1
|
Files MA, Gentles L, Kehoe L, Adler A, Lacombe K, Dickerson JA, Greninger A, Waghmare A, Fairlie T, Pringle K, Midgley CM, Hagen MB, Englund JA, Seshadri C. Kinetics and Durability of Antibody and T-Cell Responses to SARS-CoV-2 in Children. J Infect Dis 2024; 230:889-900. [PMID: 38838218 PMCID: PMC11481334 DOI: 10.1093/infdis/jiae301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND The kinetics and durability of T-cell responses to SARS-CoV-2 in children are not well characterized. We studied a cohort of children aged 6 months to 20 years with COVID-19 in whom peripheral blood mononuclear cells and sera were archived at approximately 1, 6, and 12 months after symptom onset. METHODS We compared antibody responses (n = 85) and T-cell responses (n = 30) to nucleocapsid (N) and spike (S) glycoprotein over time across 4 age strata: 6 months to 5 years and 5-9, 10-14, and 15-20 years. RESULTS N-specific antibody responses declined over time, becoming undetectable in 26 (81%) of 32 children by approximately 1 year postinfection. Functional breadth of anti-N CD4+ T-cell responses also declined over time and were positively correlated with N-antibody responses (Pearson r = .31, P = .008). CD4+ T-cell responses to S displayed greater functional breadth than N in unvaccinated children and, with neutralization titers, were stable over time and similar across age strata. Functional profiles of CD4+ T-cell responses against S were not significantly modulated by vaccination. CONCLUSIONS Our data reveal durable age-independent T-cell immunity to SARS-CoV-2 structural proteins in children over time following COVID-19 infection as well as S-antibody responses in comparison with declining antibody responses to N.
Collapse
Affiliation(s)
- Megan A Files
- Department of Medicine, School of Medicine, University of Washington, Seattle, Washington
| | - Lauren Gentles
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Leanne Kehoe
- Division of Pediatric Infectious Diseases, Seattle Children's Research Institute, Seattle, Washington
| | - Amanda Adler
- Division of Pediatric Infectious Diseases, Seattle Children's Research Institute, Seattle, Washington
| | - Kirsten Lacombe
- Division of Pediatric Infectious Diseases, Seattle Children's Research Institute, Seattle, Washington
| | - Jane A Dickerson
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, Washington
- Department of Laboratories, Seattle Children's Hospital, Seattle, Washington, USA
| | - Alexander Greninger
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Seattle, Washington
| | - Alpana Waghmare
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Center for Clinical and Translational Research, Seattle Children's Hospital, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Tarayn Fairlie
- Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Kimberly Pringle
- Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Claire M Midgley
- Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Melissa Briggs Hagen
- Coronavirus and Other Respiratory Viruses Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Janet A Englund
- Division of Pediatric Infectious Diseases, Seattle Children's Research Institute, Seattle, Washington
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington
| | - Chetan Seshadri
- Department of Medicine, School of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
2
|
De Biasi S, Ciobanu AL, Santacroce E, Lo Tartaro D, Degliesposti G, D’Angerio M, Leccese M, Cardi M, Trenti T, Cuccorese M, Gibellini L, Ferraro D, Cossarizza A. SARS-CoV-2 Vaccination Responses in Anti-CD20-Treated Progressive Multiple Sclerosis Patients Show Immunosenescence in Antigen-Specific B and T Cells. Vaccines (Basel) 2024; 12:924. [PMID: 39204047 PMCID: PMC11360119 DOI: 10.3390/vaccines12080924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Clinical, pathological, and imaging evidence in multiple sclerosis (MS) shows that inflammation starts early and progresses with age. B cells play a central role in this process, contributing to cytokine production, defective regulatory functions, and abnormal immunoglobulin production, even in the central nervous system. Anti-CD20 (aCD20) therapies, which deplete CD20+ B cells, are largely used in the treatment of both relapsing remitting (RR) and progressive (PR) forms of MS. Although effective against MS symptoms and lesions detectable by magnetic resonance imaging, aCD20 therapies can reduce the immune response to COVID-19 vaccination. By using high-parameter flow cytometry, we examined the antigen-specific (Ag+) immune response six months post-third COVID-19 mRNA vaccination in MS patients with RR and PR forms on aCD20 therapy. Despite lower Ag+ B cell responses and lower levels of anti-SARS-CoV2, both total and neutralizing antibodies, RR and PR patients developed strong Ag+ T cell responses. We observed similar percentages and numbers of Ag+ CD4+ T cells and a high proportion of Ag+ CD8+ T cells, with slight differences in T cell phenotype and functionality; this, however, suggested the presence of differences in immune responses driven by age and disease severity.
Collapse
Affiliation(s)
- Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
| | - Alin Liviu Ciobanu
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
| | - Elena Santacroce
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
| | - Gianluca Degliesposti
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
| | - Miriam D’Angerio
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
| | - Maristella Leccese
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
| | - Martina Cardi
- AOU Policlinico di Modena, Neurology Unit, Department of Biomedical, Metabolic and Neuroscience, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Tommaso Trenti
- AOU Policlinico di Modena, Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, 41124 Modena, Italy
| | - Michela Cuccorese
- AOU Policlinico di Modena, Diagnostic Hematology and Clinical Genomics, Department of Laboratory Medicine and Pathology, 41124 Modena, Italy
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
| | - Diana Ferraro
- AOU Policlinico di Modena, Neurology Unit, Department of Biomedical, Metabolic and Neuroscience, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy (A.C.)
- National Institute for Cardiovascular Research, 40126 Bologna, Italy
| |
Collapse
|
3
|
Gray-Gaillard SL, Solis SM, Chen HM, Monteiro C, Ciabattoni G, Samanovic MI, Cornelius AR, Williams T, Geesey E, Rodriguez M, Ortigoza MB, Ivanova EN, Koralov SB, Mulligan MJ, Herati RS. SARS-CoV-2 inflammation durably imprints memory CD4 T cells. Sci Immunol 2024; 9:eadj8526. [PMID: 38905326 DOI: 10.1126/sciimmunol.adj8526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 05/30/2024] [Indexed: 06/23/2024]
Abstract
Memory CD4 T cells are critical to human immunity, yet it is unclear whether viral inflammation during memory formation has long-term consequences. Here, we compared transcriptional and epigenetic landscapes of Spike (S)-specific memory CD4 T cells in 24 individuals whose first exposure to S was via SARS-CoV-2 infection or mRNA vaccination. Nearly 2 years after memory formation, S-specific CD4 T cells established by infection remained enriched for transcripts related to cytotoxicity and for interferon-stimulated genes, likely because of a chromatin accessibility landscape altered by inflammation. Moreover, S-specific CD4 T cells primed by infection had reduced proliferative capacity in vitro relative to vaccine-primed cells. Furthermore, the transcriptional state of S-specific memory CD4 T cells was minimally altered by booster immunization and/or breakthrough infection. Thus, infection-associated inflammation durably imprints CD4 T cell memory, which affects the function of these cells and may have consequences for long-term immunity.
Collapse
Affiliation(s)
- Sophie L Gray-Gaillard
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Sabrina M Solis
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Han M Chen
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Clarice Monteiro
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Grace Ciabattoni
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Marie I Samanovic
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Amber R Cornelius
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Tijaana Williams
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Emilie Geesey
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Miguel Rodriguez
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Mila Brum Ortigoza
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Ellie N Ivanova
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Sergei B Koralov
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Mark J Mulligan
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Ramin Sedaghat Herati
- Department of Medicine, New York University Grossman School of Medicine, New York, NY, USA
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
4
|
De Biasi S, Lo Tartaro D, Neroni A, Rau M, Paschalidis N, Borella R, Santacroce E, Paolini A, Gibellini L, Ciobanu AL, Cuccorese M, Trenti T, Rubio I, Vitetta F, Cardi M, Argüello RJ, Ferraro D, Cossarizza A. Immunosenescence and vaccine efficacy revealed by immunometabolic analysis of SARS-CoV-2-specific cells in multiple sclerosis patients. Nat Commun 2024; 15:2752. [PMID: 38553477 PMCID: PMC10980723 DOI: 10.1038/s41467-024-47013-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/11/2024] [Indexed: 04/02/2024] Open
Abstract
Disease-modifying therapies (DMT) administered to patients with multiple sclerosis (MS) can influence immune responses to SARS-CoV-2 and vaccine efficacy. However, data on the detailed phenotypic, functional and metabolic characteristics of antigen (Ag)-specific cells following the third dose of mRNA vaccine remain scarce. Here, using flow cytometry and 45-parameter mass cytometry, we broadly investigate the phenotype, function and the single-cell metabolic profile of SARS-CoV-2-specific T and B cells up to 8 months after the third dose of mRNA vaccine in a cohort of 94 patients with MS treated with different DMT, including cladribine, dimethyl fumarate, fingolimod, interferon, natalizumab, teriflunomide, rituximab or ocrelizumab. Almost all patients display functional immune response to SARS-CoV-2. Different metabolic profiles characterize antigen-specific-T and -B cell response in fingolimod- and natalizumab-treated patients, whose immune response differs from all the other MS treatments.
Collapse
Affiliation(s)
- Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy.
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Anita Neroni
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Moritz Rau
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | | | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Elena Santacroce
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Annamaria Paolini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Alin Liviu Ciobanu
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Michela Cuccorese
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Unità Sanitaria Locale AUSL/AOU Policlinico, Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Unità Sanitaria Locale AUSL/AOU Policlinico, Modena, Italy
| | - Ignacio Rubio
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | - Francesca Vitetta
- Neurology Unit, Department of Biomedical, Metabolic and Neurosciences, Nuovo Ospedale Civile Sant'Agostino Estense, University of Modena and Reggio Emilia, Modena, Italy
| | - Martina Cardi
- Neurology Unit, Department of Biomedical, Metabolic and Neurosciences, Nuovo Ospedale Civile Sant'Agostino Estense, University of Modena and Reggio Emilia, Modena, Italy
| | - Rafael José Argüello
- Aix Marseille Univ, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Diana Ferraro
- Neurology Unit, Department of Biomedical, Metabolic and Neurosciences, Nuovo Ospedale Civile Sant'Agostino Estense, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy.
- National Institute for Cardiovascular Research, Bologna, Italy.
| |
Collapse
|
5
|
De Biasi S, Gigan JP, Borella R, Santacroce E, Lo Tartaro D, Neroni A, Paschalidis N, Piwocka K, Argüello RJ, Gibellini L, Cossarizza A. Cell metabolism: Functional and phenotypic single cell approaches. Methods Cell Biol 2024; 186:151-187. [PMID: 38705598 DOI: 10.1016/bs.mcb.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Several metabolic pathways are essential for the physiological regulation of immune cells, but their dysregulation can cause immune dysfunction. Hypermetabolic and hypometabolic states represent deviations in the magnitude and flexibility of effector cells in different contexts, for example in autoimmunity, infections or cancer. To study immunometabolism, most methods focus on bulk populations and rely on in vitro activation assays. Nowadays, thanks to the development of single-cell technologies, including multiparameter flow cytometry, mass cytometry, RNA cytometry, among others, the metabolic state of individual immune cells can be measured in a variety of samples obtained in basic, translational and clinical studies. Here, we provide an overview of different single-cell approaches that are employed to investigate both mitochondrial functions and cell dependence from mitochondria metabolism. Moreover, besides the description of the appropriate experimental settings, we discuss the strengths and weaknesses of different approaches with the aim to suggest how to study cell metabolism in the settings of interest.
Collapse
Affiliation(s)
- Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy.
| | - Julien Paul Gigan
- Aix Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Santacroce
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Anita Neroni
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Katarzyna Piwocka
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Rafael José Argüello
- Aix Marseille University, CNRS, INSERM, CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
6
|
Augello M, Bono V, Rovito R, Tincati C, Bianchi S, Taramasso L, Di Biagio A, Callegaro A, Maggiolo F, Borghi E, Monforte AD, Marchetti G. Association between SARS-CoV-2 RNAemia, skewed T cell responses, inflammation, and severity in hospitalized COVID-19 people living with HIV. iScience 2024; 27:108673. [PMID: 38188525 PMCID: PMC10770729 DOI: 10.1016/j.isci.2023.108673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/31/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Severe COVID-19 outcomes have been reported in people living with HIV (PLWH), yet the underlying pathogenetic factors are largely unknown. We therefore aimed to assess SARS-CoV-2 RNAemia and plasma cytokines in PLWH hospitalized for COVID-19 pneumonia, exploring associations with magnitude and functionality of SARS-CoV-2-specific immune responses. Eighteen unvaccinated PLWH (16/18 on cART; median CD4 T cell count 361.5/μL; HIV-RNA<50 cp/mL in 15/18) and 18 age/sex-matched people without HIV were consecutively recruited at a median time of 10 days from symptoms onset. PLWH showed greater SARS-CoV-2 RNAemia, a distinct plasma cytokine profile, and worse respiratory function (lower PaO2/FiO2nadir), all correlating with skewed T cell responses (higher perforin production by cytotoxic T cells as well as fewer and less polyfunctional SARS-CoV-2-specific T cells), despite preserved humoral immunity. In conclusion, these data suggest a link between HIV-related T cell dysfunction and poor control over SARS-CoV-2 replication/dissemination that may in turn influence COVID-19 severity in PLWH.
Collapse
Affiliation(s)
- Matteo Augello
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Valeria Bono
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Roberta Rovito
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Camilla Tincati
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Silvia Bianchi
- Microbiology and Clinical Microbiology, Department of Health Sciences, University of Milan, Milan, Italy
| | - Lucia Taramasso
- Infectious Diseases Unit, San Martino Policlinico Hospital, Genoa, Italy
| | - Antonio Di Biagio
- Infectious Diseases Unit, San Martino Policlinico Hospital, Genoa, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Annapaola Callegaro
- Biobank Unit and Microbiology and Virology Laboratory, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Franco Maggiolo
- Division of Infectious Diseases, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Elisa Borghi
- Microbiology and Clinical Microbiology, Department of Health Sciences, University of Milan, Milan, Italy
| | - Antonella d’Arminio Monforte
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Giulia Marchetti
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| |
Collapse
|
7
|
Gray-Gaillard SL, Solis S, Chen HM, Monteiro C, Ciabattoni G, Samanovic MI, Cornelius AR, Williams T, Geesey E, Rodriguez M, Ortigoza MB, Ivanova EN, Koralov SB, Mulligan MJ, Herati RS. Inflammation durably imprints memory CD4+ T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.11.15.516351. [PMID: 36415470 PMCID: PMC9681040 DOI: 10.1101/2022.11.15.516351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Adaptive immune responses are induced by vaccination and infection, yet little is known about how CD4+ T cell memory differs when primed in these two contexts. Notably, viral infection is generally associated with higher levels of systemic inflammation than is vaccination. To assess whether the inflammatory milieu at the time of CD4+ T cell priming has long-term effects on memory, we compared Spike-specific memory CD4+ T cells in 22 individuals around the time of the participants' third SARS-CoV-2 mRNA vaccination, with stratification by whether the participants' first exposure to Spike was via virus or mRNA vaccine. Multimodal single-cell profiling of Spike-specific CD4+ T cells revealed 755 differentially expressed genes that distinguished infection- and vaccine-primed memory CD4+ T cells. Spike-specific CD4+ T cells from infection-primed individuals had strong enrichment for cytotoxicity and interferon signaling genes, whereas Spike-specific CD4+ T cells from vaccine-primed individuals were enriched for proliferative pathways by gene set enrichment analysis. Moreover, Spike-specific memory CD4+ T cells established by infection had distinct epigenetic landscapes driven by enrichment of IRF-family transcription factors, relative to T cells established by mRNA vaccination. This transcriptional imprint was minimally altered following subsequent mRNA vaccination or breakthrough infection, reflecting the strong bias induced by the inflammatory environment during initial memory differentiation. Together, these data suggest that the inflammatory context during CD4+ T cell priming is durably imprinted in the memory state at transcriptional and epigenetic levels, which has implications for personalization of vaccination based on prior infection history.
Collapse
Affiliation(s)
| | - Sabrina Solis
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Han M. Chen
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Clarice Monteiro
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Grace Ciabattoni
- Department of Microbiology, New York University School of Medicine; New York, NY, USA
| | - Marie I. Samanovic
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Amber R. Cornelius
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Tijaana Williams
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Emilie Geesey
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Miguel Rodriguez
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Mila Brum Ortigoza
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Ellie N. Ivanova
- Department of Pathology, New York University School of Medicine; New York, NY, USA
| | - Sergei B. Koralov
- Department of Pathology, New York University School of Medicine; New York, NY, USA
| | - Mark J. Mulligan
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
- Department of Microbiology, New York University School of Medicine; New York, NY, USA
| | - Ramin Sedaghat Herati
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
- Department of Microbiology, New York University School of Medicine; New York, NY, USA
| |
Collapse
|
8
|
Song Y, Hu H, Xiao K, Huang X, Guo H, Shi Y, Zhao J, Zhu S, Ji T, Xia B, Jiang J, Cao L, Zhang Y, Zhang Y, Xu W. A Synthetic SARS-CoV-2-Derived T-Cell and B-Cell Peptide Cocktail Elicits Full Protection against Lethal Omicron BA.1 Infection in H11-K18-hACE2 Mice. Microbiol Spectr 2023; 11:e0419422. [PMID: 36912685 PMCID: PMC10100915 DOI: 10.1128/spectrum.04194-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/19/2023] [Indexed: 03/14/2023] Open
Abstract
Emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developing the capacity for immune evasion and resistance to existing vaccines and drugs. To address this, development of vaccines against coronavirus disease 2019 (COVID-19) has focused on universality, strong T cell immunity, and rapid production. Synthetic peptide vaccines, which are inexpensive and quick to produce, show low toxicity, and can be selected from the conserved SARS-CoV-2 proteome, are promising candidates. In this study, we evaluated the effectiveness of a synthetic peptide cocktail containing three murine CD4+ T-cell epitopes from the SARS-CoV-2 nonspike proteome and one B-cell epitope from the Omicron BA.1 receptor-binding domain (RBD), along with aluminum phosphate (Al) adjuvant and 5' cytosine-phosphate-guanine 3' oligodeoxynucleotide (CpG-ODN) adjuvant in mice. The peptide cocktail induced good Th1-biased T-cell responses and effective neutralizing-antibody titers against the Omicron BA.1 variant. Additionally, H11-K18-hACE2 transgenic mice were fully protected against lethal challenge with the BA.1 strain, with a 100% survival rate and reduced pulmonary viral load and pathological lesions. Subcutaneous administration was found to be the superior route for synthetic peptide vaccine delivery. Our findings demonstrate the effectiveness of the peptide cocktail in mice, suggesting the feasibility of synthetic peptide vaccines for humans. IMPORTANCE Current vaccines based on production of neutralizing antibodies fail to prevent the infection and transmission of SARS-CoV-2 Omicron and its subvariants. Understanding the critical factors and avoiding the disadvantages of vaccine strategies are essential for developing a safe and effective COVID-19 vaccine, which would include a more effective and durable cellular response, minimal effects of viral mutations, rapid production against emerging variants, and good safety. Peptide-based vaccines are an excellent alternative because they are inexpensive, quick to produce, and very safe. In addition, human leukocyte antigen T-cell epitopes could be targeted at robust T-cell immunity and selected in the conserved region of the SARS-CoV-2 variants. Our study showed that a synthetic SARS-CoV-2-derived peptide cocktail induced full protection against lethal infection with Omicron BA.1 in H11-K18-hACE2 mice for the first time. This could have implications for the development of effective COVID-19 peptide vaccines for humans.
Collapse
Affiliation(s)
- Yang Song
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongqiao Hu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kang Xiao
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xinghu Huang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hong Guo
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuqing Shi
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jiannan Zhao
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuangli Zhu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tianjiao Ji
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Baicheng Xia
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jie Jiang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lei Cao
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yong Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Zhang
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wenbo Xu
- NHC Key Laboratory of Medical Virology and Viral Diseases, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
9
|
Lo Tartaro D, Paolini A, Mattioli M, Swatler J, Neroni A, Borella R, Santacroce E, Di Nella A, Gozzi L, Busani S, Cuccorese M, Trenti T, Meschiari M, Guaraldi G, Girardis M, Mussini C, Piwocka K, Gibellini L, Cossarizza A, De Biasi S. Detailed characterization of SARS-CoV-2-specific T and B cells after infection or heterologous vaccination. Front Immunol 2023; 14:1123724. [PMID: 36845156 PMCID: PMC9947839 DOI: 10.3389/fimmu.2023.1123724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
The formation of a robust long-term antigen (Ag)-specific memory, both humoral and cell-mediated, is created following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or vaccination. Here, by using polychromatic flow cytometry and complex data analyses, we deeply investigated the magnitude, phenotype, and functionality of SARS-CoV-2-specific immune memory in two groups of healthy subjects after heterologous vaccination compared to a group of subjects who recovered from SARS-CoV-2 infection. We find that coronavirus disease 2019 (COVID-19) recovered patients show different long-term immunological profiles compared to those of donors who had been vaccinated with three doses. Vaccinated individuals display a skewed T helper (Th)1 Ag-specific T cell polarization and a higher percentage of Ag-specific and activated memory B cells expressing immunoglobulin (Ig)G compared to those of patients who recovered from severe COVID-19. Different polyfunctional properties characterize the two groups: recovered individuals show higher percentages of CD4+ T cells producing one or two cytokines simultaneously, while the vaccinated are distinguished by highly polyfunctional populations able to release four molecules, namely, CD107a, interferon (IFN)-γ, tumor necrosis factor (TNF), and interleukin (IL)-2. These data suggest that functional and phenotypic properties of SARS-CoV-2 adaptive immunity differ in recovered COVID-19 individuals and vaccinated ones.
Collapse
Affiliation(s)
- Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Annamaria Paolini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Marco Mattioli
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Julian Swatler
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Anita Neroni
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Rebecca Borella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Elena Santacroce
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Alessia Di Nella
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Licia Gozzi
- Infectious Diseases Clinics, Azienda Ospedaliero-Universitaria (AOU) Policlinico di Modena, Modena, Italy
| | - Stefano Busani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Anesthesia and Intensive Care, Azienda Ospedaliero-Universitaria (AOU) Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Michela Cuccorese
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Unità Sanitaria Locale AUSL/AOU Policlinico, Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, Azienda Unità Sanitaria Locale AUSL/AOU Policlinico, Modena, Italy
| | - Marianna Meschiari
- Infectious Diseases Clinics, Azienda Ospedaliero-Universitaria (AOU) Policlinico di Modena, Modena, Italy
| | - Giovanni Guaraldi
- Infectious Diseases Clinics, Azienda Ospedaliero-Universitaria (AOU) Policlinico di Modena, Modena, Italy
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Girardis
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Anesthesia and Intensive Care, Azienda Ospedaliero-Universitaria (AOU) Policlinico and University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Mussini
- Infectious Diseases Clinics, Azienda Ospedaliero-Universitaria (AOU) Policlinico di Modena, Modena, Italy
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
- National Institute for Cardiovascular Research, Bologna, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, Modena, Italy
| |
Collapse
|
10
|
De Biasi S, Paolini A, Lo Tartaro D, Gibellini L, Cossarizza A. Analysis of Antigen-Specific T and B Cells for Monitoring Immune Protection Against SARS-CoV-2. Curr Protoc 2023; 3:e636. [PMID: 36598346 DOI: 10.1002/cpz1.636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Immunological memory is the basis of protection against most pathogens. Long-living memory T and B cells able to respond to specific stimuli, as well as persistent antibodies in plasma and in other body fluids, are crucial for determining the efficacy of vaccination and for protecting from a second infection by a previously encountered pathogen. Antigen-specific cells are represented at a very low frequency in the blood, and indeed, they can be considered "rare events" present in the memory T-cell pool. Therefore, such events should be analyzed with careful attention. In the last 20 years, different methods, mostly based upon flow cytometry, have been developed to identify such rare antigen-specific cells, and the COVID-19 pandemic has given a dramatic impetus to characterize the immune response against the virus. In this regard, we know that the identification, enumeration, and characterization of SARS-CoV-2-specific T and B cells following infection and/or vaccination require i) the use of specific peptides and adequate co-stimuli, ii) the use of appropriate inhibitors to avoid nonspecific activation, iii) the setting of appropriate timing for stimulation, and iv) the choice of adequate markers and reagents to identify antigen-specific cells. Optimization of these procedures allows not only determination of the magnitude of SARS-CoV-2-specific responses but also a comparison of the effects of different combinations of vaccines or determination of the response provided by so-called "hybrid immunity," resulting from a combination of natural immunity and vaccine-generated immunity. Here, we present two methods that are largely used to monitor the response magnitude and phenotype of SARS-CoV-2-specific T and B cells by polychromatic flow cytometry, along with some tips that can be useful for the quantification of these rare events. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Identification of antigen-specific T cells Basic Protocol 2: Identification of antigen-specific B cells.
Collapse
Affiliation(s)
- Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, via Campi, Modena, Italy
| | - Annamaria Paolini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, via Campi, Modena, Italy
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, via Campi, Modena, Italy
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, via Campi, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, via Campi, Modena, Italy.,Istituto Nazionale per le Ricerche Cardiovascolari - INRC, via Irnerio, Bologna, Italy
| |
Collapse
|