1
|
López-Martín E, Sueiro-Benavides R, Leiro-Vidal JM, Rodríguez-González JA, Ares-Pena FJ. Redox cell signalling triggered by black carbon and/or radiofrequency electromagnetic fields: Influence on cell death. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176023. [PMID: 39244061 DOI: 10.1016/j.scitotenv.2024.176023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
The capacity of environmental pollutants to generate oxidative stress is known to affect the development and progression of chronic diseases. This scientific review identifies previously published experimental studies using preclinical models of exposure to environmental stress agents, such as black carbon and/or RF-EMF, which produce cellular oxidative damage and can lead to different types of cell death. We summarize in vivo and in vitro studies, which are grouped according to the mechanisms and pathways of redox activation triggered by exposure to BC and/or EMF and leading to apoptosis, necrosis, necroptosis, pyroptosis, autophagy, ferroptosis and cuproptosis. The possible mechanisms are considered in relation to the organ, cell type and cellular-subcellular interaction with the oxidative toxicity caused by BC and/or EMF at the molecular level. The actions of these environmental pollutants, which affect everyday life, are considered separately and together in experimental preclinical models. However, for overall interpretation of the data, toxicological studies must first be conducted in humans, to enable possible risks to human health to be established in relation to the progression of chronic diseases. Further actions should take pollution levels into account, focusing on the most vulnerable populations and future generations.
Collapse
Affiliation(s)
- Elena López-Martín
- Department of Morphological Sciences, Santiago de Compostela, School of Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain.
| | - Rosana Sueiro-Benavides
- Institute of Research in Biological and Chemical Analysis, IAQBUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - José M Leiro-Vidal
- Institute of Research in Biological and Chemical Analysis, IAQBUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Juan A Rodríguez-González
- Department of Applied Physics, Santiago de Compostela School of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Francisco J Ares-Pena
- Department of Applied Physics, Santiago de Compostela School of Physics, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
2
|
Zhang Y, Xie J. Ferroptosis implication in environmental-induced neurotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 934:172618. [PMID: 38663589 DOI: 10.1016/j.scitotenv.2024.172618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/12/2024] [Accepted: 04/17/2024] [Indexed: 05/24/2024]
Abstract
Neurotoxicity, stemming from exposure to various chemical, biological, and physical agents, poses a substantial threat to the intricate network of the human nervous system. This article explores the implications of ferroptosis, a regulated form of programmed cell death characterized by iron-dependent lipid peroxidation, in environmental-induced neurotoxicity. While apoptosis has historically been recognized as a primary mechanism in neurotoxic events, recent evidence suggests the involvement of additional pathways, including ferroptosis. The study aims to conduct a comprehensive review of the existing literature on ferroptosis induced by environmental neurotoxicity across diverse agents such as natural toxins, insecticides, particulate matter, acrylamide, nanoparticles, plastic materials, metal overload, viral infections, anesthetics, chemotherapy, and radiation. The primary objective is to elucidate the diverse mechanisms through which these agents trigger ferroptosis, leading to neuronal cell death. Furthermore, the article explores potential preventive or therapeutic strategies that could mitigate ferroptosis, offering insights into protective measures against neurological damage induced by environmental stressors. This comprehensive review contributes to our evolving understanding of neurotoxicological processes, highlighting ferroptosis as a significant contributor to neuronal cell demise induced by environmental exposures. The insights gained from this study may pave the way for the development of targeted interventions to protect against ferroptosis-mediated neurotoxicity and ultimately safeguard public health.
Collapse
Affiliation(s)
- Yiping Zhang
- School of Life Sciences, Fudan University, Shanghai 200438, China; Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai 201501, China.
| | - Jun Xie
- School of Life Sciences, Fudan University, Shanghai 200438, China; Wanchuanhui (Shanghai) Medical Technology Co., Ltd, Shanghai 201501, China.
| |
Collapse
|
3
|
Liu Y, Hu S, Shi B, Yu B, Luo W, Peng S, Du X. The Role of Iron Metabolism in Sepsis-associated Encephalopathy: a Potential Target. Mol Neurobiol 2024; 61:4677-4690. [PMID: 38110647 DOI: 10.1007/s12035-023-03870-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is an acute cerebral dysfunction secondary to infection, and the severity can range from mild delirium to deep coma. Disorders of iron metabolism have been proven to play an important role in a variety of neurodegenerative diseases by inducing cell damage through iron accumulation in glial cells and neurons. Recent studies have found that iron accumulation is also a potential mechanism of SAE. Systemic inflammation can induce changes in the expression of transporters and receptors on cells, especially high expression of divalent metal transporter1 (DMT1) and low expression of ferroportin (Fpn) 1, which leads to iron accumulation in cells. Excessive free Fe2+ can participate in the Fenton reaction to produce reactive oxygen species (ROS) to directly damage cells or induce ferroptosis. As a result, it may be of great help to improve SAE by treatment of targeting disorders of iron metabolism. Therefore, it is important to review the current research progress on the mechanism of SAE based on iron metabolism disorders. In addition, we also briefly describe the current status of SAE and iron metabolism disorders and emphasize the therapeutic prospect of targeting iron accumulation as a treatment for SAE, especially iron chelator. Moreover, drug delivery and side effects can be improved with the development of nanotechnology. This work suggests that treating SAE based on disorders of iron metabolism will be a thriving field.
Collapse
Affiliation(s)
- Yinuo Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shengnan Hu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bowen Shi
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Bodong Yu
- The Clinical Medical College of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Wei Luo
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shengliang Peng
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Xiaohong Du
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
4
|
Wang L, Li M, Liu B, Zheng R, Zhang X, Yu S. miR-30a-5p mediates ferroptosis of hippocampal neurons in chronic cerebral hypoperfusion-induced cognitive dysfunction by modulating the SIRT1/NRF2 pathway. Brain Res Bull 2024; 212:110953. [PMID: 38636610 DOI: 10.1016/j.brainresbull.2024.110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024]
Abstract
OBJECTIVE Chronic cerebral hypoperfusion (CCH) is a common cause of brain dysfunction. As a microRNA (also known as miRNAs or miRs), miR-30a-5p participates in neuronal damage and relates to ferroptosis. We explored the in vivo and in vitro effects and functional mechanism of miR-30a-5p in CCH-triggered cognitive impairment through the silent information regulator 1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (NRF2) pathway. METHODS After 1 month of CCH modeling through bilateral common carotid artery stenosis, mice were injected with 2 μL antagomir (also known as anti-miRNAs) miR-30a-5p, with cognitive function evaluated by Morris water maze and novel object recognition tests. In vitro HT-22 cell oxygen glucose deprivation (OGD) model was established, followed by miR-30a-5p inhibitor and/or si-SIRT1 transfections, with Fe2+ concentration, malonaldehyde (MDA) and glutathione (GSH) contents, reactive oxygen species (ROS), miR-30a-5p and SIRT1 and glutathione peroxidase 4 (GPX4) protein levels, NRF2 nuclear translocation, and miR-30a-5p-SIRT1 targeting relationship assessed. RESULTS CCH-induced mice showed obvious cognitive impairment, up-regulated miR-30a-5p, and down-regulated SIRT1. Ferroptosis occurred in hippocampal neurons, manifested by elevated Fe2+ concentration and ROS and MDA levels, mitochondrial atrophy, and diminished GSH content. Antagomir miR-30a-5p or miR-30a-5p inhibitor promoted SIRT1 expression and NRF2 nuclear translocation, increased GPX4, cell viability and GSH content, and reduced Fe2+ concentration and ROS and MDA levels. miR-30a-5p negatively regulated SIRT1. In vitro, miR-30a-5p knockout increased NRF2 nuclear translocation by up-regulating SIRT1, inhibiting OGD-induced ferroptosis in HT-22 cells. CONCLUSION miR-30a-5p induces hippocampal neuronal ferroptosis and exacerbates post-CCH cognitive dysfunction by targeting SIRT1 and reducing NRF2 nuclear translocation.
Collapse
Affiliation(s)
- Lihua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, China.
| | - Mingjie Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, China
| | - Bing Liu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, China
| | - Ruihan Zheng
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, China
| | - Xinyi Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, China
| | - Shuoyi Yu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nangang District, Harbin, Heilongjiang 150086, China
| |
Collapse
|
5
|
Zhang TC, Lin YC, Sun NN, Liu S, Hu WZ, Zhao Y, Dong XH, He XP. Icariin, astragaloside a and puerarin mixture attenuates cognitive impairment in APP/PS1 mice via inhibition of ferroptosis-lipid peroxidation. Neurochem Int 2024; 175:105705. [PMID: 38412923 DOI: 10.1016/j.neuint.2024.105705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 02/29/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that seriously threatens the quality of life of the elderly. Its pathogenesis has not yet been fully elucidated. Ferroptosis, a cell death caused by excessive accumulation of iron-dependent lipid peroxides, has been implicated in the pathogenesis of AD. Uncontrolled lipid peroxidation is the core process of ferroptosis, and inhibiting lipid peroxidation of ferroptosis may be an important therapeutic target for AD. Based on previous studies, we mixed standards of icariin, astragaloside IV, and puerarin, named the standard mixture YHG, and investigated the effect of YHG on ferroptosis -lipid peroxidation in APP/PS1 mice. DFX, a ferroptosis inhibitor, was used as a control drug. In this study, APP/PS1 mice were used as an AD animal model, and behavioral experiments, iron level detection, Transmission electron microscopy (TEM) observation, lipid peroxidation level detection, antioxidant capacity detection, immunofluorescence, Western blot and real-time qPCR were performed. It was found that YHG could reduce body weight, significantly improve abnormal behaviors and the ultrastructure of hippocampal neurons in APP/PS1 mice. The results of biochemical tests showed that YHG reduced the contents of iron, malondialdehyde (MDA) and lipid peroxide (LPO) in brain tissue and serum, and increased the levels of superoxide dismutase (SOD) and reduced glutathione (GSH). Immunofluorescence, WesternBlot and real-time qPCR results showed that YHG could promote the expression of solute carrier family 7 member 11 (SLC7A11), solute carrier family 3 member 2 (SLC3A2) and glutathione peroxidase 4(GPX4). Inhibited the expression of long-chain acyllipid coenzyme a synthetase 4(ACSL4) and lysophosphatidyltransferase 3 (LPCAT3). This study suggests that the mechanism by which YHG improves cognitive dysfunction in APP/PS1 mice may be related to the inhibition of ferroptosis-lipid peroxidation.
Collapse
Affiliation(s)
- Tian-Ci Zhang
- Hebei University of Chinese Medicine, Hebei Key Laboratory of Chinese Medicine Research On Cardio-cerebrovasc, Hebei, Shijiazhuang, 050091, China
| | - Yi-Can Lin
- Hebei University of Chinese Medicine, Hebei Key Laboratory of Chinese Medicine Research On Cardio-cerebrovasc, Hebei, Shijiazhuang, 050091, China
| | - Ning-Ning Sun
- Hebei University of Chinese Medicine, Hebei Key Laboratory of Chinese Medicine Research On Cardio-cerebrovasc, Hebei, Shijiazhuang, 050091, China
| | - Shan Liu
- Hebei University of Chinese Medicine, Hebei Key Laboratory of Chinese Medicine Research On Cardio-cerebrovasc, Hebei, Shijiazhuang, 050091, China
| | - Wen-Zhu Hu
- Hebei University of Chinese Medicine, Hebei Key Laboratory of Chinese Medicine Research On Cardio-cerebrovasc, Hebei, Shijiazhuang, 050091, China
| | - Yan Zhao
- Hebei University of Chinese Medicine, Hebei Key Laboratory of Chinese Medicine Research On Cardio-cerebrovasc, Hebei, Shijiazhuang, 050091, China
| | - Xian-Hui Dong
- Hebei University of Chinese Medicine, Hebei Key Laboratory of Chinese Medicine Research On Cardio-cerebrovasc, Hebei, Shijiazhuang, 050091, China.
| | - Xiao-Ping He
- Hebei University of Chinese Medicine, Hebei Key Laboratory of Chinese Medicine Research On Cardio-cerebrovasc, Hebei, Shijiazhuang, 050091, China.
| |
Collapse
|
6
|
Wang B, Zhu S, Guo M, Ma RD, Tang YL, Nie YX, Gu HF. Artemisinin ameliorates cognitive decline by inhibiting hippocampal neuronal ferroptosis via Nrf2 activation in T2DM mice. Mol Med 2024; 30:35. [PMID: 38454322 PMCID: PMC10921734 DOI: 10.1186/s10020-024-00797-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/31/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND Neuronal ferroptosis plays a critical role in the pathogenesis of cognitive deficits. The present study explored whether artemisinin protected type 2 diabetes mellitus (T2DM) mice from cognitive impairments by attenuating neuronal ferroptosis in the hippocampal CA1 region. METHODS STZ-induced T2DM mice were treated with artemisinin (40 mg/kg, i.p.), or cotreated with artemisinin and Nrf2 inhibitor MEL385 or ferroptosis inducer erastin for 4 weeks. Cognitive performance was determined by the Morris water maze and Y maze tests. Hippocampal ROS, MDA, GSH, and Fe2+ contents were detected by assay kits. Nrf2, p-Nrf2, HO-1, and GPX4 proteins in hippocampal CA1 were assessed by Western blotting. Hippocampal neuron injury and mitochondrial morphology were observed using H&E staining and a transmission electron microscope, respectively. RESULTS Artemisinin reversed diabetic cognitive impairments, decreased the concentrations of ROS, MDA and Fe2+, and increased the levels of p-Nr2, HO-1, GPX4 and GSH. Moreover, artemisinin alleviated neuronal loss and ferroptosis in the hippocampal CA1 region. However, these neuroprotective effects of artemisinin were abolished by Nrf2 inhibitor ML385 and ferroptosis inducer erastin. CONCLUSION Artemisinin effectively ameliorates neuropathological changes and learning and memory decline in T2DM mice; the underlying mechanism involves the activation of Nrf2 to inhibit neuronal ferroptosis in the hippocampus.
Collapse
Affiliation(s)
- Bo Wang
- Institute of Anesthesiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Sheng Zhu
- Department of Nuclear Medicine, Affiliated Hospital of Xiangnan University, No. 25 Renmin West Road, Beihu District, Chenzhou, 423001, Hunan, China
| | - Miao Guo
- Department of Physiology and Institute of Neuroscience, Key Laboratory of Hunan Province for Major Brain Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Run-Dong Ma
- Institute of Anesthesiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Ya-Ling Tang
- Department of Physiology and Institute of Neuroscience, Key Laboratory of Hunan Province for Major Brain Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Ya-Xiong Nie
- Institute of Anesthesiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hong-Feng Gu
- Department of Physiology and Institute of Neuroscience, Key Laboratory of Hunan Province for Major Brain Diseases, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
7
|
Ai L, Li R, Wang X, Liu Z, Li Y. Tempol alleviates acute lung injury by affecting glutathione synthesis through Nrf2 and inhibiting ferroptosis in lung epithelial cells. J Biochem Mol Toxicol 2024; 38:e23674. [PMID: 38454815 DOI: 10.1002/jbt.23674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 09/12/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
As a life-threatening disease, acute lung injury (ALI) may progress to chronic pulmonary fibrosis. For the treatment of lung injury, Tempol is a superoxide dismutase mimetic and intracellular redox agent that can be a potential drug. This study investigated the regulatory mechanism of Tempol in the treatment of ALI. A mouse model of ALI was established, and HE staining was used to examine histomorphology. The CCK-8 assay was used to measure cell viability, and oxidative stress was assessed by corresponding kits. Flow cytometry and dichlorodihydrofluorescein diacetate staining assays were used to detect reactive oxygen species (ROS) levels. Protein expression levels were measured by Western blot analysis and ELISA. Pulmonary vascular permeability was used to measure the lung wet/dry weight ratio. The level of oxidative stress was increased in ALI mice, and the level of ferroptosis was upregulated. Tempol inhibited this effect and alleviated ALI. The administration of Tempol alleviated the pathological changes in ALI, inhibited pulmonary vascular permeability, and improved lung injury in ALI mice. The upregulation of genes essential for glutathione (GSH) metabolism induced by lipopolysaccharide (LPS) was inhibited by Tempol. In addition, nuclear factor-related factor 2 (Nrf2) is activated by Tempol therapy to regulate the de novo synthesis pathway of GSH, thereby alleviating LPS-induced lung epithelial cell damage. The results showed that Tempol alleviated ALI by activating the Nrf2 pathway to inhibit oxidative stress and ferroptosis in lung epithelial cells. In conclusion, this study demonstrates that Tempol alleviates ALI by inhibiting ferroptosis in lung epithelial cells through the effect of Nrf2 on GSH synthesis.
Collapse
Affiliation(s)
- Li Ai
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ran Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiaona Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Zhijuan Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yongxia Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
8
|
Zhong Y, Zeng W, Chen Y, Zhu X. The effect of lipid metabolism on cuproptosis-inducing cancer therapy. Biomed Pharmacother 2024; 172:116247. [PMID: 38330710 DOI: 10.1016/j.biopha.2024.116247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
Cuproptosis provides a new therapeutic strategy for cancer treatment and is thought to have broad clinical application prospects. Nevertheless, some oncological clinical trials have yet to demonstrate favorable outcomes, highlighting the need for further research into the molecular mechanisms underlying cuproptosis in tumors. Cuproptosis primarily hinges on the intracellular accumulation of copper, with lipid metabolism exerting a profound influence on its course. The interaction between copper metabolism and lipid metabolism is closely related to cuproptosis. Copper imbalance can affect mitochondrial respiration and lipid metabolism changes, while lipid accumulation can promote copper uptake and absorption, and inhibit cuproptosis induced by copper. Anomalies in lipid metabolism can disrupt copper homeostasis within cells, potentially triggering cuproptosis. The interaction between cuproptosis and lipid metabolism regulates the occurrence, development, metastasis, chemotherapy drug resistance, and tumor immunity of cancer. Cuproptosis is a promising new target for cancer treatment. However, the influence of lipid metabolism and other factors should be taken into consideration. This review provides a brief overview of the characteristics of the interaction between cuproptosis and lipid metabolism in cancer and analyses potential strategies of applying cuproptosis for cancer treatment.
Collapse
Affiliation(s)
- Yue Zhong
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Wei Zeng
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Yongbo Chen
- Rehabilitation College of Gannan Medical University, Ganzhou 341000, China
| | - Xiuzhi Zhu
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
9
|
Luan Y, Yang Y, Luan Y, Liu H, Xing H, Pei J, Liu H, Qin B, Ren K. Targeting ferroptosis and ferritinophagy: new targets for cardiovascular diseases. J Zhejiang Univ Sci B 2024; 25:1-22. [PMID: 38163663 PMCID: PMC10758208 DOI: 10.1631/jzus.b2300097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/21/2023] [Indexed: 01/03/2024]
Abstract
Cardiovascular diseases (CVDs) are a leading factor driving mortality worldwide. Iron, an essential trace mineral, is important in numerous biological processes, and its role in CVDs has raised broad discussion for decades. Iron-mediated cell death, namely ferroptosis, has attracted much attention due to its critical role in cardiomyocyte damage and CVDs. Furthermore, ferritinophagy is the upstream mechanism that induces ferroptosis, and is closely related to CVDs. This review aims to delineate the processes and mechanisms of ferroptosis and ferritinophagy, and the regulatory pathways and molecular targets involved in ferritinophagy, and to determine their roles in CVDs. Furthermore, we discuss the possibility of targeting ferritinophagy-induced ferroptosis modulators for treating CVDs. Collectively, this review offers some new insights into the pathology of CVDs and identifies possible therapeutic targets.
Collapse
Affiliation(s)
- Yi Luan
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yang Yang
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ying Luan
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Hui Liu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Han Xing
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Jinyan Pei
- Quality Management Department, Henan No. 3 Provincial People's Hospital, Zhengzhou 450052, China
| | - Hengdao Liu
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. ,
| | - Bo Qin
- Center for Translational Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China. ,
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China.
- Henan Engineering Research Center for Application & Translation of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
10
|
Mansour HM, F Mohamed A, Khattab MM, El-Khatib AS. Lapatinib ditosylate rescues motor deficits in rotenone-intoxicated rats: Potential repurposing of anti-cancer drug as a disease-modifying agent in Parkinson's disease. Eur J Pharmacol 2023; 954:175875. [PMID: 37385578 DOI: 10.1016/j.ejphar.2023.175875] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by motor deficits induced by dopaminergic neuronal death in the substantia nigra (SN). Finding a successful neuroprotective therapy is still challenging despite improved knowledge of the etiology of PD and a variety of medications intended to reduce symptoms. Lapatinib (LAP), an FDA-approved anti-cancer medication, has been stated to exert its effect through the modulation of oxidative stress. Furthermore, recent studies display the neuroprotective effects of LAP in epilepsy, encephalomyelitis, and Alzheimer's disease in rodent models through the modulation of oxidative stress and ferroptosis. Nevertheless, it is questionable whether LAP exerts neuroprotective effects in PD. In the current study, administration of 100 mg/kg LAP in rotenone-treated rats for 21 days ameliorates motor impairment, debilitated histopathological alterations, and revived dopaminergic neurons by increasing tyrosine hydroxylase (TH) expression in SN, along with increased dopamine level. LAP remarkably restored the antioxidant defense mechanism system, GPX4/GSH/NRF2 axis, inhibiting oxidative markers, including iron, TfR1, PTGS2, and 4-HNE, along with suppression of p-EGFR/c-SRC/PKCβII/PLC-γ/ACSL-4 pathway. Moreover, LAP modulates HSP90/CDC37 chaperone complex, regulating many key pathological markers of PD, including LRRK2, c-ABL, and α-syn. It is concluded that LAP has neuroprotective effects in PD via modulation of many key parameters implicated in PD pathogenesis. Taken together, the current study offers insights into the potential repositioning of LAP as a disease-modifying drug in PD.
Collapse
Affiliation(s)
- Heba M Mansour
- Central Administration of Biological, Innovative Products, and Clinical Studies, Egyptian Drug Authority, EDA, Giza, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Aiman S El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
11
|
Lai Y, Wang H, Xu X, Dong J, Song Y, Zhao H, Wu Y, Zhao L, Wang H, Zhang J, Yao B, Zou Y, Zhou H, Peng R. Hippocampal ferroptosis is involved in learning and memory impairment in rats induced by microwave and electromagnetic pulse combined exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83717-83727. [PMID: 37349489 PMCID: PMC10359380 DOI: 10.1007/s11356-023-28280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Microwave (MW) and electromagnetic pulse (EMP) are considered environmental pollutants, both of which can induce learning and memory impairments. However, the bioeffects of combined exposure to MW and EMP have never been explored. This paper aimed to investigate the effects of combined exposure to MW and EMP on the learning and memory of rats as well as its association with ferroptosis in the hippocampus. In this study, rats were exposed to EMP, MW, or EMP and MW combined radiation. After exposure, impairment of learning and memory, alterations in brain electrophysiological activity, and damage to hippocampal neurons were observed in rats. Moreover, we also found alterations in ferroptosis hallmarks, including increased levels of iron, lipid peroxidation, and prostaglandin-endoperoxide synthase 2 (PTGS2) mRNA, as well as downregulation of glutathione peroxidase 4 (GPX4) protein in the rat hippocampus after exposure. Our results suggested that either single or combined exposure to MW and EMP radiation could impair learning and memory and damage hippocampal neurons in rats. Moreover, the adverse effects caused by the combined exposure were more severe than the single exposures, which might be due to cumulative effects rather than synergistic effects. Furthermore, ferroptosis in the hippocampus might be a common underlying mechanism of learning and memory impairment induced by both single and combined MW and EMP exposure.
Collapse
Affiliation(s)
- Yunfei Lai
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Haoyu Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Xinping Xu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ji Dong
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yiwei Song
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Haixia Zhao
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - You Wu
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Li Zhao
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hui Wang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jing Zhang
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Binwei Yao
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yong Zou
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hongmei Zhou
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ruiyun Peng
- Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
12
|
Fang J, Yuan Q, Du Z, Zhang Q, Yang L, Wang M, Yang W, Yuan C, Yu J, Wu G, Hu J. Overexpression of GPX4 attenuates cognitive dysfunction through inhibiting hippocampus ferroptosis and neuroinflammation after traumatic brain injury. Free Radic Biol Med 2023; 204:68-81. [PMID: 37105419 DOI: 10.1016/j.freeradbiomed.2023.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Accepted: 04/24/2023] [Indexed: 04/29/2023]
Abstract
Ferroptosis is a newly discovered form of regulated cell death that is triggered primarily by lipid peroxidation. A growing body of evidence has implicated ferroptosis in the pathophysiology of traumatic brain injury (TBI). However, none of these studies focused its role on TBI-induced hippocampal injury. Here, we demonstrated that the distinct ferroptotic signature was detected in the injured hippocampus at the early stage of TBI. Besides, a prominent pro-ferroptosis environment was detected in the ipsilateral hippocampus after TBI, including elevated levels of arachidonic acid (AA), ACLS4, and ALXO15, and deficiency of GPX4. Subsequently, we used AAV-mediated Gpx4 overexpression to counteract ferroptosis in the hippocampus, and found that TBI-induced cognitive deficits were significantly alleviated after Gpx4 overexpression. Biochemical results also confirmed that TBI-induced hippocampal ferroptosis and synaptic damage were partially reversed by Gpx4 overexpression. In addition, Gpx4 overexpression inhibited TBI-induced neuroinflammation and peripheral macrophage infiltration. Interestingly, the results of transwell migration assay showed that ferroptotic neurons increased CCL2 expression and promoted iBMDM cell migration. However, this effect was inhibited by CCL2 antagonist, RS102895. These data suggested that inhibition of ferroptosis may be as a potential strategy to ameliorate TBI-induced cognitive deficits through blockade of hippocampal ferroptosis and neuroinflammation.
Collapse
Affiliation(s)
- Jiang Fang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China
| | - Qiang Yuan
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China
| | - Zhuoying Du
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China
| | - Quan Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China
| | - Lei Yang
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Meihua Wang
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Weijian Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China
| | - Cong Yuan
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China
| | - Jian Yu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China
| | - Gang Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China
| | - Jin Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai Clinical Medical Center of Neurosurgery, Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, China.
| |
Collapse
|
13
|
Du R, Cheng X, Ji J, Lu Y, Xie Y, Wang W, Xu Y, Zhang Y. Mechanism of ferroptosis in a rat model of premature ovarian insufficiency induced by cisplatin. Sci Rep 2023; 13:4463. [PMID: 36932163 PMCID: PMC10023701 DOI: 10.1038/s41598-023-31712-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
Ferroptosis is widely present in fibrosis-related diseases. The basic pathology of premature ovarian insufficiency (POI) involves ovarian tissue fibrosis, and there are currently fewer relevant studies addressing the association between ferroptosis and POI. This study aimed to demonstrate that ferroptosis induced by cisplatin (CDDP) caused ovarian tissue fibrosis, leading to POI. Vitamin E (VE), a ferroptosis inhibitor, could repair damaged ovarian function. CDDP was used to establish a rat model of POI, and VE was administered to reverse the reproductive toxicity of CDDP. Ovarian function was assessed by histological section staining, follicle counts, sex hormone levels, as well as fertility assays. The extent of ferroptosis was assessed by transmission electron microscopy (TEM), malondialdehyde (MDA), Perls staining. CCK-8, Ethynyl-2-Deoxyuridine (EdU), and scratch assays were used to determine the effect of CDDP and VE on ovarian granulosa cell (GC) viability. Western blot, quantitative reverse-transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry were performed to evaluate ferroptosis-related molecular changes. Our results showed that CDDP caused follicle development disorders and ovarian tissue fibrosis, the levels of sex hormones suggested impaired ovarian function, and VE could reverse the reproductive toxicity of CDDP. The results of TEM, MDA and Perls staining suggested that the typical mitochondrial signature of ferroptosis was altered in ovarian GCs from the CDDP group, with significantly higher levels of lipid peroxidation and significant iron deposition in ovarian tissue, whereas VE mitigated the extent of ferroptosis. Molecular experiments then confirmed that the ferroptosis-related molecules acetyl CoA synthetase long chain family member 4 (ACSl4), 15-lipoxygenase-1 (ALOX15), solute carrier family 7 member 11 (SLC7A11), and glutathione peroxidase 4 (GPX4) were differentially expressed in each group. In summary, our study preliminarily demonstrated that CDDP may promote GCs to undergo ferroptosis, cause follicle development disorders, ovarian tissue fibrosis, and induce POI by regulating the expression of ACSl4, ALOX15, SLC7A11, and GPX4, while VE improved impaired ovarian function.
Collapse
Grants
- MS12021003, KYCX20_2799, KYCX21_3118 XiCheng
- MS12021003, KYCX20_2799, KYCX21_3118 XiCheng
- MS12021003, KYCX20_2799, KYCX21_3118 XiCheng
- MS12021003, KYCX20_2799, KYCX21_3118 XiCheng
- MS12021003, KYCX20_2799, KYCX21_3118 XiCheng
- MS12021003, KYCX20_2799, KYCX21_3118 XiCheng
- MS12021003, KYCX20_2799, KYCX21_3118 XiCheng
- BE2018672 Yuquan Zhang
- BE2018672 Yuquan Zhang
- BE2018672 Yuquan Zhang
- BE2018672 Yuquan Zhang
- BE2018672 Yuquan Zhang
- BE2018672 Yuquan Zhang
- BE2018672 Yuquan Zhang
Collapse
Affiliation(s)
- Rong Du
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Xi Cheng
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Jingjing Ji
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Yang Lu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Yuanyuan Xie
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Weina Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Yanhua Xu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu Province, 226001, China
| | - Yuquan Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, No.20, Xisi Road, Nantong, Jiangsu Province, 226001, China.
| |
Collapse
|