1
|
Höpfinger A, Behrendt M, Schmid A, Karrasch T, Schäffler A, Berghoff M. A Cross-Sectional Study: Systematic Quantification of Chemerin in Human Cerebrospinal Fluid. Biomedicines 2024; 12:2508. [PMID: 39595074 PMCID: PMC11592017 DOI: 10.3390/biomedicines12112508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Dysregulation of adipokines is considered a key mechanism of chronic inflammation in metabolic syndrome. Some adipokines affect food intake by crossing the blood/brain barrier. The adipokine chemerin is associated with metabolic syndrome, cardiovascular diseases and immune response. Little is known about chemerin's presence in cerebrospinal fluid (CSF) and its ability to cross the blood/CSF barrier. METHODS We quantified chemerin levels in paired serum and CSF samples of 390 patients with different neurological diagnoses via enzyme-linked immunosorbent assay (ELISA). Correlation analyses of serum and CSF chemerin levels with anthropometric, serum and CSF routine parameters were performed. RESULTS Overweight patients exhibited higher chemerin levels in serum and CSF. Chemerin CSF levels were higher in men. Chemerin levels in serum were associated with BMI (body mass index) and CRP (C-reactive protein). Chemerin levels in CSF were associated with age. Neurological diseases affected chemerin levels in CSF. The chemerin CSF/serum ratio was calculated as 96.3 ± 36.8 × 10-3 for the first time. CONCLUSIONS Our data present a basis for the development of standard values for chemerin quantities in CSF. CSF chemerin levels are differentially regulated in neurological diseases and affected by BMI and sex. Chemerin is able to cross the blood/CSF barrier under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Alexandra Höpfinger
- Department of Internal Medicine III, University of Giessen, Klinikstr. 33, 35392 Giessen, Germany; (M.B.); (A.S.); (T.K.); (A.S.)
| | - Manuel Behrendt
- Department of Internal Medicine III, University of Giessen, Klinikstr. 33, 35392 Giessen, Germany; (M.B.); (A.S.); (T.K.); (A.S.)
| | - Andreas Schmid
- Department of Internal Medicine III, University of Giessen, Klinikstr. 33, 35392 Giessen, Germany; (M.B.); (A.S.); (T.K.); (A.S.)
| | - Thomas Karrasch
- Department of Internal Medicine III, University of Giessen, Klinikstr. 33, 35392 Giessen, Germany; (M.B.); (A.S.); (T.K.); (A.S.)
| | - Andreas Schäffler
- Department of Internal Medicine III, University of Giessen, Klinikstr. 33, 35392 Giessen, Germany; (M.B.); (A.S.); (T.K.); (A.S.)
| | - Martin Berghoff
- Department of Neurology, University of Giessen, Klinikstr. 33, 35392 Giessen, Germany;
| |
Collapse
|
2
|
Liu Z, Chen Y, Chen Y, Zheng J, Wu W, Wang L, Wang H, Yu Y. Effect of Regulation of Chemerin/Chemokine-like Receptor 1/Stimulator of Interferon Genes Pathway on Astrocyte Recruitment to Aβ Plaques. Int J Mol Sci 2024; 25:4324. [PMID: 38673909 PMCID: PMC11049903 DOI: 10.3390/ijms25084324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Recruitment and accumulation of reactive astrocytes around senile plaques are common pathological features of Alzheimer's disease (AD), with unclear mechanisms. Chemerin, an adipokine implicated in neuroinflammation, acts through its receptor, chemokine-like receptor 1 (CMKLR1), which also functions as a receptor for amyloid β (Aβ). The impact of the chemerin/CMKLR1 axis on astrocyte migration towards Aβ plaques is unknown. Here we investigated the effect of CMKLR1 on astrocyte migration around Aβ deposition in APP/PS1 mice with Cmklr1 knockout (APP/PS1-Cmklr1-/-). CMKLR1-expressed astrocytes were upregulated in the cortices and hippocampi of 9-month-old APP/PS1 mice. Chemerin mainly co-localized with neurons, and its expression was reduced in the brains of APP/PS1 mice, compared to WT mice. CMKLR1 deficiency decreased astrocyte colocalization with Aβ plaques in APP/PS1-Cmklr1-/- mice, compared to APP/PS1 mice. Activation of the chemerin/CMKLR1 axis promoted the migration of primary cultured astrocytes and U251 cells, and reduced astrocyte clustering induced by Aβ42. Mechanistic studies revealed that chemerin/CMKLR1 activation induced STING phosphorylation. Deletion of STING attenuated the promotion of the chemerin/CMKLR1 axis relative to astrocyte migration and abolished the inhibitory effect of chemerin on Aβ42-induced astrocyte clustering. These findings suggest the involvement of the chemerin/CMKLR1/STING pathway in the regulation of astrocyte migration and recruitment to Aβ plaques/Aβ42.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yang Yu
- Engineering Research Center of Cell and Therapeutic Antibody Medicine, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; (Z.L.); (Y.C.); (Y.C.); (J.Z.); (W.W.); (L.W.); (H.W.)
| |
Collapse
|
3
|
Ma W, Song X, Yuan GC, Wang P. RECCIPE: A new framework assessing localized cell-cell interaction on gene expression in multicellular ST data. Front Genet 2024; 15:1322886. [PMID: 38327830 PMCID: PMC10847567 DOI: 10.3389/fgene.2024.1322886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024] Open
Abstract
Cell-cell interaction (CCI) plays a pivotal role in cellular communication within the tissue microenvironment. The recent development of spatial transcriptomics (ST) technology and associated data analysis methods has empowered researchers to systematically investigate CCI. However, existing methods are tailored to single-cell resolution datasets, whereas the majority of ST platforms lack such resolution. Additionally, the detection of CCI through association screening based on ST data, which has complicated dependence structure, necessitates proper control of false discovery rates due to the multiple hypothesis testing issue in high dimensional spaces. To address these challenges, we introduce RECCIPE, a novel method designed for identifying cell signaling interactions across multiple cell types in spatial transcriptomic data. RECCIPE integrates gene expression data, spatial information and cell type composition in a multivariate regression framework, enabling genome-wide screening for changes in gene expression levels attributed to CCIs. We show that RECCIPE not only achieves high accuracy in simulated datasets but also provides new biological insights from real data obtained from a mouse model of Alzheimer's disease (AD). Overall, our framework provides a useful tool for studying impact of cell-cell interactions on gene expression in multicellular systems.
Collapse
Affiliation(s)
- Weiping Ma
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Xiaoyu Song
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Institute for Health Care Delivery Science, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Guo-Cheng Yuan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
4
|
Zhang N, Nao J, Dong X. Neuroprotective Mechanisms of Salidroside in Alzheimer's Disease: A Systematic Review and Meta-analysis of Preclinical Studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17597-17614. [PMID: 37934032 DOI: 10.1021/acs.jafc.3c06672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease of the central nervous system that occurs in old age and pre-aging, characterized by progressive cognitive dysfunction and behavioral impairment. Salidroside (Sal) is a phenylpropanoid mainly isolated from Rhodiola species with various pharmacological effects. However, the exact anti-AD mechanism of Sal has not been clearly elucidated. This meta-analysis aims to investigate the possible mechanisms by which Sal exerts its anti-AD effects by evaluating behavioral indicators and biochemical characteristics. A total of 20 studies were included, and the results showed that the Sal treatment significantly improved behavior abnormalities in AD animal models. With regard to neurobiochemical indicators, Sal treatment could effectively increase the antioxidant enzyme superoxide dismutase, decrease the oxidative stress indicator malondialdehyde, and decrease the inflammatory indicators interleukin 1β, interleukin 6, and tumor necrosis factor α. Sal treatment was effective in reducing neuropathological indicators, such as amyloid-β levels and the number of apoptotic cells. When the relevant literature on the treatment of rodent AD models is combined with Sal, the therapeutic potential of Sal through multiple mechanisms was confirmed. However, further confirmation by higher quality studies, larger sample sizes, and more comprehensive outcome evaluations in clinical trials is needed in the future.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, Seventh Clinical College of China Medical University, 24 Central Street, Xinfu District, Fushun, Liaoning 113000, People's Republic of China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110000, People's Republic of China
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110000, People's Republic of China
| |
Collapse
|
5
|
Gholami A. Alzheimer's disease: The role of proteins in formation, mechanisms, and new therapeutic approaches. Neurosci Lett 2023; 817:137532. [PMID: 37866702 DOI: 10.1016/j.neulet.2023.137532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder that affects the central nervous system (CNS), leading to memory and cognitive decline. In AD, the brain experiences three main structural changes: a significant decrease in the quantity of neurons, the development of neurofibrillary tangles (NFT) composed of hyperphosphorylated tau protein, and the formation of amyloid beta (Aβ) or senile plaques, which are protein deposits found outside cells and surrounded by dystrophic neurites. Genetic studies have identified four genes associated with autosomal dominant or familial early-onset AD (FAD): amyloid precursor protein (APP), presenilin 1 (PS1), presenilin 2 (PS2), and apolipoprotein E (ApoE). The formation of plaques primarily involves the accumulation of Aβ, which can be influenced by mutations in APP, PS1, PS2, or ApoE genes. Mutations in the APP and presenilin (PS) proteins can cause an increased amyloid β peptides production, especially the further form of amyloidogenic known as Aβ42. Apart from genetic factors, environmental factors such as cytokines and neurotoxins may also have a significant impact on the development and progression of AD by influencing the formation of amyloid plaques and intracellular tangles. Exploring the causes and implications of protein aggregation in the brain could lead to innovative therapeutic approaches. Some promising therapy strategies that have reached the clinical stage include using acetylcholinesterase inhibitors, estrogen, nonsteroidal anti-inflammatory drugs (NSAIDs), antioxidants, and antiapoptotic agents. The most hopeful therapeutic strategies involve inhibiting activity of secretase and preventing the β-amyloid oligomers and fibrils formation, which are associated with the β-amyloid fibrils accumulation in AD. Additionally, immunotherapy development holds promise as a progressive therapeutic approach for treatment of AD. Recently, the two primary categories of brain stimulation techniques that have been studied for the treatment of AD are invasive brain stimulation (IBS) and non-invasive brain stimulation (NIBS). In this article, the amyloid proteins that play a significant role in the AD formation, the mechanism of disease formation as well as new drugs utilized to treat of AD will be reviewed.
Collapse
Affiliation(s)
- Amirreza Gholami
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
6
|
Ko B, Jang Y, Kwak SH, You H, Kim JH, Lee JE, Park HD, Kim SK, Goddard WA, Han JH, Kim YC. Discovery of 3-Phenyl Indazole-Based Novel Chemokine-like Receptor 1 Antagonists for the Treatment of Psoriasis. J Med Chem 2023; 66:14564-14582. [PMID: 37883692 DOI: 10.1021/acs.jmedchem.3c01011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Chemokine-like receptor 1 (CMKLR1)─a G protein-coupled receptor─has functional roles in the immune system and related diseases, including psoriasis and metabolic diseases. Psoriasis is a chronic inflammatory disease characterized by skin redness, scaliness, and itching. In this study, we sought to develop novel CMKLR1 antagonists by screening our in-house GPCR-targeting compound library. Moreover, we optimized a phenylindazole-based hit compound with antagonistic activities and evaluated its oral pharmacokinetic properties in a murine model. A structure-based design on the human CMKLR1 homology model identified S-26d as an optimized compound that serves as a potent and orally available antagonist with a pIC50 value of 7.44 in hCMKLR1-transfected CHO cells. Furthermore, in the imiquimod-induced psoriasis-like mouse model, oral administration of S-26d for 1 week significantly alleviated modified psoriasis area and severity index scores (severity of erythema, scaliness, skin thickness) compared with the control group.
Collapse
Affiliation(s)
- Bongki Ko
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Yongsoo Jang
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Seung-Hwa Kwak
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Hyun You
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jeong-Hyun Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Jung-Eun Lee
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Hee Dong Park
- Innovo Therapeutics Inc., Daeduck Biz Center C-313, 17 Techno 4-ro, Yuseong-gu, Daejeon 34013, Republic of Korea
| | - Soo-Kyung Kim
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - William A Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| | - Jung Hyun Han
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Department of Dermatology, Saint John of God Hospital, Gwangju 61245, Republic of Korea
| | - Yong-Chul Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Center for AI-Applied High Efficiency Drug Discovery (AHEDD), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
7
|
Chen Y, Yu Y. Tau and neuroinflammation in Alzheimer's disease: interplay mechanisms and clinical translation. J Neuroinflammation 2023; 20:165. [PMID: 37452321 PMCID: PMC10349496 DOI: 10.1186/s12974-023-02853-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
Alzheimer's Disease (AD) contributes to most cases of dementia. Its prominent neuropathological features are the extracellular neuritic plaques and intercellular neurofibrillary tangles composed of aggregated β-amyloid (Aβ) and hyperphosphorylated tau protein, respectively. In the past few decades, disease-modifying therapy targeting Aβ has been the focus of AD drug development. Even though it is encouraging that two of these drugs have recently received accelerated US Food and Drug Administration approval for AD treatment, their efficacy or long-term safety is controversial. Tau has received increasing attention as a potential therapeutic target, since evidence indicates that tau pathology is more associated with cognitive dysfunction. Moreover, inflammation, especially neuroinflammation, accompanies AD pathological processes and is also linked to cognitive deficits. Accumulating evidence indicates that inflammation has a complex and tight interplay with tau pathology. Here, we review recent evidence on the interaction between tau pathology, focusing on tau post-translational modification and dissemination, and neuroinflammatory responses, including glial cell activation and inflammatory signaling pathways. Then, we summarize the latest clinical trials targeting tau and neuroinflammation. Sustained and increased inflammatory responses in glial cells and neurons are pivotal cellular drivers and regulators of the exacerbation of tau pathology, which further contributes to its worsening by aggravating inflammatory responses. Unraveling the precise mechanisms underlying the relationship between tau pathology and neuroinflammation will provide new insights into the discovery and clinical translation of therapeutic targets for AD and other tau-related diseases (tauopathies). Targeting multiple pathologies and precision therapy strategies will be the crucial direction for developing drugs for AD and other tauopathies.
Collapse
Affiliation(s)
- Yijun Chen
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Yu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
8
|
Tisi A, Carozza G, Leuti A, Maccarone R, Maccarrone M. Dysregulation of Resolvin E1 Metabolism and Signaling in a Light-Damage Model of Age-Related Macular Degeneration. Int J Mol Sci 2023; 24:ijms24076749. [PMID: 37047721 PMCID: PMC10095591 DOI: 10.3390/ijms24076749] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Resolvin E1 (RvE1) is an eicosapentaenoic acid-derived lipid mediator involved in the resolution of inflammation. Here, we investigated whether RvE1 alterations may occur in an animal model of age-related macular degeneration (AMD). To this end, Sprague Dawley albino rats underwent light damage (LD), and retinas and serum were analyzed immediately or seven days after treatment. Western blot of retinas showed that the RvE1 receptor ChemR23 and the RvE1 metabolic enzymes 5-LOX and COX-2 were unchanged immediately after LD, but they were significantly up-regulated seven days later. Instead, the RvE1 receptor BLT1 was not modulated by LD, and neither was the RvE1 degradative enzyme 15-PGDH. Moreover, ChemR23, 5-LOX, COX-2 and BLT1 were found to be more expressed in the inner retina under all experimental conditions, as observed through ImageJ plot profile analysis. Of note, amacrine cells highly expressed BLT1, while ChemR23 was highly expressed in the activated microglia of the outer retina. ELISA assays also showed that LD rats displayed significantly higher circulating levels and reduced retinal levels of RvE1 compared to controls. Altogether, our data indicate that RvE1 metabolism and signaling are modulated in the LD model, suggesting a potentially relevant role of this pathway in AMD.
Collapse
Affiliation(s)
- Annamaria Tisi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Giulia Carozza
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Alessandro Leuti
- Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
- European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| | - Rita Maccarone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| |
Collapse
|
9
|
Chen Y, Liu Z, Gong P, Zhang H, Chen Y, Yao S, Li W, Zhang Y, Yu Y. Correction: Chen et al. The Chemerin/CMKLR1 Axis Is Involved in the Recruitment of Microglia to Aβ Deposition through p38 MAPK Pathway. Int. J. Mol. Sci. 2022, 23, 9041. Int J Mol Sci 2022; 24:ijms24010506. [PMID: 36614339 PMCID: PMC9820245 DOI: 10.3390/ijms24010506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/29/2022] Open
Abstract
In the original publication [...].
Collapse
|