1
|
Farnaghi M, Poursamar SA, Farzan M, Farzan M, Kouhi M, Rafienia M. Enhancing the biological characteristics of aminolysis surface-modified 3D printed nanocomposite polycaprolactone/nanohydroxyapatite scaffold via gelatin biomacromolecule immobilization: An in vitro and in vivo study. Colloids Surf B Biointerfaces 2025; 249:114505. [PMID: 39799608 DOI: 10.1016/j.colsurfb.2025.114505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/27/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
The surface characteristics of scaffolds utilized in bone tissue engineering profoundly influence subsequent cellular response. This study investigated the efficacy of applying a gelatin coat to the surface of aminolysis surface-modified scaffolds fabricated through 3D printing with a polycaprolactone/hydroxyapatite nanocomposite, employing the hot-melt extrusion FDM technique. Initially, aminolysis surface modification using hexamethylenediamine enhanced surface hydrophilicity by introducing amine functional groups. Subsequently, gelatin solutions were applied to the scaffolds, and crosslinking with EDC/NHS was performed to increase coating strength. Contact angle measurements revealed a significantly increased surface hydrophilicity post-aminolysis. Aminolysis facilitated uniform gelatin coating formation and distribution. Subsequently, crosslinking enhanced coating durability. The addition of gelatin coating resulted in a notable 20 % increase in scaffold mechanical strength and more than 50 % rise in Young's modulus and exhibited enhancement of biodegradability and bioactivity. Gelatin coated scaffolds also demonstrated improved cell viability and adhesion and over two times higher expression of OPN and ALP genes, suggesting improved biological properties. In addition, in vivo bone formation studies verified the biological enhancement of scaffolds. Utilizing an immobilized crosslinked gelatin biomacromolecule coating effectively enhanced the biological characteristics of 3D printed scaffolds and their potential applications as bone tissue engineering scaffolds.
Collapse
Affiliation(s)
- Mohammadhasan Farnaghi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Ali Poursamar
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mahour Farzan
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahan Farzan
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Monireh Kouhi
- Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Rafienia
- Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Biosensor Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Aștilean Pertea AN, Dreancă A, Gog-Bogdan S, Sevastre B, Ungur A, Negoescu A, Taulescu M, Rotar O, Dindelegan M, Gherman LM, Magyari K, Oana L. Bone proliferation in osteoporotic experimental animals using alginate-pullulan-bioactive glass‑gold nanoparticles composite. Bone 2025; 194:117439. [PMID: 40024425 DOI: 10.1016/j.bone.2025.117439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
In the present study, scaffold composites based on alginate-pullulan-bioactive glass‑gold nanoparticles were orthotopically implanted in an experimental model of delayed bone union, in rats, given by a metabolic pathology, namely osteoporosis. Differences between treated and untreated groups were observed and the efficacy of our biomaterial was evaluated by applying micro-CT imaging, together with histological evaluation of the osteoporotic animals with sub-critical bone defects, at 30 and 60 days. Osteoporosis was successfully induced by ovariectomy in 9-month-old rats, confirmed by micro-CT and histopathological analysis. A secondary complication from a cortical bone defect was further induced to study bone proliferation in such a delayed environment. The studied composite presents osteointegration and angiogenesis properties at 60 days post-implantation in the osteoporotic animals. These results are given by the micro-CT analysis in which higher bone mineral density and bone volume fraction were observed, alongside histopathology, stating a lack of tissue necrosis and inflammatory reaction and the presence of new woven islands within and around the implanted biomaterial. This is the first endeavor to treat cortical bone defects in osteoporotic animals using scaffold biopolymers containing bioactive glass‑gold nanoparticles instead of cement.
Collapse
Affiliation(s)
| | - Alexandra Dreancă
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania.
| | - Sidonia Gog-Bogdan
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Bogdan Sevastre
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Andrei Ungur
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Andrada Negoescu
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Marian Taulescu
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Oana Rotar
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Maximilian Dindelegan
- Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy "Iuliu Hatieganu", 400012 Cluj-Napoca, Romania
| | - Luciana-Mădălina Gherman
- Centre for Experimental Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu", 400349 Cluj-Napoca, Romania
| | - Klara Magyari
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, 400271 Cluj-Napoca, Romania; INSPIRE Research Platform InfoBioNano4Health & Biomedical Imaging, Babeș Bolyai University, 400084 Cluj-Napoca, Romania.
| | - Liviu Oana
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Yun J, Woo HT, Lee S, Cha HJ. Visible light-induced simultaneous bioactive amorphous calcium phosphate mineralization and in situ crosslinking of coacervate-based injectable underwater adhesive hydrogels for enhanced bone regeneration. Biomaterials 2025; 315:122948. [PMID: 39522352 DOI: 10.1016/j.biomaterials.2024.122948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/20/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
The field of bone tissue engineering is vital due to increasing bone disorders and limitations of traditional grafts. Injectable hydrogels offer minimally invasive solutions but often lack mechanical integrity and biological functionality, including osteoinductive capacity and structural stability under physiological conditions. To address these issues, we propose a coacervate-based injectable adhesive hydrogel that utilizes the dual functionality of in situ photocrosslinking and osteoinductive amorphous calcium phosphate formation, both of which are activated simultaneously by visible light irradiation. The developed hydrogel formulation integrated a photoreactive agent with calcium ions and phosphonodiol in a matrix of tyramine-conjugated alginate and RGD peptide-fused bioengineered mussel adhesive protein, promoting rapid setting, robust underwater adhesion, and bioactive mineral deposition. The hydrogel also exhibited superior mechanical properties, including enhanced underwater tissue adhesive strength and compressive resistance. In vivo evaluation using a rat femoral tunnel defect model confirmed the efficacy of the developed adhesive hydrogel in facilitating easy application to irregularly shaped defects through injection, rapid bone regeneration without the addition of bone grafts, and integration within the defect sites. This injectable adhesive hydrogel system holds significant potential for advancing bone tissue engineering, providing a versatile, efficient, and biologically favorable alternative to conventional bone repair methodologies.
Collapse
Affiliation(s)
- Jinyoung Yun
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Hyun Tack Woo
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Sangmin Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea; Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea.
| |
Collapse
|
4
|
Diansari V, Idroes R, Sunarso S, Fitriyani S. Extraction and Characterization of Aceh Bovine Bone-Derived Hydroxyapatite for Applications in Dentistry. Eur J Dent 2025. [PMID: 40073984 DOI: 10.1055/s-0045-1802946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025] Open
Abstract
OBJECTIVE Bone grafts derived from natural hydroxyapatite (HA) are increasingly being explored because they are more economical in terms of production costs compared with commercial HA. HA can be obtained from local cattle slaughter waste in Aceh, Indonesia, which has not been widely studied for its potential for dental applications. This study examines the synthesis and characterization of bovine HA (BHA) derived from Aceh cattle femur through calcination for applications in dentistry. MATERIALS AND METHODS This research began with the cleaning of fresh bones by boiling and soaking them in acetone for 2 hours before 3-hour calcination at varying temperatures. The BHA samples were characterized using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction, scanning electron microscopy with energy dispersive X-ray (SEM-EDX), and particle size analyzer (PSA). STATISTICAL ANALYSIS Data were analyzed using SPSS with a one-way analysis of variance to assess the impact of calcination temperature on the yield and particle size of BHA. RESULTS BHA obtained from calcination at 900°C and 1,000°C showed the highest crystallinity, with values above 84%, and uniform particle distribution. PSA and SEM analysis showed that BHA particles were spherical in submicron size, which became smaller and more uniform but agglomeration did not occur significantly between each increase in calcination temperature. FTIR analysis showed the presence of phosphate, carbonate, and hydroxyl functional groups. Elemental composition analysis using EDX confirmed that essential elements such as calcium and phosphorus were distributed consistently at all temperatures with a Ca/P ratio of 1.7 to 2.3. DISCUSSION Based on the characteristics of crystallinity, particle size, and chemical composition of the obtained BHA, it is considered optimal for bioactivity, which allows stimulation of new bone tissue formation and promotes osseointegration while balancing structural stability. This makes BHA derived from Aceh cattle bones a suitable bone filler candidate for treating alveolar bone defects in hard tissue regeneration. These findings highlight the potential use of cattle bone waste as a sustainable source of HA in dental applications. CONCLUSION These findings suggest that Aceh bovine bones are a viable source for producing quality BHA, potentially contributing to more sustainable and ecofriendly biomaterials for dental applications.
Collapse
Affiliation(s)
- Viona Diansari
- Graduate School of Mathematics and Applied Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
- Department of Dental Material, Faculty of Dentistry, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Rinaldi Idroes
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Sunarso Sunarso
- Department of Dental Material, Faculty of Dentistry, Universitas Indonesia, Jakarta, Indonesia
| | - Sri Fitriyani
- Department of Dental Material, Faculty of Dentistry, Universitas Syiah Kuala, Banda Aceh, Indonesia
| |
Collapse
|
5
|
De Pace R, Molinari S, Mazzoni E, Perale G. Bone Regeneration: A Review of Current Treatment Strategies. J Clin Med 2025; 14:1838. [PMID: 40142646 PMCID: PMC11943102 DOI: 10.3390/jcm14061838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/02/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Bone regeneration has emerged as a critical research and clinical advancement field, fueled by the growing demand for effective treatments in orthopedics and oncology. Over the past two decades, significant progress in biomaterials and surgical techniques has led to the development of novel solutions for treating bone defects, surpassing the use of traditional autologous grafts. This review aims to assess the latest approaches in bone regeneration, including autologous, allogenic, and xenogenic grafts, naturally derived biomaterials, and innovative synthetic substitutes such as bioceramics, bioactive glasses, metals, polymers, composite materials, and other specialized applications. A comprehensive literature search was conducted on PubMed, focusing on studies published between 2019 and 2024, including meta-analyses, reviews, and systematic reviews. The review evaluated a range of bone regeneration strategies, examining the clinical outcomes, materials used, surgical techniques, and the effectiveness of various approaches in treating bone defects. The search identified numerous studies, with the inclusion criteria focused on those exploring innovative bone regeneration strategies. These studies provided valuable insights into the clinical and biological outcomes of different biomaterials and graft types. Results indicated that while advancements in synthetic and naturally derived biomaterials show promising potential, challenges remain in optimizing therapeutic strategies across diverse patient populations and clinical settings. The findings emphasize the need for an integrated approach that combines scientific research, clinical practice, and technological innovation to improve bone regeneration therapies. Further research is required to establish standardized protocols and determine the optimal application of various materials and techniques to enhance patient outcomes and the quality of care.
Collapse
Affiliation(s)
- Raffaella De Pace
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Molinari
- Industrie Biomediche Insubri SA, Via Cantonale 67, 6805 Mezzovico-Vira, Switzerland
| | - Elisa Mazzoni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Giuseppe Perale
- Industrie Biomediche Insubri SA, Via Cantonale 67, 6805 Mezzovico-Vira, Switzerland
- Faculty of Biomedical Sciences, University of Southern Switzerland (USI), Via G. Buffi 13, 6900 Lugano, Switzerland
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse 13, 1200 Vienna, Austria
| |
Collapse
|
6
|
Hoveidaei AH, Sadat-Shojai M, Nabavizadeh SS, Niakan R, Shirinezhad A, MosalamiAghili S, Tabaie S. Clinical challenges in bone tissue engineering - A narrative review. Bone 2025; 192:117363. [PMID: 39638083 DOI: 10.1016/j.bone.2024.117363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Bone tissue engineering (BTE) has emerged as a promising approach to address large bone defects caused by trauma, infections, congenital malformations, and tumors. This review focuses on scaffold design, cell sources, growth factors, and vascularization strategies, highlighting their roles in developing effective treatments. We explore the complexities of balancing mechanical properties, porosity, and biocompatibility in scaffold materials, alongside optimizing mesenchymal stem cell delivery methods. The critical role of growth factors in bone regeneration and the need for controlled release systems are discussed. Vascularization remains a significant hurdle, with strategies such as angiogenic factors, co-culture systems, and bioprinting under investigation. Mechanical challenges, tissue responses, and inflammation management are examined, alongside gene therapy's potential for enhancing osteogenesis and angiogenesis via both viral and non-viral delivery methods. The review emphasizes the impact of patient-specific factors on bone healing outcomes and the importance of personalized approaches. Future directions are described, emphasizing the necessity of interdisciplinary cooperation to advance the field of BTE and convert laboratory results into clinically feasible solutions.
Collapse
Affiliation(s)
- Amir Human Hoveidaei
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, MD, USA.
| | - Mehdi Sadat-Shojai
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran.
| | - Sara S Nabavizadeh
- Otolaryngology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Niakan
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Sean Tabaie
- Department of Orthopaedic Surgery, Nationwide Children's Hospital, Columbus, OH, USA
| |
Collapse
|
7
|
Abu Elella MH, Kamel AM, López-Maldonado EA, Uzondu SW, Abdallah HM. A review of recent progress in alginate-based nanocomposite materials for tissue engineering applications. Int J Biol Macromol 2025; 297:139840. [PMID: 39814276 DOI: 10.1016/j.ijbiomac.2025.139840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/07/2025] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
Integrating nanotechnology with tissue engineering has revolutionized biomedical sciences, enabling the development of advanced therapeutic strategies. Tissue engineering applications widely utilize alginate due to its biocompatibility, mild gelation conditions, and ease of modification. Combining different nanomaterials with alginate matrices enhances the resulting nanocomposites' physicochemical properties, such as mechanical, electrical, and biological properties, as well as their surface area-to-volume ratio, offering significant potential for tissue engineering applications. This review thoroughly overviews various nanomaterials, such as metal and metal oxide nanoparticles, carbon-based nanomaterials, MXenes, and hydroxyapatite, that modify alginate-based nanocomposites. It covers multiple preparation techniques, including layer-by-layer assembly, blending, 3D printing, and in situ synthesis. These techniques apply to tissue engineering applications, including bone tissue engineering, cardiac tissue engineering, neural tissue engineering, wound healing, and skin regeneration. Additionally, it highlights current advancements, challenges, and future perspectives.
Collapse
Affiliation(s)
- Mahmoud H Abu Elella
- School of Pharmacy, University of Reading, Reading RG6 6UR, UK; Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Amira M Kamel
- Polymers and Pigments Department, Chemical Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, 22424, Tijuana, Baja California, Mexico
| | | | - Heba M Abdallah
- Polymers and Pigments Department, Chemical Industries Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
8
|
Wang J, Zhang Q, Wang H, Liu C, Jiang L, Liu W, Wu Y, Wang Y, Vivian, Yan H, Lin J, Sun X. A Sr@Ag-based spatiotemporal and step-release scaffold against chronic osteomyelitis, fabricated by coaxial 3D-printing. Biomaterials 2025; 314:122899. [PMID: 39437580 DOI: 10.1016/j.biomaterials.2024.122899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Chronic osteomyelitis (OM) represents a severe and persistent infectious bone disease. Effective treatment requires controlled anti-inflammatory releases and bone regeneration across disease phases. A Sr@Ag-based scaffold was successfully printed, featuring micron-scale coaxial fibers containing Ag-doped hydroxyapatite (HA) in the outer layer of PLLA and Sr-doped HA in the inner layer of PLLA, facilitating the spatiotemporal and sequential release of Ag and Sr ions during OM treatment. Most antibacterial agent (Ag) was released during the first 20 days, followed by a slow-release plateau over the next 40 days in phosphate-buffered saline solution (PBS). Meanwhile, the pro-angiogenic agent (Sr) was released in minimal amounts during the initial 20 days, followed by a rapid and considerable release in the following 40 days. The coaxial design effectively inhibited the growth of Staphylococcus aureus and Escherichia coli while preserving the viability of bone cells. The ion-based scaffold exhibited broad-spectrum antibacterial effects and enhanced bone-regenerating gene expression in a complex air-bacteria environment. The Sr@Ag-based coaxial scaffold demonstrated effective antibacterial activity during the early stage and exhibited excellent non-toxic bone regeneration results during the middle and late stages in vivo. This work offered a promising treatment strategy through sequential anti-inflammatory and pro-osteogenic effects for infectious bone-defect diseases.
Collapse
Affiliation(s)
- Jingyun Wang
- Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China; Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Qin Zhang
- Department of Orthopaedics, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, Jiangsu, 215000, People's Republic of China; Department of Orthopaedics, First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, 215000, People's Republic of China
| | - Hetong Wang
- Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China; Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Chunlin Liu
- Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China; Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China; School of Mechanical Engineering, Chengdu University, Chengdu, Sichuan, 610000, People's Republic of China.
| | - Le Jiang
- Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China; Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Wanting Liu
- Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China; Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yixian Wu
- Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China; Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yifan Wang
- Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China; Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Vivian
- Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China; Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Hao Yan
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Jun Lin
- Department of Orthopaedics, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, Jiangsu, 215000, People's Republic of China; Department of Orthopaedics, First Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, 215000, People's Republic of China.
| | - Xiaodan Sun
- Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China; Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
9
|
Vladu AF, Albu Kaya MG, Truşcă RD, Motelica L, Surdu VA, Oprea OC, Constantinescu RR, Cazan B, Ficai D, Andronescu E, Ficai A. The Role of Crosslinking Agents in the Development of Collagen-Hydroxyapatite Composite Materials for Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2025; 18:998. [PMID: 40077225 PMCID: PMC11901301 DOI: 10.3390/ma18050998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/24/2025] [Accepted: 02/06/2025] [Indexed: 03/14/2025]
Abstract
The lack of bone grafts represents a major issue in the orthopedic field, reconstructive surgery, and dentistry. There are several bone conditions that often demand the use of grafts, such as fractures, infections, and bone cancer. The number of bone cancer cases increased in the past few decades and along with it, the need for bone grafting materials. To avoid the use of autografts and allografts there has been an increased interest towards synthetic grafts. This research aims to develop some collagen/hydroxyapatite (Coll/HAp) scaffolds cross-linked with three different agents that could be used in bone tissue engineering (BTE). These scaffolds were obtained with a freeze-drying method after the in situ formation of hydroxyapatite inside the collagen matrix. They were structurally and morphologically characterized and evaluated in terms of antimicrobial activity on E. coli and S. aureus bacterial strains. The results revealed that the scaffolds have porous structures with interconnected pores of suitable dimensions and well-distributed inorganic phases. Coll/HAp samples showed great antibacterial activity even without the use of typically used antibacterial agents. These findings allow us to conclude that these scaffolds are promising candidates for use in BTE and bone cancer treatment after the incorporation of specific antitumoral drugs.
Collapse
Affiliation(s)
- Alina Florentina Vladu
- The National Research and Development Institute for Textiles and Leather, Lucretiu Patrascanu, 030508 Bucharest, Romania; (A.F.V.); (B.C.)
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania; (R.D.T.); (L.M.); (V.-A.S.); (O.C.O.); (E.A.); (A.F.)
- National Center for Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania;
- National Center for Scientific Research for Food Safety, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Madalina Georgiana Albu Kaya
- Division of Leather and Footwear Research Institute, The National Research and Development Institute for Textiles and Leather, 93 Ion Minulescu Str., 031215 Bucharest, Romania;
| | - Roxana Doina Truşcă
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania; (R.D.T.); (L.M.); (V.-A.S.); (O.C.O.); (E.A.); (A.F.)
- National Center for Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania;
| | - Ludmila Motelica
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania; (R.D.T.); (L.M.); (V.-A.S.); (O.C.O.); (E.A.); (A.F.)
- National Center for Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania;
- National Center for Scientific Research for Food Safety, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
- Research Center for Advanced Materials, Products and Processes, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania
| | - Vasile-Adrian Surdu
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania; (R.D.T.); (L.M.); (V.-A.S.); (O.C.O.); (E.A.); (A.F.)
- National Center for Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania;
- National Center for Scientific Research for Food Safety, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Ovidiu Cristian Oprea
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania; (R.D.T.); (L.M.); (V.-A.S.); (O.C.O.); (E.A.); (A.F.)
- National Center for Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania;
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| | - Rodica Roxana Constantinescu
- Division of Leather and Footwear Research Institute, The National Research and Development Institute for Textiles and Leather, 93 Ion Minulescu Str., 031215 Bucharest, Romania;
| | - Bogdan Cazan
- The National Research and Development Institute for Textiles and Leather, Lucretiu Patrascanu, 030508 Bucharest, Romania; (A.F.V.); (B.C.)
| | - Denisa Ficai
- National Center for Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania;
- National Center for Scientific Research for Food Safety, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| | - Ecaterina Andronescu
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania; (R.D.T.); (L.M.); (V.-A.S.); (O.C.O.); (E.A.); (A.F.)
- National Center for Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania;
- National Center for Scientific Research for Food Safety, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| | - Anton Ficai
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology POLITEHNICA Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania; (R.D.T.); (L.M.); (V.-A.S.); (O.C.O.); (E.A.); (A.F.)
- National Center for Micro and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania;
- National Center for Scientific Research for Food Safety, National University of Science and Technology POLITEHNICA Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov Street 3, 050044 Bucharest, Romania
| |
Collapse
|
10
|
Leelasangsai W, Thummachot K, Thammasarnsophon P, Srion A, Suwanprateeb J, Patntirapong S. Cobalt-Incorporated Hydroxyapatite Conditioned Media Promotes In Vitro Scratch Wound Healing and Mesenchymal Stem Cell Migration. J Funct Biomater 2025; 16:72. [PMID: 40137351 PMCID: PMC11942815 DOI: 10.3390/jfb16030072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/07/2025] [Accepted: 02/16/2025] [Indexed: 03/27/2025] Open
Abstract
Cell migration of mesenchymal stem cells (MSCs) is critical for bone healing and remodeling. Cobalt is a well-known hypoxia mimic, which can enhance MSC migration. Therefore, the objective of this study was to investigate the migratory response of MSCs to a developed cobalt-incorporated hydroxyapatite (HACo) material. HACo was fabricated by a simple ion exchange procedure at concentrations ranging from 40 to 8000 μM into disc shape. HACo discs were incubated in the media and conditioned media (CM; HACoCM) were collected for MSC culture. HACM served as a control. MSCs were cultured until reaching 90% confluence before the wound was generated by scraping. Time-lapse imaging of wound migration was monitored, recorded, and assessed. Statistical analysis was performed by one-way ANOVA followed by a Dunnett's test. The wound area gradually declined from 0 to 40 h for all samples. HACoCM at 40 µM (HACo40CM) promoted wound closure at the early period of wound healing. Both HACo40CM and HACo8000CM enhanced the distance and velocity of individual cell migration. However, only HACo40CM affected cell persistence and direction at the early period of cell migration. Exposure to HACoCM accelerated the speed of MSC migration, which is necessary for wound healing. The migratory ability of individual cells could help the rate of wound healing. Therefore, HACo materials may serve as potential biomaterials for enhanced bone healing.
Collapse
Affiliation(s)
- Weerapat Leelasangsai
- Department of Implantology, Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand;
| | - Krongrat Thummachot
- Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; (K.T.); (P.T.)
| | | | - Autcharaporn Srion
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (A.S.); (J.S.)
| | - Jintamai Suwanprateeb
- Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand; (A.S.); (J.S.)
- Thammasat University Center of Excellence in Computational Mechanics and Medical Engineering, Thammasat University, Pathum Thani 12120, Thailand
| | - Somying Patntirapong
- Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand; (K.T.); (P.T.)
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Faculty of Dentistry, Thammasat University, Pathum Thani 12120, Thailand
| |
Collapse
|
11
|
Cong B, Zhang H. Innovative 3D printing technologies and advanced materials revolutionizing orthopedic surgery: current applications and future directions. Front Bioeng Biotechnol 2025; 13:1542179. [PMID: 40008034 PMCID: PMC11850356 DOI: 10.3389/fbioe.2025.1542179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Three-dimensional (3D) printing has rapidly become a transformative force in orthopedic surgery, enabling the creation of highly customized and precise medical implants and surgical tools. This review aims to provide a more systematic and comprehensive perspective on emerging 3D printing technologies-ranging from extrusion-based methods and bioink printing to powder bed fusion-and the broadening array of materials, including bioactive agents and cell-laden inks. We highlight how these technologies and materials are employed to fabricate patient-specific implants, surgical guides, prosthetics, and advanced tissue engineering scaffolds, significantly enhancing surgical outcomes and patient recovery. Despite notable progress, the field faces challenges such as optimizing mechanical properties, ensuring structural integrity, addressing regulatory complexities across different regions, and considering environmental impacts and cost barriers, especially in low-resource settings. Looking ahead, innovations in smart materials and functionally graded materials (FGMs), along with advancements in bioprinting, hold promise for overcoming these obstacles and expanding the capabilities of 3D printing in orthopedics. This review underscores the pivotal role of interdisciplinary collaboration and ongoing research in harnessing the full potential of additive manufacturing, ultimately paving the way for more effective, personalized, and durable orthopedic solutions that improve patient quality of life.
Collapse
Affiliation(s)
- Bo Cong
- Department of Orthopedics, Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, Shandong, China
- Yantai Key Laboratory for Repair and Reconstruction of Bone and Joint, Yantai, Shandong, China
| | - Haiguang Zhang
- Department of Orthopedics, Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, Shandong, China
- Yantai Key Laboratory for Repair and Reconstruction of Bone and Joint, Yantai, Shandong, China
| |
Collapse
|
12
|
Klimek K, Terpilowska S, Michalak A, Bernacki R, Nurzynska A, Cucchiarini M, Tarczynska M, Gaweda K, Głuszek S, Ginalska G. Modern Approach to Testing the Biocompatibility of Osteochondral Scaffolds in Accordance with the 3Rs Principle─Preclinical In Vitro, Ex Vivo, and In Vivo Studies Using the Biphasic Curdlan-Based Biomaterial. ACS Biomater Sci Eng 2025; 11:845-865. [PMID: 39832791 DOI: 10.1021/acsbiomaterials.4c01107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The aim of this work is to provide a comprehensive set of biological tests to assess the biomedical potential of novel osteochondral scaffolds with methods proposed to comply with the 3Rs principle, focusing here on a biphasic Curdlan-based osteochondral scaffold as a promising model biomaterial. In vitro experiments include the evaluation of cytotoxicity, mutagenicity, and genotoxicity referring to ISO standards, the assessment of the viability and proliferation of human chondrocytes and osteoblasts, and the estimation of inflammation after direct contact of biomaterials with human macrophages. Ex vivo experiments include assessments of the response of the surrounding osteochondral tissue after incubation with the implanted biomaterial. In vivo experiments involve an evaluation of the toxicity and regenerative potential of the biomaterial in zebrafish (larvae and adults) and in osteochondral defects in dogs (veterinary patients). The applied set of tests allows us to show that the Curdlan-based scaffold does not induce cytotoxicity (cell viability close to 100%), mutagenicity (the level of reversion is not 2× higher compared to the control), and genotoxicity (it does not exhibit any change in chromosomal aberration; the frequency of micronuclei, micronucleated binucleated cells, and cytokinesis-block proliferation index is comparable to the control; moreover, it does not cause the formation of comets in cells). This biomaterial also promotes the viability and proliferation of chondrocytes and osteoblasts (the OD values between the fourth and seventh day of incubation increase by approximately 1.6×). The Curdlan-based scaffold stimulates only a transient inflammatory response in vitro and ex vivo. This biomaterial does not cause Danio rerio larvae malformation and also enables proper regeneration of the caudal fin in adults. Finally, it supports the regeneration of an osteochondral defect in veterinary patients. Thus, this is a proposal to use alternative methods for biological assessment of osteochondral scaffolds as opposed to commonly used tests using large numbers of laboratory animals.
Collapse
Affiliation(s)
- Katarzyna Klimek
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
| | - Sylwia Terpilowska
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Jan Kochanowski University, Collegium Medicum, IX Wiekow Kielc 19A Av., 25-317 Kielce, Poland
| | - Agnieszka Michalak
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Chodzki 4a Street, 20-093 Lublin, Poland
| | - Rafal Bernacki
- Veterinary Clinic Aura, Debowa 31 Street, 86-065 Lochowo, Poland
| | - Aleksandra Nurzynska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Saarland University, Kirrbergerstr. Bldg 37, 66421 Homburg/Saar, Germany
| | - Marta Tarczynska
- Department and Clinic of Orthopaedics and Traumatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-954 Lublin, Poland
| | - Krzysztof Gaweda
- Department and Clinic of Orthopaedics and Traumatology, Medical University of Lublin, Jaczewskiego 8 Street, 20-954 Lublin, Poland
| | - Stanisław Głuszek
- Department of Surgical Medicine with the Laboratory of Medical Genetics, Jan Kochanowski University, Collegium Medicum, IX Wiekow Kielc 19A Av., 25-317 Kielce, Poland
| | - Grazyna Ginalska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
- Faculty of Health Sciences, Vincent Pol University, Choiny 2 Street, 20-816 Lublin, Poland
| |
Collapse
|
13
|
Farmani M, Mirahmadi-Zare SZ, Masaeli E, Tabatabaei F, Houreh AB. Macroporous coating of silver-doped hydroxyapatite/silica nanocomposite on dental implants by EDTA intermediate to improve osteogenesis, antibacterial, and corrosion behavior. Biomed Mater 2025; 20:025010. [PMID: 39586175 DOI: 10.1088/1748-605x/ad971d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 11/25/2024] [Indexed: 11/27/2024]
Abstract
Coating a titanium (Ti) implant with hydroxyapatite (HA) increases its bioactivity and biocompatibility. However, implant-related infections and biological corrosion have restricted the success of implant. To address these issues, a modified HA nanocomposite (HA/silica-EDTA-AgNPs nanocomposite) was proposed to take advantage of the sustained release of silver nanoparticles (AgNPs) and silicate ions through the silica-EDTA chelating network. As a result, a uniform layer of nanocomposite, compared to HA as the gold standard, was formed on Ti implants without fracture and with a high level of adhesion, using plasma electrolytic oxidation (PEO). Bioactivity assessment evidenced a shift in the surface phase of the Ti implant to generation of beta-tricalcium phosphate, a more bioresorbable material than HA. Metabolic activity assessments using human dental pulp stem cells revealed that Ti surfaces modified by the new nanocomposite are superior to bare and HA-modified Ti surfaces for cell attachment and proliferationin vitro. In addition, it successfully inhibited bacterial growth and induced osteogenesis on the implant surface. Finally, potentiodynamic polarization behavior of Ti implants before and after coating confirmed that a thick oxide interface layer on the modified Ti surface acts as an electrical barrier and protects the substrate layer from corrosion. Therefore, the HA/silica-EDTA/Ag nanocomposite presented here, compared to HA, can better coat Ti dental implants due to its good biocompatibility and osteoinductive activity, along with improved biological stability.
Collapse
Affiliation(s)
- Maryam Farmani
- Materials Engineering Department, Naghshejahan Institute of Higher Education, 81435-118 Baharestan, Isfahan, Iran
| | - Seyede Zohreh Mirahmadi-Zare
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, 8159358686 Isfahan, Iran
| | - Elahe Masaeli
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, 8159358686 Isfahan, Iran
| | - Farideh Tabatabaei
- Materials Engineering Department, Naghshejahan Institute of Higher Education, 81435-118 Baharestan, Isfahan, Iran
| | - Arezou Baharlou Houreh
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, 8159358686 Isfahan, Iran
| |
Collapse
|
14
|
Zheng R, Zhang N, Mao S, Li J, Yan X, Zhang G, Zhang Y, Yue X. Fast bone regeneration using injectable fully biomimetic organoids with biomineralized and organic microenvironments. Biomater Sci 2025; 13:486-495. [PMID: 39625403 DOI: 10.1039/d4bm01181c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Bone defects and congenital bone deficiencies are common clinical conditions. However, conventional non-degradable artificial materials often lead to serious complications, such as severe infections and material displacement. The emergence of tissue engineering and the organoid concept presents a promising approach for the repair of bone defects, facilitating physiological reconstruction while minimizing complications. Nevertheless, previous studies have not developed injectable organoids that incorporate fully mineralized and organic microenvironments to achieve rapid osteogenesis and convenient application in bone regeneration. Therefore, it is imperative to devise an effective strategy to address these challenges. This study first prepared injectable GL scaffolds with varying concentrations and identified the optimal GL concentration (0.8%) for osteogenesis through systematic evaluation of the osteogenic efficiency. Subsequently, 30% mixture of inorganic salts of native bone (NBIS) and extracellular matrix from the periosteum (pECM) was integrated into the optimal GL scaffold at a ratio of NBIS : pECM = 7 : 3 to create an injectable scaffold featuring biomimetic mineralized and organic microenvironments. This scaffold was further utilized for in vitro analysis of osteogenic mechanisms and injected subcutaneously into rabbits for only four weeks to assess its osteogenic efficacy in vivo. The results indicated that the incorporation of NBIS and pECM significantly enhanced the osteogenic efficacy by actively regulating ossification and ECM-receptor interaction signaling pathways, as well as upregulating RUNX2, ALP, COL1, and LAMA. This study introduces a promising injectable strategy for rapid osteogenesis using fully mineralized and organic biomimetic organoids.
Collapse
Affiliation(s)
- Runquan Zheng
- Bone Trauma Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, 250031, China.
| | - Ning Zhang
- Department of Orthopedics, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan 250031, China
| | - Songbo Mao
- Bone Trauma Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, 250031, China.
| | - Jiawei Li
- Bone Trauma Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, 250031, China.
| | - Xuesong Yan
- Bone Trauma Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, 250031, China.
| | - Guichun Zhang
- Bone Trauma Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, 250031, China.
| | - Yongxian Zhang
- Bone Trauma Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, 250031, China.
| | - Xianhu Yue
- Bone Trauma Surgery, The 960th Hospital of the PLA Joint Logistics Support Force, Jinan, 250031, China.
| |
Collapse
|
15
|
Cao H, Zeng Y, Yuan X, Wang JK, Tay CY. Waste-to-resource: Extraction and transformation of aquatic biomaterials for regenerative medicine. BIOMATERIALS ADVANCES 2025; 166:214023. [PMID: 39260186 DOI: 10.1016/j.bioadv.2024.214023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/16/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
The fisheries and aquaculture industry are known for generating substantial waste or by-products, often underutilized, or relegated to low-value purposes. However, this overlooked segment harbors a rich repository of valuable bioactive materials of which have a broad-spectrum of high-value applications. As the blue economy gains momentum and fisheries expand, sustainable exploitation of these aquatic resources is increasingly prioritized. In this review, we present a comprehensive overview of technology-enabled methods for extracting and transforming aquatic waste into valuable biomaterials and their recent advances in regenerative medicine applications, focusing on marine collagen, chitin/chitosan, calcium phosphate and bioactive-peptides. We discuss the inherent bioactive qualities of these "waste-to-resource" aquatic biomaterials and identify opportunities for their use in regenerative medicine to advance healthcare while achieving the Sustainable Development Goals.
Collapse
Affiliation(s)
- Huaqi Cao
- China-Singapore International Joint Research Institute (CSIJRI), China Singapore Guangzhou Knowledge City, Huangpu District, Guangzhou, PR China
| | - Yuanjin Zeng
- China-Singapore International Joint Research Institute (CSIJRI), China Singapore Guangzhou Knowledge City, Huangpu District, Guangzhou, PR China
| | - Xueyu Yuan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China; School of Materials Science and Engineering, Nanyang Technological University, N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jun Kit Wang
- School of Materials Science and Engineering, Nanyang Technological University, N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Chor Yong Tay
- China-Singapore International Joint Research Institute (CSIJRI), China Singapore Guangzhou Knowledge City, Huangpu District, Guangzhou, PR China; School of Materials Science and Engineering, Nanyang Technological University, N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore; Center for Sustainable Materials (SusMat), Nanyang Technological University, Singapore 637553, Singapore; Nanyang Environment & Water Research Institute, 1 CleanTech Loop, CleanTech One, Singapore 637141, Singapore.
| |
Collapse
|
16
|
Zaszczyńska A, Gradys A, Kołbuk D, Zabielski K, Szewczyk PK, Stachewicz U, Sajkiewicz P. Poly(L-lactide)/nano-hydroxyapatite piezoelectric scaffolds for tissue engineering. Micron 2025; 188:103743. [PMID: 39532021 DOI: 10.1016/j.micron.2024.103743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
The development of bone tissue engineering, a field with significant potential, requires a biomaterial with high bioactivity. The aim of this manuscript was to fabricate a nanofibrous poly(L-lactide) (PLLA) scaffold containing nano-hydroxyapatite (nHA) to investigate PLLA/nHA composites, particularly the effect of fiber arrangement and the addition of nHA on the piezoelectric phases and piezoelectricity of PLLA samples. In this study, we evaluated the effect of nHA particles on a PLLA-based electrospun scaffold with random and aligned fiber orientations. The addition of nHA increased the surface free energy of PLLA/nHA (42.9 mN/m) compared to PLLA (33.1 mN/m) in the case of aligned fibers. WAXS results indicated that at room temperature, all the fibers are in an amorphous state indicated by a lack of diffraction peaks and amorphous halo. DSC analysis showed that all samples located in the amorphous/disordered alpha' phase crystallize intensively at temperatures just above the Tg and recrystallize on further heating, achieving significantly higher crystallinity for pure PLLA than for doped nHA, 70 % vs 40 %, respectively. Additionally, PLLA/nHA fibers show a lower heat capacity for PLLA in the amorphous state, indicating that nHA reduces the molecular mobility of PLLA. Moreover, piezoelectric constant d33 was found to increase with the addition of nHA and for the aligned orientation of the fibers. In vitro tests confirmed that the addition of nHA and the aligned orientation of nanofibers increased osteoblast proliferation.
Collapse
Affiliation(s)
- Angelika Zaszczyńska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, Warsaw 02-105, Poland
| | - Arkadiusz Gradys
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, Warsaw 02-105, Poland
| | - Dorota Kołbuk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, Warsaw 02-105, Poland
| | - Konrad Zabielski
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, Warsaw 02-105, Poland
| | - Piotr K Szewczyk
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Krakow 30-059, Poland
| | - Urszula Stachewicz
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Krakow 30-059, Poland
| | - Paweł Sajkiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, Warsaw 02-105, Poland.
| |
Collapse
|
17
|
Markelov V, Danilko K, Solntsev V, Pyatnitskaya S, Bilyalov A. Application of Hydroxyapatite Obtained by Different Techniques: Metabolism and Microarchitecture Characteristics (Review). Sovrem Tekhnologii Med 2024; 16:60-75. [PMID: 39896152 PMCID: PMC11780588 DOI: 10.17691/stm2024.16.6.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Indexed: 02/04/2025] Open
Abstract
The literature reports on microarchitecture and metabolism characteristics of synthetic hydroxyapatite obtained by different techniques were analyzed. The direct relation between hydroxyapatite production process and its microarchitecture was stated to exist. In turn, hydroxyapatite microarchitecture largely specifies its metabolism characteristics (a number of processes related to calcium and phosphorus metabolism). Therefore, with reference to the metabolism of synthetic hydroxyapatite with various microarchitectures, we analyzed the relationship of the material under study with the immune system cells. Particular emphasis was given to the relationship of hydroxyapatite characteristics with a recipient's immune system due to the material microarchitecture. The review assessed the possible participation of cell mitochondria in synthetic hydroxyapatite metabolism. There were compared the findings of a recipient's immune system in vivo and in vitro depending on hydroxyapatite nanoscale morphology. The review conclusions emphasized the necessity for further investigations of immunologically mediated metabolism of hydroxyapatite intended for bone implants, including the development of research methods in vitro for deeper understanding of the material properties. There was demonstrated the synthetic hydroxyapatite potential in treating bone defects and specified the significance of in vivo studies to develop bone surgery and reconstructive medicine.
Collapse
Affiliation(s)
- V.A. Markelov
- PhD Student, Institute of Biochemistry and Genetics; Ufa Federal Research Center, Russian Academy of Sciences, 71 Oktyabr Avenue, Republic of Bashkortostan, Ufa, 450054, Russia; Junior Researcher, Laboratory of Cell Cultures, Institute of Fundamental Medicine; Bashkir State Medical University, 3 Lenin St., Republic of Bashkortostan, Ufa, 450008, Russia
| | - K.V. Danilko
- PhD, Associate Professor, Department of Biology, Acting Head of Cell Culture Laboratory, Institute of Fundamental Medicine; Bashkir State Medical University, 3 Lenin St., Republic of Bashkortostan, Ufa, 450008, Russia
| | - V.A. Solntsev
- Junior Researcher, Cell Culture Laboratory, Institute of Fundamental Medicine; Bashkir State Medical University, 3 Lenin St., Republic of Bashkortostan, Ufa, 450008, Russia
| | - S.V. Pyatnitskaya
- PhD, Associate Professor, Department of Internal Diseases; Senior Researcher, Cell Culture Laboratory, Institute of Fundamental Medicine; Bashkir State Medical University, 3 Lenin St., Republic of Bashkortostan, Ufa, 450008, Russia
| | - A.R. Bilyalov
- PhD, Associate Professor, Department of Traumatology and Orthopedics with a Course of the Institute of Continuing Professional Education; Bashkir State Medical University, 3 Lenin St., Republic of Bashkortostan, Ufa, 450008, Russia
| |
Collapse
|
18
|
Wu X, Xu C, Feng J, Wu S, Liu R, Qiao W, Luo X, Chen S, Li Z, Chen Z. Fluorinated Porcine Bone-Derived Hydroxyapatite Promotes Vascularized Osteogenesis by Coordinating Human Bone Marrow Mesenchymal Stem Cell/Human Umbilical Vein Endothelial Cell Complexes. Bioengineering (Basel) 2024; 11:1287. [PMID: 39768105 PMCID: PMC11674002 DOI: 10.3390/bioengineering11121287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/23/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Biogenic hydroxyapatite is known for its osteoinductive potential due to its similarity to human bone and biocompatibility, but insufficient vascularization compared to autogenous bone during early implantation limits bone integration and osteogenesis. Fluorine has been shown to improve hydroxyapatite's mechanical properties and the coupling of osteogenic and angiogenic cells. In this study, fluorine-modified biogenic hydroxyapatite (FPHA) with varying fluorine concentrations was prepared and tested for its ability to promote vascularized osteogenesis. FPHA prepared in this study retained the natural porous structure of biological cancellous bone and released F- ions when immersed in cell culture medium. The extraction solutions of FPHA0.25 and FPHA0.50 promoted the formation of capillary-like tubes by human umbilical vein endothelial cells (HUVECs), with FPHA0.25 significantly upregulating vegf mRNA and VEGF protein levels in co-cultured human bone marrow mesenchymal stem cells (HBMSCs). Additionally, FPHA0.25 and FPHA0.50 upregulated pdgf-bb mRNA and PDGF-BB protein levels in HUVECs. In vivo experiments using a rabbit cranial defect model demonstrated that FPHA0.25 promoted early bone formation and angiogenesis in the defect area, enhanced VEGF secretion, and increased PDGFR-β expression in endothelial and mesenchymal cells. These findings suggest that fluorine-modified biogenic hydroxyapatite with an optimal fluorine concentration (FPHA0.25) may offer a promising strategy to enhance the body's innate bone-healing potential by accelerating vascularization.
Collapse
Affiliation(s)
- Xiayi Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China; (X.W.); (C.X.); (J.F.); (S.W.); (R.L.); (S.C.)
| | - Chunxin Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China; (X.W.); (C.X.); (J.F.); (S.W.); (R.L.); (S.C.)
| | - Junming Feng
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China; (X.W.); (C.X.); (J.F.); (S.W.); (R.L.); (S.C.)
| | - Shiyu Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China; (X.W.); (C.X.); (J.F.); (S.W.); (R.L.); (S.C.)
| | - Runheng Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China; (X.W.); (C.X.); (J.F.); (S.W.); (R.L.); (S.C.)
| | - Wei Qiao
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China;
| | - Xin Luo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China; (X.W.); (C.X.); (J.F.); (S.W.); (R.L.); (S.C.)
| | - Shoucheng Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China; (X.W.); (C.X.); (J.F.); (S.W.); (R.L.); (S.C.)
| | - Zhipeng Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China; (X.W.); (C.X.); (J.F.); (S.W.); (R.L.); (S.C.)
| | - Zhuofan Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University and Guangdong Research Center for Dental and Cranial Rehabilitation and Material Engineering, Guangzhou 510055, China; (X.W.); (C.X.); (J.F.); (S.W.); (R.L.); (S.C.)
| |
Collapse
|
19
|
Liang Q, Xu Q, Yang G, Xu Y, Huang H, Hou Z, Shao Z, Wang M, Sun YL. Femtosecond laser direct writing Bombyx mori sericin-based nanocomposites into intrinsically soft wearable micro-/nano-electronics. NANOSCALE 2024; 16:21869-21880. [PMID: 39495538 DOI: 10.1039/d4nr02442g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Intrinsically flexible micro-/nano-electronics are increasingly in demand for wearable/implantable bio-machine interfacing optical electronics and soft robots. In this work, we developed intrinsically flexible and soft wearable micro-/nano-electronics by femtosecond laser direct writing Bombyx mori sericin-based nanocomposites. Sericin was used as the biomacromolecular reductant to photo-reduce metal ions into nanoparticles and the molecular matrix for in situ nano-compositing. The two/three-dimensional fabrication realized ∼350 nm minimum line width, customizable Young's modulus (∼0.22-3.35 GPa in air), and nano-scale morphology (∼12.1 nm average roughness). The electrical percolation and adjustable conductivity up to 105 S m-1 were studied. Within the sericin/Ag-nanocomposite percolation-threshold range, a miniaturized electro-mechano-sensor was prototyped with gauge factors (GF ∼ 16.95) and linearity (R2 ∼ 0.996), short response/recovery time (200 ms/120 ms), low detection limit (∼0.06% deformation) and power consumption (<0.1 mW), and remarkable intrinsic flexible performances (e.g., ∼104 time outward bendings). Cell/skin biocompatibilities and detections of human muscle/joint movements and sounds were demonstrated, promising its practical potential towards in vivo or in vitro bio-integrated electronics.
Collapse
Affiliation(s)
- Qi Liang
- School of Information Science and Technology, Fudan University, Shanghai 200433, China.
| | - Qian Xu
- Frontier Institute of Chip and System, Fudan University, Shanghai 200433, China
| | - Gongwen Yang
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yanting Xu
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Hanxuan Huang
- School of Information Science and Technology, Fudan University, Shanghai 200433, China.
| | - Zhishan Hou
- International Science and Technology Cooperation Base for Laser Processing Robot, Zhejiang Provincial Key Laboratory of Laser Processing Robot, Wenzhou University, Wenzhou 325035, China
| | - Zhengzhong Shao
- Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Ming Wang
- Frontier Institute of Chip and System, Fudan University, Shanghai 200433, China
| | - Yun-Lu Sun
- School of Information Science and Technology, Fudan University, Shanghai 200433, China.
| |
Collapse
|
20
|
Suzuki K, Tamazawa M, Onuma E, Honda M, Aizawa M. Preferred Orientation of Hydroxyapatite Ceramics Along the c-Axis Promotes Osteoblast Differentiation. Int J Mol Sci 2024; 25:12926. [PMID: 39684637 DOI: 10.3390/ijms252312926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Hydroxyapatite (HAp) is similar to the main inorganic components of bone and tooth enamel. Furthermore, it possesses biocompatibility, making it suitable for clinical use in artificial bones. This study aimed to verify whether the preferred orientation of HAp influences osteogenesis. Using the templated grain growth method, we successfully fabricated HAp ceramics with a preferred orientation to m (a)-planes (aHAp) and examined the effects of this orientation on bone differentiation. Osteosarcoma-derived osteoblasts (MG-63) were cultured on aHAp and HAp ceramics made from commercially available powder (iHAp). Electron backscatter diffraction analysis revealed the crystal orientation distribution of HAp ceramics and the numerous exposed a-planes of aHAp. The MG-63 cultured on aHAp exhibited significantly higher alkaline phosphatase activity, a marker of early bone differentiation, compared to iHAp. Furthermore, the two-dimensional electrophoresis results indicated that the expressed proteins differed between aHAp and iHAp. These results indicate that controlling HAp's crystal structure may promote the osteogenic potential of osteoblasts. In this study, we propose that the a-plane of HAp promotes bone differentiation during the early stages, presenting a promising approach for novel biomaterials, such as high-performance artificial bones.
Collapse
Affiliation(s)
- Kitaru Suzuki
- Department of Applied Chemistry, School of Science and Technology, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Meiji University International Institute for Materials with Life Functions, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| | - Masaki Tamazawa
- Department of Applied Chemistry, School of Science and Technology, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| | - Erika Onuma
- Department of Applied Chemistry, School of Science and Technology, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| | - Michiyo Honda
- Department of Applied Chemistry, School of Science and Technology, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Meiji University International Institute for Materials with Life Functions, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| | - Mamoru Aizawa
- Department of Applied Chemistry, School of Science and Technology, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
- Meiji University International Institute for Materials with Life Functions, Meiji University, Kawasaki 214-8571, Kanagawa, Japan
| |
Collapse
|
21
|
Biedrzycka A, Skwarek E. Composites of hydroxyapatite and their application in adsorption, medicine and as catalysts. Adv Colloid Interface Sci 2024; 334:103308. [PMID: 39396420 DOI: 10.1016/j.cis.2024.103308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
Composites of hydroxyapatite, recognized by its peculiar crystal architecture and distinctive attributes showcased the potential in adsorbing heavy metal ions and radioactive elements as well as selected organic substances. In this paper, the intrinsic mechanism of adsorption by composites hydroxyapatite was proved for the first time. Subsequently, selectivity and competitiveness of composites of hydroxyapatite for a variety of environments containing various interferences from cations, anions, and organic molecules are elucidated. Next, composites of hydroxyapatite were further categorized according to their morphological dimensions. Adsorption properties and intrinsic mechanisms were investigated based on different morphologies. It was shown that although composites of hydroxyapatite were characterized by excellent adsorption capacity and cost-effectiveness, their application is often challenging due to inherent fragility and agglomeration, technical problems required for their handling as well as difficulty in recycling. Finally, to address these issues, the paper discusses the tendency of hydroxyapatite composites to adsorb heavy metal ions and radioactive elements as well as the limitations of their applications. Summarizing the limitations and future directions of modification of HAP in the field of heavy metal ions and different substances contamination abatement, the paper provides insightful perspectives for its gradual improvement and rational application.
Collapse
Affiliation(s)
- Adrianna Biedrzycka
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20 031 Lublin, Poland
| | - Ewa Skwarek
- Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Sq. 3, 20 031 Lublin, Poland.
| |
Collapse
|
22
|
Mohammadi S, Ghasemi F, Alavi G SA, Alemzadeh E. Investigate the in vitro biocompatibility, biodegradation, cytotoxicity, and differentiation potential of 3-D gelatin-nanocellulose composite scaffolds loaded with nanohydroxyapatite and simvastatin. Tissue Cell 2024; 91:102536. [PMID: 39236521 DOI: 10.1016/j.tice.2024.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/07/2024]
Abstract
Bone tissue engineering has been proposed as a promising solution for healing of bone fractures. An important aspect of bone tissue engineering is the implantable scaffolds that participate in the regeneration and repair of bone tissue. In this study, the composite scaffolds of gelatin- nanocellulose loaded with nanohydroxyapatite and simvastatin (as the osteoinductive component) were fabricated using freeze- drying method. Scaffolds were characterized in terms of morphology, mechanical, biodegradability, water absorption capacity, and simvastatin release characteristics. Also, the biocompatibility and differentiation potential of the scaffolds were evaluated on human bone marrow-derived mesenchymal stem cells using the MTT assay and alizarin red staining, respectively. The simvastatin loaded scaffolds showed a sustained release profile in vitro up to 216 h. The results of BMSCs differentiation by alizarin red staining showed significant differences between the simvastatin loaded group and other groups. Moreover, the results of MTT assay verified cytocompatibility and non-toxicity of the scaffolds. Therefore, the gelatin-nano cellulose composite scaffolds loaded with hydroxyapatite and simvastatin may be considered promising for use in bone tissue engineering.
Collapse
Affiliation(s)
- Soroush Mohammadi
- Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Fahimeh Ghasemi
- Department of Medical Biotechnology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Esmat Alemzadeh
- Infectious Diseases Research Center, Department of Medical Biotechnology, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
23
|
Wojtkiewicz M, Stachura A, Roszkowski B, Winiarska N, Kazimierska K, Stachura K. Are We Overlooking Harms of BDDE-Cross-Linked Dermal Fillers? A Scoping Review. Aesthetic Plast Surg 2024; 48:5147-5154. [PMID: 39107664 PMCID: PMC11739315 DOI: 10.1007/s00266-024-04262-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024]
Abstract
1,4-Butanediol ether (BDDE) is widely used as a cross-linker for hyaluronic acid in dermal fillers. The purpose of this scoping review was to determine the state of knowledge about the behaviour of cross-linked substances and safety of BDDE application. The rationale behind the review came from the clinical experience of one of the authors (KS), who noticed adverse reactions after BDDE-linked hyaluronan application. The scoping review was conducted according to PRISMA-ScR guidelines. Out of 399 articles, 52 met the inclusion criteria. Data on study design, sample/population, aims, methodology, outcomes and funding were extracted. Results were charted according to 6 subtopics: rheological properties, hydrogel stability, BDDE toxicity, immunogenicity, tissue interactions and clinical studies. In vitro, cross-linked hydrogels were characterized as effective fillers in terms of viscosity and elasticity; however, previously uncharacterized by-products of the cross-linking reaction were found. Most in vivo studies reported increased dermis regeneration, vascularization and anti-inflammatory cytokine release after implantation of BDDE-cross-linked substances. In clinical studies, BDDE was shown to sensitize subjects to 1,6-hexanediol ether and other substances found in epoxy resin systems. Occupational dermatitis and hypersensitivity reactions were documented. Our review shows that BDDE may have long-term adverse effects, which are overlooked in the safety assessment of fillers. Reviews on BDDE conducted so far have mostly been sponsored by the industry, potentially leading to incomplete reporting of adverse effects. A review of the occurrence of allergic reactions after commercial dermal filler use and analysis of possibly harmful by-products of BDDE hyaluronan degradation are needed.Level of Evidence III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Marta Wojtkiewicz
- Department of Methodology, Medical University of Warsaw, 1B Banacha Street, 02-091, Warsaw, Poland
| | - Albert Stachura
- Department of Methodology, Medical University of Warsaw, 1B Banacha Street, 02-091, Warsaw, Poland.
| | - Bartłomiej Roszkowski
- Department of Methodology, Medical University of Warsaw, 1B Banacha Street, 02-091, Warsaw, Poland
| | - Natalia Winiarska
- Department of Methodology, Medical University of Warsaw, 1B Banacha Street, 02-091, Warsaw, Poland
| | - Karolina Kazimierska
- Department of Methodology, Medical University of Warsaw, 1B Banacha Street, 02-091, Warsaw, Poland
- National Medical Institute of the Ministry of the Interior and Administration, 137 Wołoska Street, 02-507, Warsaw, Poland
| | - Kamilla Stachura
- Dr Stachura Clinic, Jagiellońska 87 Street, 70-437, Szczecin, Poland
| |
Collapse
|
24
|
Huseynova F, Ionescu C, Cuisinier F, Huseynova I, Mammadov A, Barragan-Montero V. Could CH 3-M6P Be a Potential Dual-Functioning Candidate for Bone Regeneration? Biomedicines 2024; 12:2697. [PMID: 39767604 PMCID: PMC11673785 DOI: 10.3390/biomedicines12122697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 01/11/2025] Open
Abstract
Background: CI-RM6P has different binding sites with affinities for both M6P and IGF2, plays a role in the regulation of the TGF-β and IGF pathways that is important for controlling cell growth and differentiation. We hypothesize that previously synthesised derivative of M6P could be an alternative candidate for bone tissue regeneration in terms of higher binding affinity, stability in human serum, low cost and temporal delivery. Methods: CH3-M6P is synthesised based on previously described protocol; mesenchymal origin of isolated DPSCs was assessed by flow cytometry and AR staining prior to alkaline phosphatase (ALP) activity test, qPCR to evaluate differentiation specific marker expression, immunofluoresence, and SEM/EDS to evaluate organic and inorganic matrix formation; and rat aortic ring model to evaluate angiogenic effect of molecule. Results: CH3-M6P upregulated ALP activity, the expression of the ALP, Col1, RunX2, Mef2C, TGFβ1, TGFβ1R, TGFβ2, and Smad3 genes under osteogenic conditions. The results of immunofluorescence and SEM/EDS studies did not show enhancing effect on matrix formation. As we observed, the induction effect of CH3-M6P on the expression of angiogenic genes such as SMAD3 and TGFβ1R, even under osteogenic conditions, within the scope of research, we checked the angiogenic effect of the molecule and compared it to VEGF, showing that the CH3-M6P is really angiogenic. Conclusions: Our findings provide an important clue for the further exploration of the molecule, which can be necessary to enhance the capability of the commonly used osteomedium, possibly leading to the development of bone-forming drugs and has the potential to be a dual-functioning molecule for bone tissue engineering.
Collapse
Affiliation(s)
- Fidan Huseynova
- LBN, Montpellier University, 34193 Montpellier, France
- Institute of Molecular Biology and Biotechnologies, Minstry of Science and Education of the Republic of Azerbaian, AZ1073 Baku, Azerbaijan
- Department of Cytology, Embryology and Histology, Azerbaijan Medical University, AZ1078 Baku, Azerbaijan
| | - Cătălina Ionescu
- Department of Chemistry, Faculty of Sciences, University of Craiova, 107i Calea București, 200144 Craiova, Romania;
| | - Frederic Cuisinier
- LBN, Montpellier University, 34193 Montpellier, France
- Centre de Soins et de Recherche Dentaire, CHU Montpellier, 34000 Montpellier, France
- Faculté d’Odontologie, Montpellier University, 34295 Montpellier, France
| | - Irada Huseynova
- Institute of Molecular Biology and Biotechnologies, Minstry of Science and Education of the Republic of Azerbaian, AZ1073 Baku, Azerbaijan
| | - Alamdar Mammadov
- Institute of Molecular Biology and Biotechnologies, Minstry of Science and Education of the Republic of Azerbaian, AZ1073 Baku, Azerbaijan
| | | |
Collapse
|
25
|
Geng Z, Xu F, Liu Y, Qiao A, Du T. Dynamic-Cross-Linked, Regulated, and Controllable Mineralization Degree and Morphology of Collagen Biomineralization. J Funct Biomater 2024; 15:356. [PMID: 39728156 PMCID: PMC11728303 DOI: 10.3390/jfb15120356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
The cross-linking process of collagen is one of the more important ways to improve the mineralization ability of collagen. However, the regulatory effect of dynamic cross-linking on biomineralization in vitro remains unclear. Dynamic-cross-linked mineralized collagen under different cross-linking processes, according to the process of cross-linking and mineralization of natural bone, was prepared in this study. Mineralization was performed for 12 h at 4, 8, and 12 h of collagen cross-linking. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed the characteristics of dynamic-cross-linked mineralization in terms of morphological transformation and distribution. Fourier transform infrared spectroscopy (FTIR) analysis showed the crystallinity characteristics of the hydroxyapatite (HA) crystal formation. Pre-cross-linked dynamic-cross-linked mineralization refers to the process of cross-linking for a period of time and then side cross-linked mineralization. The mineral content, enzyme stability, and mechanical properties of mineralized collagen were improved through a dynamic cross-linking process of pre-cross-linking. The swelling performance was reduced through the dynamic cross-linking process of pre-cross-linking. This study suggests that the dynamic cross-linking process through pre-cross-linking could make it easier for minerals to permeate and deposit between collagen fibers, improve mineralization efficiency, and, thus, enhance the mechanical strength of biomineralization. This study can provide new ideas and a theoretical basis for designing mineralized collagen scaffolds with better bone repair ability.
Collapse
Affiliation(s)
| | | | | | | | - Tianming Du
- Beijing International Science and Technology Cooperation Base for Intelligent Physiological Measurement and Clinical Transformation, Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing 100124, China; (Z.G.); (F.X.); (Y.L.); (A.Q.)
| |
Collapse
|
26
|
Foroughi AH, Valeri C, Razavi MJ. A review of computational optimization of bone scaffold architecture: methods, challenges, and perspectives. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2024; 7:012003. [PMID: 39655853 DOI: 10.1088/2516-1091/ad879a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/16/2024] [Indexed: 12/18/2024]
Abstract
The design and optimization of bone scaffolds are critical for the success of bone tissue engineering (BTE) applications. This review paper provides a comprehensive analysis of computational optimization methods for bone scaffold architecture, focusing on the balance between mechanical stability, biological compatibility, and manufacturability. Finite element method (FEM), computational fluid dynamics (CFD), and various optimization algorithms are discussed for their roles in simulating and refining scaffold designs. The integration of multiobjective optimization and topology optimization has been highlighted for developing scaffolds that meet the multifaceted requirements of BTE. Challenges such as the need for consideration of manufacturing constraints and the incorporation of degradation and bone regeneration models into the optimization process have been identified. The review underscores the potential of advanced computational tools and additive manufacturing techniques in evolving the field of BTE, aiming to improve patient outcomes in bone tissue regeneration. The reliability of current optimization methods is examined, with suggestions for incorporating non-deterministic approaches andin vivovalidations to enhance the practical application of optimized scaffolds. The review concludes with a call for further research into artificial intelligence-based methods to advance scaffold design and optimization.
Collapse
Affiliation(s)
- Ali H Foroughi
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY 13902, United States of America
| | - Caleb Valeri
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY 13902, United States of America
| | - Mir Jalil Razavi
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY 13902, United States of America
| |
Collapse
|
27
|
Aspera-Werz RH, Chen G, Schilonka L, Bouakaz I, Bronne C, Cobraiville E, Nolens G, Nussler A. Impact of Particle Size and Sintering Temperature on Calcium Phosphate Gyroid Structure Scaffolds for Bone Tissue Engineering. J Funct Biomater 2024; 15:355. [PMID: 39728155 PMCID: PMC11727752 DOI: 10.3390/jfb15120355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 12/28/2024] Open
Abstract
Due to the chemical composition and structure of the target tissue, autologous bone grafting remains the gold standard for orthopedic applications worldwide. However, ongoing advancements in alternative grafting materials show that 3D-printed synthetic biomaterials offer many advantages. For instance, they provide high availability, have low clinical limitations, and can be designed with a chemical composition and structure comparable to the target tissue. This study aimed to compare the influences of particle size and sintering temperature on the mechanical properties and biocompatibility of calcium phosphate (CaP) gyroid scaffolds. CaP gyroid scaffolds were fabricated by 3D printing using powders with the same chemical composition but different particle sizes and sintering temperatures. The physicochemical characterization of the scaffolds was performed using X-ray diffractometry, scanning electron microscopy, and microtomography analyses. The immortalized human mesenchymal stem cell line SCP-1 (osteoblast-like cells) and osteoclast-like cells (THP-1 cells) were seeded on the scaffolds as mono- or co-cultures. Bone cell attachment, number of live cells, and functionality were assessed at different time points over a period of 21 days. Improvements in mechanical properties were observed for scaffolds fabricated with narrow-particle-size-distribution powder. The physicochemical analysis showed that the microstructure varied with sintering temperature and that narrow particle size distribution resulted in smaller micropores and a smoother surface. Viable osteoblast- and osteoclast-like cells were observed for all scaffolds tested, but scaffolds produced with a smaller particle size distribution showed less attachment of osteoblast-like cells. Interestingly, low attachment of osteoclast-like cells was observed for all scaffolds regardless of surface roughness. Although bone cell adhesion was lower in scaffolds made with powder containing smaller particle sizes, the long-term function of osteoblast-like and osteoclast-like cells was superior in scaffolds with improved mechanical properties.
Collapse
Affiliation(s)
- Romina Haydeé Aspera-Werz
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany; (R.H.A.-W.); (G.C.); (L.S.)
| | - Guanqiao Chen
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany; (R.H.A.-W.); (G.C.); (L.S.)
| | - Lea Schilonka
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany; (R.H.A.-W.); (G.C.); (L.S.)
| | - Islam Bouakaz
- CERHUM-PIMW, 4000 Liège, Belgium; (I.B.); (C.B.); (E.C.); (G.N.)
| | - Catherine Bronne
- CERHUM-PIMW, 4000 Liège, Belgium; (I.B.); (C.B.); (E.C.); (G.N.)
| | | | - Grégory Nolens
- CERHUM-PIMW, 4000 Liège, Belgium; (I.B.); (C.B.); (E.C.); (G.N.)
| | - Andreas Nussler
- Siegfried Weller Research Institute, Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tübingen, BG Trauma Center Tübingen, 72076 Tübingen, Germany; (R.H.A.-W.); (G.C.); (L.S.)
| |
Collapse
|
28
|
Anaya-Sampayo LM, Roa NS, Martínez-Cardozo C, García-Robayo DA, Rodríguez-Lorenzo LM. Influence of Hydroxyapatite and Gelatin Content on Crosslinking Dynamics and HDFn Cell Viability in Alginate Bioinks for 3D Bioprinting. Polymers (Basel) 2024; 16:3224. [PMID: 39599315 PMCID: PMC11598013 DOI: 10.3390/polym16223224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
This study investigates how varying concentrations of hydroxyapatite (OHAp) and the addition of gelatin influence the ionic crosslinking time of alginate-based bioinks, as well as the shear stress experienced by neonatal human dermal fibroblasts (HDFn) during extrusion. These factors are crucial for validating bioinks and developing viable 3D bioprinted models. Four bioink formulations were created with a 50/50 ratio of alginate to gelatin, incorporating different calcium phosphate concentrations (0%, 1%, 5%, and 10%). The bioink compositions were confirmed via Fourier Transform Infrared (FT-IR) spectroscopy, and rheological analyses evaluated their pseudoplastic behavior, printability limits, and crosslinking times. The results indicated a notable increase in the consistency index (k) from 0.32 for the 0% OHAp formulation to 0.48 for the 10% OHAp formulation, suggesting improved viscoelastic properties. The elastic modulus recovery after crosslinking rose significantly from 245 Pa to 455 Pa. HDFn experienced a shear stress of up to 1.5436 Pa at the tip during extrusion with the HDFn-ALG5-GEL5-OHAp10 bioinks, calculated at a shear rate as low as 2 s-1. Viability assays confirmed over 70% cell viability 24 h post-extrusion and 92% viability after 7 days for the 10% OHAp formulation, highlighting the potential of hydroxyapatite-enhanced bioinks in tissue engineering applications.
Collapse
Affiliation(s)
- Lina Maria Anaya-Sampayo
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (L.M.A.-S.); (N.S.R.)
| | - Nelly S. Roa
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (L.M.A.-S.); (N.S.R.)
| | | | - Dabeiba Adriana García-Robayo
- Centro de Investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (L.M.A.-S.); (N.S.R.)
| | - Luis M. Rodríguez-Lorenzo
- Department of Polymeric Nanomaterials and Biomaterials, Institute Science and Technology of Polymers (ICTP-CSIC), 28006 Madrid, Spain
| |
Collapse
|
29
|
Trzaskowska M, Vivcharenko V, Benko A, Franus W, Goryczka T, Barylski A, Palka K, Przekora A. Biocompatible nanocomposite hydroxyapatite-based granules with increased specific surface area and bioresorbability for bone regenerative medicine applications. Sci Rep 2024; 14:28137. [PMID: 39548237 PMCID: PMC11568164 DOI: 10.1038/s41598-024-79822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024] Open
Abstract
Hydroxyapatite (HA) granules are frequently used in orthopedics and maxillofacial surgeries to fill bone defects and stimulate the regeneration process. Optimal HA granules should have high biocompatibility, high microporosity and/or mesoporosity, and high specific surface area (SSA), which are essential for their bioabsorbability, high bioactivity (ability to form apatite layer on their surfaces) and good osseointegration with the host tissue. Commercially available HA granules that are sintered at high temperatures (≥ 900 °C) are biocompatible but show low porosity and SSA (2-5 m2/g), reduced bioactivity, poor solubility and thereby, low bioabsorbability. HA granules of high microporosity and SSA can be produced by applying low sintering temperatures (below 900 °C). Nevertheless, although HA sintered at low temperatures shows significantly higher SSA (10-60 m2/g) and improved bioabsorbability, it also exhibits high ion reactivity and cytotoxicity under in vitro conditions. The latter is due to the presence of reaction by-products. Thus, the aim of this study was to fabricate novel biomaterials in the form of granules, composed of hydroxyapatite nanopowder sintered at a high temperature (1100 °C) and a biopolymer matrix: chitosan/agarose or chitosan/β-1,3-glucan (curdlan). It was hypothesized that appropriately selected ingredients would ensure high biocompatibility and microstructural properties comparable to HA sintered at low temperatures. Synthesized granules were subjected to the evaluation of their biological, microstructural, physicochemical, and mechanical properties. The obtained results showed that the developed nanocomposite granules were characterized by a lack of cytotoxicity towards both mouse preosteoblasts and normal human fetal osteoblasts, and supported cell adhesion to their surface. Moreover, produced biomaterials had the ability to induce precipitation of apatite crystals after immersion in simulated body fluid, which, combined with high biocompatibility, should ensure good osseointegration after implantation. Additionally, nanocomposite granules possessed microstructural parameters similar to HA sintered at a low temperature (porosity approx. 50%, SSA approx. 30 m²/g), Young's modulus (5-8 GPa) comparable to cancellous bone, and high fluid absorption capacity. Moreover, the nanocomposites were prone to biodegradation under the influence of enzymatic solution and in an acidic environment. Additionally, it was noted that the hydroxyapatite nanoparticles remaining after the physicochemical dissolution of the biomaterial were easily phagocytosed by mouse macrophages, mouse preosteoblasts, and normal human fetal osteoblasts (in vitro studies). The obtained materials show great potential as bone tissue implantation biomaterials with improved bioresorbability. The obtained materials show great potential as bone tissue implantation biomaterials with improved bioresorbability.
Collapse
Affiliation(s)
- Marta Trzaskowska
- Department of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Vladyslav Vivcharenko
- Department of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Aleksandra Benko
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30, 30-059, Krakow, Poland
| | - Wojciech Franus
- Department of Construction Materials Engineering and Geoengineering, Lublin University of Technology, Nadbystrzycka 38 D, 20-618, Lublin, Poland
| | - Tomasz Goryczka
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500, Chorzów, Poland
| | - Adrian Barylski
- Institute of Materials Engineering, University of Silesia in Katowice, 75 Pułku Piechoty 1A, 41-500, Chorzów, Poland
| | - Krzysztof Palka
- Department of Materials Engineering, Lublin University of Technology, Nadbystrzycka 36, 20- 618, Lublin, Poland
| | - Agata Przekora
- Department of Tissue Engineering and Regenerative Medicine, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland.
| |
Collapse
|
30
|
Wang Z, Sun Y, Li C. Advances in 3D printing technology for preparing bone tissue engineering scaffolds from biodegradable materials. Front Bioeng Biotechnol 2024; 12:1483547. [PMID: 39610936 PMCID: PMC11602280 DOI: 10.3389/fbioe.2024.1483547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
Introduction Bone tissue engineering (BTE) provides an effective repair solution by implanting osteoblasts or stem cells into biocompatible and biodegradable scaffolds to promote bone regeneration. In recent years, the rapid development of 3D bioprinting has enabled its extensive application in fabricating BTE scaffolds. Based on three-dimensional computer models and specialized "bio-inks," this technology offers new pathways for customizing BTE scaffolds. This study reviews the current status and future prospects of scaffold materials for BTE in 3D bioprinting. Methods This literature review collected recent studies on BTE and 3D bioprinting, analyzing the advantages and limitations of various scaffold materials for 3D printing, including bioceramics, metals, natural polymers, and synthetic polymers. Key characteristics like biocompatibility, mechanical properties, and degradation rates of these materials were systematically compared. Results The study highlights the diverse performances of materials used in BTE scaffolds. Bioceramics exhibit excellent biocompatibility but suffer from brittleness; metals offer high strength but may induce chronic inflammation; natural polymers are biocompatible yet have poor mechanical properties, while synthetic polymers offer strong tunability but may produce acidic by-products during degradation. Additionally, integrating 3D bioprinting with composite materials could enhance scaffold biocompatibility and mechanical properties, presenting viable solutions to current challenges. Discussion This review summarizes recent advances in 3D bioprinting for BTE scaffold applications, exploring the strengths and limitations of various materials and proposing composite material combinations to improve scaffold performance. By optimizing material selection and combinations, 3D bioprinting shows promise for creating customized scaffolds, offering a new technical route for clinical applications of BTE. This research provides a unique perspective and theoretical support for advancing 3D bioprinting technology in bone regeneration, outlining future directions for BTE materials and 3D bioprinting technology development.
Collapse
Affiliation(s)
- Zhen Wang
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao, China
- State Key Laboratory of Crane Technology, Yanshan University, Hebei, China
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou, China
| | - Yanan Sun
- School of Information Science and Engineering, Yanshan University, Hebei, China
| | - Chen Li
- Guangdong Provincial Key Laboratory of Minimally Invasive Surgical Instruments and Manufacturing Technology, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
31
|
Du W, Yang Y, Liu J, Zhu Y, Shen T, Chen Q, Miyazaki T. In Situ Synthesis and Characterizations of a Strontium-Substituted Dicalcium Phosphate Anhydrous/Hydroxyapatite Biphasic Whisker and Its Properties Evaluation. ACS Biomater Sci Eng 2024; 10:6874-6886. [PMID: 39373322 DOI: 10.1021/acsbiomaterials.4c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Dicalcium phosphate anhydrous (DCPA) presents good biomineralization ability, the strontium element is known for superior bone affinity, and a whisker possesses good mechanical strength; all these are beneficial for improving the drawbacks of hydroxyapatite (HAP) like weaker mechanical properties, poor biomineralization, and slower degradation/absorption. Therefore, a homogeneous precipitation was adopted to synthesize Sr-substituted and DCPA and HAP coexisting whiskers. The composition, structure, and morphology based on urea dosage and substitution content were characterized, and the roles of DCPA, Sr, and whisker shape were investigated. It turned out that Sr-DCPA/HAP biphasic products contained about 19% DCPA and 81% HAP, and both phases occupied the outer and inner parts of the whisker, respectively. Increasing the urea dosage made the morphology transform from a sea urchin shape to fiber clusters and then whiskers, while Sr substitution brought the whisker back to the porous microsphere shape. Only 5% of Sr content and 15 g of urea could maintain the whisker shape. Sr could promote the proliferation of MC3T3-E1 cells even at a higher extract concentration of 10 mg/mL. The cells stayed in a healthy state whether cocultured with the whisker or the microsphere. The unstable DCPA combined with the decreased crystallinity brought by Sr doping contributed to shortening the apatite deposition period to within 7 days. The whisker morphology enhanced the compressive strength of acrylic resin, and the apatite layer helped to reduce the strength loss during soaking. The Sr-DCPA/HAP biphasic whisker with enhanced overall properties possessed more promising potential for biomedical application.
Collapse
Affiliation(s)
- Weiye Du
- Faculty of Materials Science and Technology, Kunming University of Science and Technology, Kunming 650093, China
| | - Yunping Yang
- Spine Surgery Department, The Affiliated Hospital of Yunnan University, Kunming 650021, China
| | - Jinkun Liu
- Faculty of Materials Science and Technology, Kunming University of Science and Technology, Kunming 650093, China
| | - Yan Zhu
- Faculty of Materials Science and Technology, Kunming University of Science and Technology, Kunming 650093, China
| | - Tao Shen
- Faculty of Materials Science and Technology, Kunming University of Science and Technology, Kunming 650093, China
| | - Qinghua Chen
- Faculty of Materials Science and Technology, Kunming University of Science and Technology, Kunming 650093, China
| | - Toshiki Miyazaki
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan
| |
Collapse
|
32
|
Zhang S, Fang H, Tian H. Recent Advances in Degradable Biomedical Polymers for Prevention, Diagnosis and Treatment of Diseases. Biomacromolecules 2024; 25:7015-7057. [PMID: 39420482 DOI: 10.1021/acs.biomac.4c01193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Biomedical polymers play a key role in preventing, diagnosing, and treating diseases, showcasing a wide range of applications. Their unique advantages, such as rich source, good biocompatibility, and excellent modifiability, make them ideal biomaterials for drug delivery, biomedical imaging, and tissue engineering. However, conventional biomedical polymers suffer from poor degradation in vivo, increasing the risks of bioaccumulation and potential toxicity. To address these issues, degradable biomedical polymers can serve as an alternative strategy in biomedicine. Degradable biomedical polymers can efficiently relieve bioaccumulation in vivo and effectively reduce patient burden in disease management. This review comprehensively introduces the classification and properties of biomedical polymers and the recent research progress of degradable biomedical polymers in various diseases. Through an in-depth analysis of their classification, properties, and applications, we aim to provide strong guidance for promoting basic research and clinical translation of degradable biomedical polymers.
Collapse
Affiliation(s)
- Siting Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
33
|
Shao YF, Wang H, Zhu Y, Peng Y, Bai F, Zhang J, Zhang KQ. Hydroxyapatite/Silk Fibroin Composite Scaffold with a Porous Structure and Mechanical Strength Similar to Cancellous Bone by Electric Field-Induced Gel Technology. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60977-60991. [PMID: 39453828 DOI: 10.1021/acsami.4c12470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Repair and regeneration of bone tissue defects is a multidimensional process that has been highly challenging to date. The artificial bone scaffold materials, which play a core role, still face the conflict that a biofriendly porous structure will reduce the mechanical performance and accelerate degradation. Herein, a multistage porous structured hydroxyapatite (HA)/silk fibroin (SF) composite scaffold (e-HA/SF) was successfully constructed by cleverly utilizing electric field-induced gel technology. The results indicated that the prepared e-HA/SF scaffolds possess biomimetic hierarchical porous structures with a suitable porosity similar to that of cancellous bone. The HA nanocrystals were uniformly encapsulated in the three-dimensional space of the composite scaffold, thus endowing the e-HA/SF composite scaffolds with an enhanced mechanical performance. Notably, the maximum compression stress and Young's modulus of e-HA/SF-2 scaffolds can reach 24.66 ± 0.88 and 28.91 ± 3.19 MPa, respectively, which are equivalent to those of cancellous bone. Such mechanical performance enhancement was previously unattainable through conventional freeze-drying strategies. Moreover, the introduction of bioactive nano-HA can trigger the optimal cell response in both static and dynamic cell culture experiments in vitro. The e-HA/SF composite scaffold developed in this study can better balance the conflict between the porous structure and mechanical and degradation properties of porous scaffolds.
Collapse
Affiliation(s)
- Yun-Fei Shao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China
| | - Hui Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China
| | - Yiran Zhu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China
| | - Yu Peng
- College of Advanced Material Engineering, Jiaxing Nanhu University, Jiaxing 314001, P. R. China
| | - Fengjiao Bai
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China
| | - Jun Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
34
|
Mantry S, Behera A, Pradhan S, Mohanty L, Kumari R, Singh A, Yadav MK. Polysaccharide-based chondroitin sulfate macromolecule loaded hydrogel/scaffolds in wound healing- A comprehensive review on possibilities, research gaps, and safety assessment. Int J Biol Macromol 2024; 279:135410. [PMID: 39245102 DOI: 10.1016/j.ijbiomac.2024.135410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Wound healing is an intricate multifactorial process that may alter the extent of scarring left by the wound. A substantial portion of the global population is impacted by non-healing wounds, imposing significant financial burdens on the healthcare system. The conventional dosage forms fail to improve the condition, especially in the presence of other morbidities. Thus, there is a pressing requirement for a type of wound dressing that can safeguard the wound site and facilitate skin regeneration, ultimately expediting the healing process. In this context, Chondroitin sulfate (CS), a sulfated glycosaminoglycan material, is capable of hydrating tissues and further promoting the healing. Thus, this comprehensive review article delves into the recent advancement of CS-based hydrogel/scaffolds for wound healing management. The article initially summarizes the various physicochemical characteristics and sources of CS, followed by a brief understanding of the importance of hydrogel and CS in tissue regeneration processes. This is the first instance of such a comprehensive summarization of CS-based hydrogel/scaffolds in wound healing, focusing more on the mechanistic wound healing process, furnishing the recent innovations and toxicity profile. This contemporary review provides a profound acquaintance of strategies for contemporary challenges and future direction in CS-based hydrogel/scaffolds for wound healing.
Collapse
Affiliation(s)
- Shubhrajit Mantry
- Department of Pharmaceutics, Department of Pharmacy, Sarala Birla University, Birla Knowledge City, Ranchi 835103, Jharkhand, India.
| | - Ashutosh Behera
- Department of Pharmaceutical Quality Assurance, Department of Pharmacy, Sarala Birla University, Birla Knowledge City, Ranchi 835103, Jharkhand, India; Department of Pharmaceutical Quality Assurance, Florence College of Pharmacy, IRBA, Ranchi, 835103, Jharkhand, India
| | - Shaktiprasad Pradhan
- Department of Pharmaceutical Chemistry, Koustuv Research Institute of Medical Science (KRIMS), Koustuv Technical Campus, Patia, Bhubaneswar, Odisha 751024, India
| | - Lalatendu Mohanty
- Department of Pharmacology, Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Tehri Garhwal, Uttarakhand 24916, India
| | - Ragni Kumari
- School of Pharmacy, LNCT University, Bhopal 462022, Madhya Pradesh, India
| | - Ankita Singh
- Department of Pharmacy, Faculty of Medical Science & Research (FMSR), Sai Nath University, Ranchi, Jharkhand 835219, India
| | - Mahesh Kumar Yadav
- Department of Pharmacy, Faculty of Medical Science & Research (FMSR), Sai Nath University, Ranchi, Jharkhand 835219, India
| |
Collapse
|
35
|
Dei Rossi G, Vergani LM, Buccino F. A Novel Triad of Bio-Inspired Design, Digital Fabrication, and Bio-Derived Materials for Personalised Bone Repair. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5305. [PMID: 39517582 PMCID: PMC11547793 DOI: 10.3390/ma17215305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024]
Abstract
The emerging paradigm of personalised bone repair embodies a transformative triad comprising bio-inspired design, digital fabrication, and the exploration of innovative materials. The increasing average age of the population, alongside the rising incidence of fractures associated with age-related conditions such as osteoporosis, necessitates the development of customised, efficient, and minimally invasive treatment modalities as alternatives to conventional methods (e.g., autografts, allografts, Ilizarov distraction, and bone fixators) typically employed to promote bone regeneration. A promising innovative technique involves the use of cellularised scaffolds incorporating mesenchymal stem cells (MSCs). The selection of materials-ranging from metals and ceramics to synthetic or natural bio-derived polymers-combined with a design inspired by natural sources (including bone, corals, algae, shells, silk, and plants) facilitates the replication of geometries, architectures, porosities, biodegradation capabilities, and mechanical properties conducive to physiological bone regeneration. To mimic internal structures and geometries for construct customisation, scaffolds can be designed using Computer-aided Design (CAD) and fabricated via 3D-printing techniques. This approach not only enables precise control over external shapes and internal architectures but also accommodates the use of diverse materials that improve biological performance and provide economic advantages. Finally, advanced numerical models are employed to simulate, analyse, and optimise the complex processes involved in personalised bone regeneration, with computational predictions validated against experimental data and in vivo studies to ascertain the model's ability to predict the recovery of bone shape and function.
Collapse
Affiliation(s)
- Greta Dei Rossi
- Department of Mechanical Engineering (DMEC), Politecnico di Milano, Via La Masa 1, 20156 Milano, Italy; (G.D.R.); (F.B.)
| | - Laura Maria Vergani
- Department of Mechanical Engineering (DMEC), Politecnico di Milano, Via La Masa 1, 20156 Milano, Italy; (G.D.R.); (F.B.)
- IRCCS Orthopedic Institute Galeazzi, Via Cristina Belgioioso 173, 20157 Milan, Italy
| | - Federica Buccino
- Department of Mechanical Engineering (DMEC), Politecnico di Milano, Via La Masa 1, 20156 Milano, Italy; (G.D.R.); (F.B.)
- IRCCS Orthopedic Institute Galeazzi, Via Cristina Belgioioso 173, 20157 Milan, Italy
| |
Collapse
|
36
|
Aad R, Dragojlov I, Vesentini S. Sericin Protein: Structure, Properties, and Applications. J Funct Biomater 2024; 15:322. [PMID: 39590526 PMCID: PMC11595228 DOI: 10.3390/jfb15110322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024] Open
Abstract
Silk sericin, the glue protein binding fibroin fibers together, is present in the Bombyx mori silkworms' cocoons. In recent years, sericin has gained attention for its wide range of properties and possible opportunities for various applications, as evidenced by the meta-analysis conducted in this review. Sericin extraction methods have evolved over the years to become more efficient and environmentally friendly, preserving its structure. Due to its biocompatibility, biodegradability, anti-inflammatory, antibacterial, antioxidant, UV-protective, anti-tyrosinase, anti-aging, and anti-cancer properties, sericin is increasingly used in biomedical fields like drug delivery, tissue engineering, and serum-free cell culture media. Beyond healthcare, sericin shows promise in industries such as textiles, cosmetics, and food packaging. This review aims to highlight recent advancements in sericin extraction, research, and applications, while also summarizing key findings from earlier studies.
Collapse
Affiliation(s)
| | | | - Simone Vesentini
- Department of Electronics, Information, and Bioengineering, Politecnico di Milano, 20133 Milan, Italy; (R.A.); (I.D.)
| |
Collapse
|
37
|
Furlani F, Malfatti MC, Rondinella A, Campodoni E, Sandri M, Fedrizzi L, Tell G. Chitosan biomineralized with ions-doped nano-hydroxyapatite tunes osteoblasts metabolism and DNA damage. J Biol Eng 2024; 18:60. [PMID: 39456111 PMCID: PMC11515322 DOI: 10.1186/s13036-024-00458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Hydroxyapatite (HA) is a bioceramic material widely used as a bone biomimetic substitute and can be synthesized by biomineralization, according to which HA nanoparticles are formed on a polymer template. Nevertheless, little is known about the effect of ion doping and biomineralization on cell metabolism, oxidative stress, and DNA damage. In the present contribution, we report on synthesizing and characterizing biomineralized chitosan as a polymer template with HA nanoparticles doped with magnesium (MgHA) and iron ions (FeHA). The physical-chemical and morphological characterization confirmed the successful synthesis of low crystalline ions-doped HA nanoparticles on the chitosan template, whereas the biochemical activity of the resulting nanoparticles towards human osteoblasts-like cells (MG63 and HOBIT) was investigated considering their effect on cell metabolism, proliferation, colony formation, redox status, and DNA damage extent. Data obtained suggest that particles enhance cell metabolism but partially limit cell proliferation. The redox status of cells was measured suggesting a slight increase in Reactive Oxygen Species production with chitosan biomineralized with iron-doped HA, whereas no effect with magnesium-doped HA and no effect of all formulations on the oxidation level of Peroxiredoxin. On the other hand, DNA damage was investigated by COMET assay, and expression and foci γH2AX. These latter tests indicated that HA-based nanoparticles promote DNA damage which is enhanced by chitosan thus suggesting that chitosan favors the nanoparticles' internalization by cells and modulates their biological activity. The potential DNA damage should be considered - and potentially exploited for instance in anticancer treatment - when HA-based particles are used to devise biomaterials.
Collapse
Affiliation(s)
- Franco Furlani
- Department of Medicine, University of Udine, Piazzale Kolbe 4, Udine, 33100, Italy.
- Polytechnic Department of Engineering and Architecture, University of Udine, Via delle Scienze, 206, Udine, 33100, Italy.
- National Research Council of Italy - Institute of Science, Technology and Sustainability for Ceramics - CNR - ISSMC (Former ISTEC), Via Granarolo 64, I - 48018, Faenza(RA), Italy.
| | - Matilde Clarissa Malfatti
- Department of Medicine, University of Udine, Piazzale Kolbe 4, Udine, 33100, Italy
- Italian Liver Foundation - NPO, Area Science Park Basovizza Campus - Bldg. Q SS 14 km 163,5, Trieste, 34149, Italy
| | - Alfredo Rondinella
- Polytechnic Department of Engineering and Architecture, University of Udine, Via delle Scienze, 206, Udine, 33100, Italy
| | - Elisabetta Campodoni
- National Research Council of Italy - Institute of Science, Technology and Sustainability for Ceramics - CNR - ISSMC (Former ISTEC), Via Granarolo 64, I - 48018, Faenza(RA), Italy
| | - Monica Sandri
- National Research Council of Italy - Institute of Science, Technology and Sustainability for Ceramics - CNR - ISSMC (Former ISTEC), Via Granarolo 64, I - 48018, Faenza(RA), Italy
| | - Lorenzo Fedrizzi
- Polytechnic Department of Engineering and Architecture, University of Udine, Via delle Scienze, 206, Udine, 33100, Italy
| | - Gianluca Tell
- Department of Medicine, University of Udine, Piazzale Kolbe 4, Udine, 33100, Italy
| |
Collapse
|
38
|
Sathiyavimal S, Vasantharaj S, Mattheos N, Pugazhendhi A, Subbalekha K. Mussel shell-derived biogenic hydroxyapatite as reinforcement on chitosan-loaded gentamicin composite for antibacterial activity and bone regeneration. Int J Biol Macromol 2024; 278:134143. [PMID: 39069060 DOI: 10.1016/j.ijbiomac.2024.134143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
In this study, hydroxyapatite (HAp) was synthesized from natural biowaste materials, specifically mussel shells, and combined with chitosan (CS) and gentamicin sulfate antibiotic (GA) using an in-situ method. The resulting composite material, designated HAp/CS-GA, has its physicochemical and structural properties characterized by Fourier transform infrared spectroscopy (FTIR) analysis. The structure was confirmed by X-ray diffraction (XRD) analysis. Additionally, field emission scanning electron microscopy (FE-SEM) equipped with the energy dispersive X-ray spectroscopic (EDX) technique was used to determine the surface topography and main components. The composite of HAp/CS-GA was analyzed using a drug release profile by UV-visible spectroscopy (UV-Vis). The fabricated composites antimicrobial behavior was examined against bone infection-causing Gram-positive and Gram-negative bacteria, showing potential activity against Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus compared to Escherichia coli, respectively. Simultaneously, the cytotoxicity of the composite was evaluated by MTT assay using an MG-63 osteoblast-like cell line that exhibited no toxicity in the prepared composite. After a 24 h incubation period, the MG-63 cells on the HAp/CS-GA composite showed good proliferation, according to Hoechst 33258 fluorescence staining results. The results suggested that the composite had excellent biocompatibility and antibacterial activity and enhanced the osteoblast cell proliferation. Therefore, the designed HAp/CS-GA composite would be a promising candidate for bone tissue engineering.
Collapse
Affiliation(s)
- Selvam Sathiyavimal
- Oral and Maxillofacial Surgery and Digital Implant Surgery Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Seerangaraj Vasantharaj
- Micro/Nano Electromechanical Integrated Device Research Unit, Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nikos Mattheos
- Oral and Maxillofacial Surgery and Digital Implant Surgery Research Unit, Chulalongkorn University, Bangkok, Thailand; Department of Dental Medicine, Karolinska Institute, Stockholm, Sweden; Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Arivalagan Pugazhendhi
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Keskanya Subbalekha
- Oral and Maxillofacial Surgery and Digital Implant Surgery Research Unit, Chulalongkorn University, Bangkok, Thailand; Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
39
|
Wang Z, Liang W, Wang G, Wu H, Dang W, Zhen Y, An Y. Construction Form and Application of Three-Dimensional Bioprinting Ink Containing Hydroxyapatite. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:507-521. [PMID: 38569169 DOI: 10.1089/ten.teb.2023.0280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
With the increasing prevalence of bone tissue diseases, three-dimensional (3D) bioprinting applied to bone tissue engineering for treatment has received a lot of interests in recent years. The research and popularization of 3D bioprinting in bone tissue engineering require bioinks with good performance, which is closely related to ideal material and appropriate construction form. Hydroxyapatite (HAp) is the inorganic component of natural bone and has been widely used in bone tissue engineering and other fields due to its good biological and physicochemical properties. Previous studies have prepared different bioinks containing HAp and evaluated their properties in various aspects. Most bioinks showed significant improvement in terms of rheology and biocompatibility; however, not all of them had sufficiently favorable mechanical properties and antimicrobial activity. The deficiencies in properties of bioink and 3D bioprinting technology limited the applications of bioinks containing HAp in clinical trials. This review article summarizes the construction forms of bioinks containing HAp and its modifications in previous studies, as well as the 3D bioprinting techniques adopted to print bioink containing HAp. In addition, this article summarizes the advantages and underlying mechanisms of bioink containing HAp, as well as its limitations, and suggests possible improvement to facilitate the development of bone tissue engineering bioinks containing HAp in the future.
Collapse
Affiliation(s)
- Zimo Wang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Wei Liang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Guanhuier Wang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Huiting Wu
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Wanwen Dang
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yonghuan Zhen
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, China
| |
Collapse
|
40
|
Nicolae CL, Pîrvulescu DC, Niculescu AG, Epistatu D, Mihaiescu DE, Antohi AM, Grumezescu AM, Croitoru GA. An Up-to-Date Review of Materials Science Advances in Bone Grafting for Oral and Maxillofacial Pathology. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4782. [PMID: 39410353 PMCID: PMC11478239 DOI: 10.3390/ma17194782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/15/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Bone grafting in oral and maxillofacial surgery has evolved significantly due to developments in materials science, offering innovative alternatives for the repair of bone defects. A few grafts are currently used in clinical settings, including autografts, xenografts, and allografts. However, despite their benefits, they have some challenges, such as limited availability, the possibility of disease transmission, and lack of personalization for the defect. Synthetic bone grafts have gained attention since they have the potential to overcome these limitations. Moreover, new technologies like nanotechnology, 3D printing, and 3D bioprinting have allowed the incorporation of molecules or substances within grafts to aid in bone repair. The addition of different moieties, such as growth factors, stem cells, and nanomaterials, has been reported to help mimic the natural bone healing process more closely, promoting faster and more complete regeneration. In this regard, this review explores the currently available bone grafts, the possibility of incorporating substances and molecules into their composition to accelerate and improve bone regeneration, and advanced graft manufacturing techniques. Furthermore, the presented current clinical applications and success stories for novel bone grafts emphasize the future potential of synthetic grafts and biomaterial innovations in improving patient outcomes in oral and maxillofacial surgery.
Collapse
Affiliation(s)
- Carmen-Larisa Nicolae
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-L.N.); (D.E.); (A.M.A.); (G.-A.C.)
| | - Diana-Cristina Pîrvulescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (D.-C.P.); (A.-G.N.); (D.E.M.)
| | - Adelina-Gabriela Niculescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (D.-C.P.); (A.-G.N.); (D.E.M.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Dragoș Epistatu
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-L.N.); (D.E.); (A.M.A.); (G.-A.C.)
| | - Dan Eduard Mihaiescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (D.-C.P.); (A.-G.N.); (D.E.M.)
| | - Alexandru Mihai Antohi
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-L.N.); (D.E.); (A.M.A.); (G.-A.C.)
| | - Alexandru Mihai Grumezescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (D.-C.P.); (A.-G.N.); (D.E.M.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - George-Alexandru Croitoru
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-L.N.); (D.E.); (A.M.A.); (G.-A.C.)
| |
Collapse
|
41
|
Hu R, Deng L, Hao X, Chen J, Zhou X, Sahai N. Direct, Broad-Spectrum Antimicrobial Activity of Ag +-Doped Hydroxyapatite against Fastidious Anaerobic Periodontal and Aerobic Dental Bacteria. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4688. [PMID: 39410260 PMCID: PMC11478222 DOI: 10.3390/ma17194688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024]
Abstract
Periodontitis and caries, while seemingly innocuous medical conditions, actually pose significant challenges because of their potential etiology with far more serious conditions. Efficacious treatment is hindered by bacterial antibiotic resistance. Standard AgNPs are ineffective against periodontal anaerobic bacteria, because they require oxidative dissolution to release Ag+ ions, which are the actual antimicrobial agents, but oxidation is not possible under anaerobic conditions. Prior studies on Ag-based periodontal antimicrobial materials either did not confirm a silver oxidation state or did not use strictly anaerobic growth media or both, causing spurious antimicrobial efficacy estimates. Here, we prove that silver ion-doped hydroxyapatite nanoparticles (AgHAp NPs) synthesized at various pHs contain an Ag+ oxidation state and directly release Ag+ even in a strictly anerobic medium. Thus, these AgHAp NPs exhibit direct antimicrobial activity against the fastidious anaerobic Gram-negative periodontal bacterium Fusobacterium nucleatum (F. nucleatum) and against caries-causing aerobic, Gram-positive bacterium Streptococcus mutans (S. mutans). The synthesis pH (6-11) correlates inversely with the Ag+ content (4.5-0.45 wt %) of AgHAp NPs and, hence, with antimicrobial efficacy, thus providing tunable efficacy for the target application. AgHAp NPs had greater antimicrobial efficacy than Ag0-containing AgNPs and were less cytotoxic to the mouse fibroblast L929 cell line. Thus, AgHAp NPs (especially AgHAp7) are superior to AgNPs as effective, broad-spectrum, biocompatible antimicrobials against both anaerobic periodontal and aerobic dental bacteria. AgHAp NP synthesis is also inexpensive and scalable, which are significant factors for treating large global populations of indigent people affected by periodontitis and dental caries.
Collapse
Affiliation(s)
- Ruibo Hu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325-3909, USA
| | - Leyi Deng
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325-3909, USA
| | - Xiaoying Hao
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiadong Chen
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325-3909, USA
| | - Xianfeng Zhou
- College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Nita Sahai
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325-3909, USA
- Integrated Bioscience Program, The University of Akron, Akron, OH 44325-3909, USA
- Department of Geosciences, The University of Akron, Akron, OH 44325-3909, USA
- Department of Biology, The University of Akron, Akron, OH 44325-3909, USA
| |
Collapse
|
42
|
Taephatthanasagon T, Purbantoro SD, Rodprasert W, Pathanachai K, Charoenlertkul P, Mahanonda R, Sa-Ard-Lam N, Kuncorojakti S, Soedarmanto A, Jamilah NS, Osathanon T, Sawangmake C, Rattanapuchpong S. Osteogenic potentials in canine mesenchymal stem cells: unraveling the efficacy of polycaprolactone/hydroxyapatite scaffolds in veterinary bone regeneration. BMC Vet Res 2024; 20:403. [PMID: 39251976 PMCID: PMC11382457 DOI: 10.1186/s12917-024-04246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND The integration of stem cells, signaling molecules, and biomaterial scaffolds is fundamental for the successful engineering of functional bone tissue. Currently, the development of composite scaffolds has emerged as an attractive approach to meet the criteria of ideal scaffolds utilized in bone tissue engineering (BTE) for facilitating bone regeneration in bone defects. Recently, the incorporation of polycaprolactone (PCL) with hydroxyapatite (HA) has been developed as one of the suitable substitutes for BTE applications owing to their promising osteogenic properties. In this study, a three-dimensional (3D) scaffold composed of PCL integrated with HA (PCL/HA) was prepared and assessed for its ability to support osteogenesis in vitro. Furthermore, this scaffold was evaluated explicitly for its efficacy in promoting the proliferation and osteogenic differentiation of canine bone marrow-derived mesenchymal stem cells (cBM-MSCs) to fill the knowledge gap regarding the use of composite scaffolds for BTE in the veterinary orthopedics field. RESULTS Our findings indicate that the PCL/HA scaffolds substantially supported the proliferation of cBM-MSCs. Notably, the group subjected to osteogenic induction exhibited a markedly upregulated expression of the osteogenic gene osterix (OSX) compared to the control group. Additionally, the construction of 3D scaffold constructs with differentiated cells and an extracellular matrix (ECM) was successfully imaged using scanning electron microscopy. Elemental analysis using a scanning electron microscope coupled with energy-dispersive X-ray spectroscopy confirmed that these constructs possessed the mineral content of bone-like compositions, particularly the presence of calcium and phosphorus. CONCLUSIONS This research highlights the synergistic potential of PCL/HA scaffolds in concert with cBM-MSCs, presenting a multidisciplinary approach to scaffold fabrication that effectively regulates cell proliferation and osteogenic differentiation. Future in vivo studies focusing on the repair and regeneration of bone defects are warranted to further explore the regenerative capacity of these constructs, with the ultimate goal of assessing their potential in veterinary clinical applications.
Collapse
Affiliation(s)
- Teeanutree Taephatthanasagon
- Graduate Program in Veterinary Bioscience, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Steven Dwi Purbantoro
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Watchareewan Rodprasert
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Koranis Pathanachai
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Piyawan Charoenlertkul
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Rangsini Mahanonda
- Immunology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Periodontal Disease and Dental Implant, Chulalongkorn University, Bangkok, Thailand
| | - Noppadol Sa-Ard-Lam
- Immunology Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Periodontal Disease and Dental Implant, Chulalongkorn University, Bangkok, Thailand
| | - Suryo Kuncorojakti
- Division of Veterinary Anatomy, Department of Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Adretta Soedarmanto
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Nabila Syarifah Jamilah
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chenphop Sawangmake
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Regenerative Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Sirirat Rattanapuchpong
- Veterinary Clinical Stem Cell and Bioengineering Research Unit, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- Veterinary Stem Cell and Bioengineering Innovation Center (VSCBIC), Veterinary Pharmacology and Stem Cell Research Laboratory, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
- Academic Affairs, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
43
|
Eldeeb GM, Yousef MI, Helmy YM, Aboudeya HM, Mahmoud SA, Kamel MA. The protective effects of chitosan and curcumin nanoparticles against the hydroxyapatite nanoparticles-induced neurotoxicity in rats. Sci Rep 2024; 14:21009. [PMID: 39251717 PMCID: PMC11385554 DOI: 10.1038/s41598-024-70794-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024] Open
Abstract
Hydroxyapatite nanoparticles (HANPs) have extensive applications in biomedicine and tissue engineering. However, little information is known about their toxicity. Here, we aim to investigate the possible neurotoxicity of HANPs and the possible protective role of chitosan nanoparticles (CNPs) and curcumin nanoparticles (CUNPs) against this toxicity. In our study, HANPs significantly reduced the levels of neurotransmitters, including acetylcholine (Ach), dopamine (DA), serotonin (SER), epinephrine (EPI), and norepinephrine (NOR). HANPs significantly suppressed cortical expression of the genes controlling mitochondrial biogenesis such as peroxisome proliferator activator receptor gamma coactivator 1α (PGC-1α) and mitochondrial transcription factor A (mTFA). Our findings revealed significant neuroinflammation associated with elevated apoptosis, lipid peroxidation, oxidative DNA damage and nitric oxide levels with significant decline in the antioxidant enzymes activities and glutathione (GSH) levels in HANPs-exposed rats. Meanwhile, co-supplementation of HANP-rats with CNPs and/or CUNPs significantly showed improvement in levels of neurotransmitters, mitochondrial biogenesis, oxidative stress, DNA damage, and neuroinflammation. The co-supplementation with both CNPs and CUNPs was more effective to ameliorate HANPs-induced neurotoxicity than each one alone. So, CNPs and CUNPs could be promising protective agents for prevention of HANPs-induced neurotoxicity.
Collapse
Affiliation(s)
- Gihan Mahmoud Eldeeb
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mokhtar Ibrahim Yousef
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | | | - Hebatallah Mohammed Aboudeya
- Department of Human Physiology, Medical Research Institute, Alexandria University, 165, Horreya Avenue, Hadara, Alexandria, Egypt.
| | - Shimaa A Mahmoud
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Maher A Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
- Pharos University in Alexandria, Alexandria, 21311, Egypt
| |
Collapse
|
44
|
Rossi JDO, Araujo EMC, Camargo MEC, Ferreira Junior RS, Barraviera B, Miglino MA, Nogueira DMB, Reis CHB, Gil GE, Vinholo TR, Soares TP, Buchaim RL, Buchaim DV. Effectiveness of the Association of Fibrin Scaffolds, Nanohydroxyapatite, and Photobiomodulation with Simultaneous Low-Level Red and Infrared Lasers in Bone Repair. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4351. [PMID: 39274741 PMCID: PMC11395849 DOI: 10.3390/ma17174351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024]
Abstract
Biomaterials and biopharmaceuticals for correcting large bone defects are a potential area of translational science. A new bioproduct, purified from snake venom and fibrinogen from buffalo blood, aroused interest in the repair of venous ulcers. Expanding potential uses, it has also been used to form biocomplexes in combination with bone grafts, associated with physical therapies or used alone. The aim of this preclinical study was to evaluate low-level laser photobiomodulation (PBM) in critical defects in the calvaria of rats filled with nanohydroxyapatite (NH) associated with the heterologous fibrin biopolymer (HFB). Sixty animals were used, divided into six groups (n = 10 each): G1 (NH); G2 (HFB); G3 (NH + HFB); G4 (NH + PBM); G5 (HFB + PBM); G6 (NH + HFB + PBM). PBM simultaneously used red (R) and infrared (IR) light emission, applied intraoperatively and twice a week, until the end of the experiment at 42 days. Microtomography, bone formation can be seen initially at the margins of the defect, more evident in G5. Microscopically, bone formation demonstrated immature and disorganized trabeculation at 14 days, with remnants of grafting materials. At 42 days, the percentage of new bone formed was higher in all groups, especially in G5 (HFB, 45.4 ± 3.82), with collagen fibers at a higher degree of maturation and yellowish-green color in the birefringence analysis with Picrosirius-red. Therefore, it is concluded that the HFB + PBM combination showed greater effectiveness in the repair process and presents potential for future clinical studies.
Collapse
Affiliation(s)
| | - Emilie Maria Cabral Araujo
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
| | | | - Rui Seabra Ferreira Junior
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (University Estadual Paulista, UNESP), Botucatu 18610-307, Brazil
- Graduate Programs in Tropical Diseases and Clinical Research, Botucatu Medical School (FMB), São Paulo State University (UNESP-University Estadual Paulista), Botucatu 18618-687, Brazil
| | - Benedito Barraviera
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (University Estadual Paulista, UNESP), Botucatu 18610-307, Brazil
- Graduate Programs in Tropical Diseases and Clinical Research, Botucatu Medical School (FMB), São Paulo State University (UNESP-University Estadual Paulista), Botucatu 18618-687, Brazil
| | - Maria Angélica Miglino
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
- Postgraduate Program in Animal Health, Production and Environment, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| | - Dayane Maria Braz Nogueira
- Department of Anatomy, Faculty of Higher Education of the Interior of São Paulo (FAIP), Marilia 17512-130, Brazil
| | - Carlos Henrique Bertoni Reis
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
| | | | | | | | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of São Paulo, Bauru 17012-901, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), Sao Paulo 05508-270, Brazil
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marilia 17525-902, Brazil
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of São Paulo (FMVZ/USP), Sao Paulo 05508-270, Brazil
- Medical School, University Center of Adamantina (UNIFAI), Adamantina 17800-000, Brazil
| |
Collapse
|
45
|
Ye H, Zhang R, Zhang C, Xia Y, Jin L. Advances in hyaluronic acid: Bioactivity, complexed biomaterials and biological application: A review. Asian J Surg 2024:S1015-9584(24)01841-4. [PMID: 39217010 DOI: 10.1016/j.asjsur.2024.08.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Hyaluronic acid (HA) is a natural glycosaminoglycan found in the human body, particularly in the extracellular matrix of body fluids and tissues. It plays a critical role in cellular processes of living organisms by maintaining tissue hydration, cell proliferation, differentiation, and inflammatory response. HA exhibits significant biological activity in skin care, aesthetic anti-aging, medical orthopedic repair, gynecological cancer monitoring, and other pathological conditions. Due to its exceptional biocompatibility, biodegradability, lack of toxicity, non-immunogenicity, and its capacity to bond with other substances, various HA-based biomedical products like hydrogels, microneedles, and microspheres have been developed. These innovations have also been applied in various medical and health fields, such as bone and tissue regeneration, gels for medical aesthetic fillers, and gynecology-related cancer treatment, utilizing the HA drug delivery pathway. The interest in HA and its products is increasing due to their biological functions. Therefore, this review aimed to summarize the biological properties of HA and to focus on its applications in the bone tissue engineering and healthcare, for HA has some practical applications of HA-based complexes in biomedical materials, tissue repair, medical aesthetics, and gynecology. Through this review, we seek to offer theoretical research assistance for the development of HA-based bioproducts in the healthcare domain and provide innovative insights for human health.
Collapse
Affiliation(s)
- Huijun Ye
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, No.318 Chaowang Road, Hangzhou, 310005, Zhejiang, China
| | - Ruijuan Zhang
- Center for Peak of Excellence on Biological Science and Food Engineering, National University of Singapore (Suzhou) Research Institute, Suzhou, 215004, Jiangsu, China
| | - Chunye Zhang
- Center for Peak of Excellence on Biological Science and Food Engineering, National University of Singapore (Suzhou) Research Institute, Suzhou, 215004, Jiangsu, China
| | - Yujie Xia
- Center for Peak of Excellence on Biological Science and Food Engineering, National University of Singapore (Suzhou) Research Institute, Suzhou, 215004, Jiangsu, China.
| | - Lihua Jin
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, No.318 Chaowang Road, Hangzhou, 310005, Zhejiang, China.
| |
Collapse
|
46
|
Liang W, Zhou C, Bai J, Zhang H, Long H, Jiang B, Wang J, Huang X, Zhang H, Zhao J. Prospective applications of bioactive materials in orthopedic therapies: A review. Heliyon 2024; 10:e36152. [PMID: 39247306 PMCID: PMC11379564 DOI: 10.1016/j.heliyon.2024.e36152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/26/2024] [Accepted: 08/10/2024] [Indexed: 09/10/2024] Open
Abstract
The biomedical application of biodegradable polymers for addressing bone-related diseases has garnered considerable attention in recent years. Advances in material technology have expanded the repertoire of materials suitable for orthopedic implants, with nanomaterials playing a pivotal role in replicating crucial surface properties akin to natural tissues. This comprehensive review explores the evaluation of bioactive glass ceramics, shedding light on their properties and applications. The synthesis of composites through composite manufacturing has emerged as a strategy to enhance biocompatibility and biomechanical characteristics. They are addressing challenges associated with conventional implants and nanomaterials, whether in the form of functional nano coatings or nanostructured surfaces, present opportunities to refine implant techniques. Novel developments in orthopedic biomaterials, such as smart biomaterials, porous structures, and 3D implants, offer stimuli-responsive behavior to achieve desired implant shapes and characteristics. Bioactive and biodegradable porous polymer/inorganic composite materials are explored for bone tissue engineering scaffolds, aiming to promote bone formation and regeneration. As a prospective direction, the integration of stem cells into scaffolds hints at the creation of next-generation synthetic/living hybrid biomaterials, displaying high adaptability in biological settings. This review establishes a foundation for nanotechnology-driven biomaterials by elucidating fundamental design factors crucial for orthopedic implant performance and their response to cell differentiation, proliferation, and adhesion.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, 316000, China
| | - Juqin Bai
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Hongwei Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Hengguo Long
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Bo Jiang
- Rehabilitation Department, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Jiangwei Wang
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Xiaogang Huang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Hengjian Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| | - Jiayi Zhao
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, 316000, China
| |
Collapse
|
47
|
Alkaron W, Almansoori A, Balázsi K, Balázsi C. Hydroxyapatite-Based Natural Biopolymer Composite for Tissue Regeneration. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4117. [PMID: 39203295 PMCID: PMC11356673 DOI: 10.3390/ma17164117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/08/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024]
Abstract
Hydroxyapatite (HAp) polymer composites have gained significant attention due to their applications in bone regeneration and tooth implants. This review examines the synthesis, properties, and applications of Hap, highlighting various manufacturing methods, including wet, dry, hydrothermal, and sol-gel processes. The properties of HAp are influenced by precursor materials and are commonly obtained from natural calcium-rich sources like eggshells, seashells, and fish scales. Composite materials, such as cellulose-hydroxyapatite and gelatin-hydroxyapatite, exhibit promising strength and biocompatibility for bone and tissue replacement. Metallic implants and scaffolds enhance stability, including well-known titanium-based and stainless steel-based implants and ceramic body implants. Biopolymers, like chitosan and alginate, combined with Hap, offer chemical stability and strength for tissue engineering. Collagen, fibrin, and gelatin play crucial roles in mimicking natural bone composition. Various synthesis methods like sol-gel, hydrothermal, and solution casting produce HAp crystals, with potential applications in bone repair and regeneration. Additionally, the use of biowaste materials, like eggshells and snails or seashells, not only supports sustainable HAp production but also reduces environmental impact. This review emphasizes the significance of understanding the properties of calcium-phosphate (Ca-P) compounds and processing methods for scaffold generation, highlighting novel characteristics and mechanisms of biomaterials in bone healing. Comparative studies of these methods in specific applications underscore the versatility and potential of HAp composites in biomedical engineering. Overall, HAp composites offer promising solutions for improving patient outcomes in bone replacement and tissue engineering and advancing medical practices.
Collapse
Affiliation(s)
- Wasan Alkaron
- Institute for Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege Miklós Str. 29-33, 1121 Budapest, Hungary; (A.A.); (K.B.)
- Doctoral School of Materials Science and Technologies, Óbuda University, Bécsi Str. 96/B, 1030 Budapest, Hungary
- Technical Institute of Basra, Southern Technical University, Basra 61001, Iraq
| | - Alaa Almansoori
- Institute for Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege Miklós Str. 29-33, 1121 Budapest, Hungary; (A.A.); (K.B.)
- Technical Institute of Basra, Southern Technical University, Basra 61001, Iraq
| | - Katalin Balázsi
- Institute for Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege Miklós Str. 29-33, 1121 Budapest, Hungary; (A.A.); (K.B.)
| | - Csaba Balázsi
- Institute for Technical Physics and Materials Science, HUN-REN Centre for Energy Research, Konkoly-Thege Miklós Str. 29-33, 1121 Budapest, Hungary; (A.A.); (K.B.)
| |
Collapse
|
48
|
Han D, Wang W, Gong J, Ma Y, Li Y. Collagen-hydroxyapatite based scaffolds for bone trauma and regeneration: recent trends and future perspectives. Nanomedicine (Lond) 2024; 19:1689-1709. [PMID: 39163266 PMCID: PMC11389751 DOI: 10.1080/17435889.2024.2375958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/28/2024] [Indexed: 08/22/2024] Open
Abstract
Regenerative therapy, a key area of tissue engineering, holds promise for restoring damaged organs, especially in bone regeneration. Bone healing is natural to the body but becomes complex under stress and disease. Large bone deformities pose significant challenges in tissue engineering. Among various methods, scaffolds are attractive as they provide structural support and essential nutrients for cell adhesion and growth. Collagen and hydroxyapatite (HA) are widely used due to their biocompatibility and biodegradability. Collagen and nano-scale HA enhance cell adhesion and development. Thus, nano HA/collagen scaffolds offer potential solutions for bone regeneration. This review focuses on the use and production of nano-sized HA/collagen composites in bone regeneration.
Collapse
Affiliation(s)
- Dong Han
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai, 264000, China
| | - Weijiao Wang
- Department of Otolaryngology, Yantaishan Hospital, Yantai, 264000, China
| | - Jinpeng Gong
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai, 264000, China
| | - Yupeng Ma
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai, 264000, China
| | - Yu Li
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai, 264000, China
| |
Collapse
|
49
|
Khan MUA, Aslam MA, Abdullah MFB, Abdal-Hay A, Gao W, Xiao Y, Stojanović GM. Recent advances of bone tissue engineering: carbohydrate and ceramic materials, fundamental properties and advanced biofabrication strategies ‒ a comprehensive review. Biomed Mater 2024; 19:052005. [PMID: 39105493 DOI: 10.1088/1748-605x/ad6b8a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Bone is a dynamic tissue that can always regenerate itself through remodeling to maintain biofunctionality. This tissue performs several vital physiological functions. However, bone scaffolds are required for critical-size damages and fractures, and these can be addressed by bone tissue engineering. Bone tissue engineering (BTE) has the potential to develop scaffolds for repairing critical-size damaged bone. BTE is a multidisciplinary engineered scaffold with the desired properties for repairing damaged bone tissue. Herein, we have provided an overview of the common carbohydrate polymers, fundamental structural, physicochemical, and biological properties, and fabrication techniques for bone tissue engineering. We also discussed advanced biofabrication strategies and provided the limitations and prospects by highlighting significant issues in bone tissue engineering. There are several review articles available on bone tissue engineering. However, we have provided a state-of-the-art review article that discussed recent progress and trends within the last 3-5 years by emphasizing challenges and future perspectives.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Muhammad Azhar Aslam
- Department of Physics, University of Engineering and Technology, Lahore 39161, Pakistan
| | - Mohd Faizal Bin Abdullah
- Oral and Maxillofacial Surgery Unit, School of Dental Sciences Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kota Bharu, Kelantan 16150, Malaysia
- Oral and Maxillofacial Surgery Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kota Bharu, Kelantan 16150, Malaysia
| | - Abdalla Abdal-Hay
- Department of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley University, Qena 83523, Egypt
- School of Dentistry, University of Queensland, 288 Herston Road, Herston QLD 4006, Australia
| | - Wendong Gao
- School of Medicine and Dentistry , Griffith University, Gold Coast Campus, Brisbane, Queensland 4222, Australia
| | - Yin Xiao
- School of Medicine and Dentistry , Griffith University, Gold Coast Campus, Brisbane, Queensland 4222, Australia
| | - Goran M Stojanović
- Faculty of Technical Sciences, University of Novi Sad, T. D. Obradovica 6, 21000 Novi Sad, Serbia
| |
Collapse
|
50
|
Montesissa M, Sassoni E, Boi M, Borciani G, Boanini E, Graziani G. Synthetic or Natural (Bio-Based) Hydroxyapatite? A Systematic Comparison between Biomimetic Nanostructured Coatings Produced by Ionized Jet Deposition. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1332. [PMID: 39195370 DOI: 10.3390/nano14161332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/29/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
Calcium phosphate (CaP)-based materials are largely explored in orthopedics, to increase osseointegration of the prostheses and specifically in spine surgery, to permit better fusion. To address these aims, nanostructured biogenic apatite coatings are emerging, since they better mimic the characteristics of the host tissue, thus potentially being better candidates compared to their synthetic counterpart. Here, we compare hydroxyapatite (HA) nanostructured coatings, obtained by ionized jet deposition, starting from synthetic and natural sources. The starting materials and the corresponding films are characterized and compared from a compositional and morphological point of view, then their stability is studied after post-treatment annealing. Although all the films are formed by globular aggregates and show morphological features at different scales (from nano to micro), significant differences are found in composition between the synthetic and naturally derived HA in terms of magnesium and sodium content, carbonate substitution and Ca/P ratio, while differences between the coatings obtained by the different natural HA sources are minor. In addition, the shape of the aggregates is also target-dependent. All coatings have a good stability after over 14 days of immersion in medium, with natural apatite coatings showing a better behavior, as no cracking and detachments are observed during immersion. Based on these results, both synthetic and naturally derived apatitic materials appear promising for applications in spine surgery, with coatings from natural sources possessing physiochemical properties more similar to the mineral phase of the human bone tissue.
Collapse
Affiliation(s)
- Matteo Montesissa
- BST Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Enrico Sassoni
- Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, 40131 Bologna, Italy
| | - Marco Boi
- BST Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Giorgia Borciani
- BST Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Elisa Boanini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy
| | - Gabriela Graziani
- BST Biomedical Science and Technologies and Nanobiotechnology Lab, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|