926835 DOI: 10.1186/s13020-023-00720-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Histone acetyltransferases (HATs) play an important role in plant growth and development, stress response, and regulation of secondary metabolite biosynthesis. Hemp (Cannabis sativa L.) is famous for its high industrial, nutritional, and medicinal value. It contains non-psychoactive cannabinoid cannabidiol (CBD) and cannabinol (CBG), which play important roles as anti-inflammatory and anti-anxiety. At present, the involvement of HATs in the regulation of cannabinoid CBD and CBG synthesis has not been clarified. METHODS The members of HAT genes family in hemp were systematically analyzed by bioinformatics analysis. In addition, the expression level of HATs and the level of histone acetylation modification were analyzed based on transcriptome data and protein modification data. Real-time quantitative PCR was used to verify the changes in gene expression levels after inhibitor treatment. The changes of CBD and CBG contents after inhibitor treatment were verified by HPLC-MS analysis. RESULTS Here, 11 HAT genes were identified in the hemp genome. Phylogenetic analysis showed that hemp HAT family genes can be divided into six groups. Cannabinoid synthesis genes exhibited spatiotemporal specificity, and histones were acetylated in different inflorescence developmental stages. The expression of cannabinoid synthesis genes was inhibited and the content of CBD and CBG declined by 10% to 55% in the samples treated by HAT inhibitor (PU139). Results indicated that CsHAT genes may regulate cannabinoid synthesis through altering histone acetylation. CONCLUSIONS Our study provides genetic information of HATs responsible for cannabinoid synthesis, and offers a new approach for increasing the content of cannabinoid in hemp.
Collapse
Affiliation(s)
- Yufei Cheng
- grid.410318.f0000 0004 0632 3409Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China ,grid.443651.10000 0000 9456 5774College of Agronomy, Ludong University, Yantai, 264000 China
| | - Kang Ning
- grid.410318.f0000 0004 0632 3409Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Yongzhong Chen
- grid.410318.f0000 0004 0632 3409Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Cong Hou
- grid.410318.f0000 0004 0632 3409Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Haibin Yu
- Yunnan Hemp Industrial Investment CO.LTD, Kunming, 650217 China
| | - Huatao Yu
- grid.410318.f0000 0004 0632 3409Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Shilin Chen
- grid.410318.f0000 0004 0632 3409Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Xiaotong Guo
- College of Agronomy, Ludong University, Yantai, 264000, China.
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
34
|
Phytocannabinoids in the Pharmacotherapy of Psoriasis. Molecules 2023; 28:molecules28031192. [PMID: 36770858 PMCID: PMC9920113 DOI: 10.3390/molecules28031192] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Phytocannabinoids are naturally occurring compounds, the main source of which is Cannabis sativa L. Through direct action or interaction with G protein-coupled receptors, they affect ROS and pro-inflammatory cytokines levels and modify the effectiveness of transcription factor responsible for the biosynthesis of antioxidants which lead to oxidative stress and its consequences. Due to the modification of the redox balance and inflammation, phytocannabinoids are used in the treatment of various diseases, including autoimmune dermatoses, such as atopic dermatitis and psoriasis. Psoriasis is one of the most common dermatoses, and one of unknown etiology. A disturbed redox balance with a shift towards the oxidation leads to oxidative stress, resulting in oxidative modifications, mainly of lipids and proteins, and prolonged activation of immune cells and increased generation of pro-inflammatory cytokines, resulting in chronic inflammation. Given the biological activity of phytocannabinoids, they have become the focus of research as components of pharmacotherapy for psoriasis. Beneficial effects were shown by various representatives of phytocannabinoids, but the effect of cannabidiol (CBD) on skin cells (in vitro and ex vivo) and on blood cells from patients with psoriasis vulgaris and psoriatic arthritis has been most often evaluated in recent years.
Collapse
|
35
|
Comparative Investigation of Antimicrobial and Antioxidant Effects of the Extracts from the Inflorescences and Leaves of the Cannabis sativa L. cv. strawberry. Antioxidants (Basel) 2023; 12:antiox12020219. [PMID: 36829777 PMCID: PMC9951856 DOI: 10.3390/antiox12020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/30/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Cannabis sativa products have historically been used for healing purposes; now their biological properties are supported with scientific evidence, but modern research has not yet fully developed its therapeutic potential. This study focuses on the cultivar of C. sativa called strawberry to understand the biological and medical potentials of hydroalcoholic extracts from two different parts of the plant: leaves and inflorescences. Two biological assets were investigated including antioxidant and antimicrobial potential. Additionally, quantitative determination of phenolic and terpenophenol compounds was conducted. The antimicrobial action was highlighted for the hydroalcoholic extract from inflorescences, especially against Escherichia coli and Bacillus subtilis. Among the dermatophytes' strains, the most sensitive was Arthroderma currey. These effects could be related albeit partially to the pattern of the phenolics detected, among which the most prominent one was benzoic acid. On the other hand, antioxidant and antimicrobial effects of the extracts could be also mediated by the main terpenophenolics identified and quantified, namely cannabidiolic acid and cannabidiol. Collectively, the present data point to the potential use of the inflorescences from the C. sativa cultivar strawberry as a valuable plant material for the development of bioactive extracts with antioxidant and antimicrobial effects.
Collapse
|
36
|
Anti-Inflammatory Effects of Cannabigerol in Rheumatoid Arthritis Synovial Fibroblasts and Peripheral Blood Mononuclear Cell Cultures Are Partly Mediated by TRPA1. Int J Mol Sci 2023; 24:ijms24010855. [PMID: 36614296 PMCID: PMC9820932 DOI: 10.3390/ijms24010855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
Since its medical legalization, cannabis preparations containing the major phytocannabinoids (cannabidiol (CBD) and δ9-tetrahydrocannabinol (THC)) have been used by patients with rheumatoid arthritis (RA) to alleviate pain and inflammation. However, minor cannabinoids such as cannabigerol (CBG) also demonstrated anti-inflammatory properties, but due to the lack of studies, they are not widely used. CBG binds several cellular target proteins such as cannabinoid and α2-adrenergic receptors, but it also ligates several members of the transient potential receptor (TRP) family with TRPA1 being the main target. TRPA1 is not only involved in nnociception, but it also protects cells from apoptosis under oxidative stress conditions. Therefore, modulation of TRPA1 signaling by CBG might be used to modulate disease activity in RA as this autoimmune disease is accompanied by oxidative stress and subsequent activation of pro-inflammatory pathways. Rheumatoid synovial fibroblasts (RASF) were stimulated or not with tumor necrosis factor (TNF) for 72 h to induce TRPA1 protein. CBG increased intracellular calcium levels in TNF-stimulated RASF but not unstimulated RASF in a TRPA1-dependent manner. In addition, PoPo3 uptake, a surrogate marker for drug uptake, was enhanced by CBG. RASF cell viability, IL-6 and IL-8 production were decreased by CBG. In peripheral blood mononuclear cell cultures (PBMC) alone or together with RASF, CBG-modulated interleukin (IL)-6, IL-10, TNF and immunoglobulin M and G production which was dependent on activation stimulus (T cell-dependent or independent). However, effects on PBMCs were only partially mediated by TRPA1 as the antagonist A967079 did inhibit some but not all effects of CBG on cytokine production. In contrast, TRPA1 antagonism even enhanced the inhibitory effects of CBG on immunoglobulin production. CBG showed broad anti-inflammatory effects in isolated RASF, PBMC and PBMC/RASF co-cultures. As CBG is non-psychotropic, it might be used as add-on therapy in RA to reduce IL-6 and autoantibody levels.
Collapse
|