1
|
Ross FC, Mayer DE, Horn J, Cryan JF, Del Rio D, Randolph E, Gill CIR, Gupta A, Ross RP, Stanton C, Mayer EA. Potential of dietary polyphenols for protection from age-related decline and neurodegeneration: a role for gut microbiota? Nutr Neurosci 2024; 27:1058-1076. [PMID: 38287652 DOI: 10.1080/1028415x.2023.2298098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Many epidemiological studies have shown the beneficial effects of a largely plant-based diet, and the strong association between the consumption of a Mediterranean-type diet with healthy aging including a lower risk of cognitive decline. The Mediterranean diet is characterized by a high intake of olive oil, fruits and vegetables and is rich in dietary fiber and polyphenols - both of which have been postulated to act as important mediators of these benefits. Polyphenols are large molecules produced by plants to protect them from environmental threats and injury. When ingested by humans, as little as 5% of these molecules are absorbed in the small intestine with the majority metabolized by the gut microbiota into absorbable simple phenolic compounds. Flavan-3-ols, a type of flavonoid, contained in grapes, berries, pome fruits, tea, and cocoa have been associated with many beneficial effects on several risk factors for cardiovascular disease, cognitive function and brain regions involved in memory formation. Both preclinical and clinical studies suggest that these brain and heart benefits can be attributed to endothelial vascular effects and anti-inflammatory properties among others. More recently the gut microbiota has emerged as a potential modulator of the aging brain and intriguingly polyphenols have been shown to alter microbiota composition and be metabolized by different microbial species. However, there is a need for well controlled studies in large populations to identify predictors of response, particularly given the vast inter-individual variation of human gut microbiota.
Collapse
Affiliation(s)
- F C Ross
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - D E Mayer
- Institute of Human Nutrition, Columbia University, New York, USA
| | - J Horn
- Oppenheimer Centre for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, USA
| | - J F Cryan
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Department Anatomy & Neuroscience, University College Cork, Co. Cork, Ireland
| | - D Del Rio
- Department of Food and Drugs, University of Parma, Parma, Italy
| | - E Randolph
- Oppenheimer Centre for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, USA
| | - C I R Gill
- Nutrition Innovation Centre for Food and Health, Northern Ireland, UK
| | - A Gupta
- Division of Digestive Diseases, UCLA, Los Angeles, USA
- Goodman Luskin Microbiome Center at UCLA, Los Angeles, CA, USA
| | - R P Ross
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
| | - C Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - E A Mayer
- Oppenheimer Centre for Neurobiology of Stress and Resilience, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, USA
- Goodman Luskin Microbiome Center at UCLA, Los Angeles, CA, USA
| |
Collapse
|
2
|
Dai W, Lv Y, Quan M, Ma M, Shang Q, Yu G. Bacteroides salyersiae Is a Candidate Probiotic Species with Potential Anti-Colitis Properties in the Human Colon: First Evidence from an In Vivo Mouse Model. Nutrients 2024; 16:2918. [PMID: 39275234 PMCID: PMC11397318 DOI: 10.3390/nu16172918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Previous studies have indicated a critical role of intestinal bacteria in the pathogenesis of ulcerative colitis (UC). B. salyersiae is a commensal species from the human gut microbiota. However, what effect it has on UC development has not been investigated. In the present study, we explored this issue and demonstrated for the first time that oral administration of B. salyersiae CSP6, a bacterium previously isolated from the fecal sample of a healthy individual, protected against dextran sulfate sodium (DSS)-induced colitis in C57BL/6J mice. In particular, B. salyersiae CSP6 improved mucosal damage and attenuated gut dysbiosis in the colon of DSS-fed mice. Specifically, B. salyersiae CSP6 decreased the population of pathogenic Escherichia-Shigella spp. and increased the abundance of probiotic Dubosiella spp. and Bifidobacterium pseudolongum. Additionally, by reshaping the colonic microbiota, B. salyersiae CSP6 remarkably increased the fecal concentrations of equol, 8-deoxylactucin, and tiglic acid, three beneficial metabolites that have been well documented to exert strong anti-inflammatory effects. Altogether, our study provides novel evidence that B. salyersiae is a candidate probiotic species with potential anti-colitis properties in the human colon, which has applications for the development of next-generation probiotics.
Collapse
Affiliation(s)
- Wei Dai
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| | - Youjing Lv
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Min Quan
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Qingdao Marine Biomedical Research Institute, Qingdao 266071, China
| | - Mingfeng Ma
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Qingsen Shang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
- Qingdao Marine Biomedical Research Institute, Qingdao 266071, China
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
3
|
Wang J, Zhang J, Yu ZL, Chung SK, Xu B. The roles of dietary polyphenols at crosstalk between type 2 diabetes and Alzheimer's disease in ameliorating oxidative stress and mitochondrial dysfunction via PI3K/Akt signaling pathways. Ageing Res Rev 2024; 99:102416. [PMID: 39002644 DOI: 10.1016/j.arr.2024.102416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Alzheimer's disease (AD) is a fatal neurodegenerative disease in which senile plaques and neurofibrillary tangles are crucially involved in its physiological and pathophysiological processes. Growing animal and clinical studies have suggested that AD is also comorbid with some metabolic diseases, including type 2 diabetes mellitus (T2DM), and therefore, it is often considered brain diabetes. AD and T2DM share multiple molecular and biochemical mechanisms, including impaired insulin signaling, oxidative stress, gut microbiota dysbiosis, and mitochondrial dysfunction. In this review article, we mainly introduce oxidative stress and mitochondrial dysfunction and explain their role and the underlying molecular mechanism in T2DM and AD pathogenesis; then, according to the current literature, we comprehensively evaluate the possibility of regulating oxidative homeostasis and mitochondrial function as therapeutics against AD. Furthermore, considering dietary polyphenols' antioxidative and antidiabetic properties, the strategies for applying them as potential therapeutical interventions in patients with AD symptoms are assessed.
Collapse
Affiliation(s)
- Jingwen Wang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China; Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jingyang Zhang
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China
| | - Zhi-Ling Yu
- Centre for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Sookja Kim Chung
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai, Guangdong 519087, China.
| |
Collapse
|
4
|
Sekikawa A, Li M, Joshi N, Herbert B, Tilves C, Cui C, Gao S, Chang Y, Nakano Y, Sciurba FC. Much lower prevalence and mortality of chronic obstructive pulmonary disease in Japan than in the US despite higher smoking rates: A meta analysis/systematic review. J Epidemiol 2024:JE20240085. [PMID: 39034109 DOI: 10.2188/jea.je20240085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND A recent systematic review showed Japan's mortality from chronic obstructive pulmonary disease (COPD) is the lowest among 204 countries, despite notably higher smoking rates in men in Japan than in the US. This study aims to compare (1) trends in smoking rates, (2) trends in COPD mortality, and (3) the spirometry-based COPD prevalence in the general adult population between Japan and the US. METHODS Age- and sex-specific smoking rates from the 1980s through 2010s and COPD mortality from 1999 through 2019 were obtained from national surveys and official statistics (International Classification of Diseases-10th codes J40-44), respectively. A systematic review and meta-analysis was performed to estimate COPD prevalence in Japan, while the National Health and Nutrition Examination Survey 2007-2012 was used for the US. A fixed ratio of 0.7 of forced expiratory volume in the first second of forced vital capacity was used to define COPD. RESULTS Over the past four decades, men in Japan consistently had 20-30% higher smoking rates than their US counterparts. From 1999-2019, age-adjusted COPD mortality in men in Japan was only a third of the US, whereas that in women was less than a tenth in 2019. Synthesizing data from 11 studies, involving 89,955 participants, Japan's COPD prevalence was more than 10% lower than in the US in almost all age groups for both sexes. CONCLUSIONS This study showed markedly lower rates of COPD in Japan than in the US. Investigating factors contributing to the paradoxical observations could lead to advancing COPD risk reduction strategies.
Collapse
Affiliation(s)
- Akira Sekikawa
- Department of Epidemiology, School of Public Health, University of Pittsburgh
| | - Mengyi Li
- Department of Epidemiology, School of Public Health, University of Pittsburgh
| | - Niva Joshi
- Department of Epidemiology, School of Public Health, University of Pittsburgh
| | - Brandon Herbert
- Department of Epidemiology, School of Public Health, University of Pittsburgh
| | - Curtis Tilves
- Department of Epidemiology, School of Public Health, University of Pittsburgh
| | - Chendi Cui
- Department of Epidemiology, School of Public Health, University of Pittsburgh
| | - Shiyao Gao
- Department of Epidemiology, School of Public Health, University of Pittsburgh
| | | | - Yasutaka Nakano
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science
| | | |
Collapse
|
5
|
Lv J, Jin S, Zhang Y, Zhou Y, Li M, Feng N. Equol: a metabolite of gut microbiota with potential antitumor effects. Gut Pathog 2024; 16:35. [PMID: 38972976 PMCID: PMC11229234 DOI: 10.1186/s13099-024-00625-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024] Open
Abstract
An increasing number of studies have shown that the consumption of soybeans and soybeans products is beneficial to human health, and the biological activity of soy products may be attributed to the presence of Soy Isoflavones (SI) in soybeans. In the intestinal tracts of humans and animals, certain specific bacteria can metabolize soy isoflavones into equol. Equol has a similar chemical structure to endogenous estradiol in the human body, which can bind with estrogen receptors and exert weak estrogen effects. Therefore, equol plays an important role in the occurrence and development of a variety of hormone-dependent malignancies such as breast cancer and prostate cancer. Despite the numerous health benefits of equol for humans, only 30-50% of the population can metabolize soy isoflavones into equol, with individual variation in gut microbiota being the main reason. This article provides an overview of the relevant gut microbiota involved in the synthesis of equol and its anti-tumor effects in various types of cancer. It also summarizes the molecular mechanisms underlying its anti-tumor properties, aiming to provide a more reliable theoretical basis for the rational utilization of equol in the field of cancer treatment.
Collapse
Affiliation(s)
- Jing Lv
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shengkai Jin
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yuwei Zhang
- Nantong University Medical School, Nantong, China
| | - Yuhua Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Menglu Li
- Department of Urology, Jiangnan University Medical Center, Wuxi, China.
- Jiangnan University Medical Center, 68 Zhongshan Road, Wuxi, Jiangsu, 214002, China.
| | - Ninghan Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
- Nantong University Medical School, Nantong, China.
- Department of Urology, Jiangnan University Medical Center, Wuxi, China.
- Jiangnan University Medical Center, 68 Zhongshan Road, Wuxi, Jiangsu, 214002, China.
| |
Collapse
|
6
|
Szulc A, Wiśniewska K, Żabińska M, Gaffke L, Szota M, Olendzka Z, Węgrzyn G, Pierzynowska K. Effectiveness of Flavonoid-Rich Diet in Alleviating Symptoms of Neurodegenerative Diseases. Foods 2024; 13:1931. [PMID: 38928874 PMCID: PMC11202533 DOI: 10.3390/foods13121931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Over the past decades, there has been a significant increase in the burden of neurological diseases, including neurodegenerative disorders, on a global scale. This is linked to a widespread demographic trend in which developed societies are aging, leading to an increased proportion of elderly individuals and, concurrently, an increase in the number of those afflicted, posing one of the main public health challenges for the coming decades. The complex pathomechanisms of neurodegenerative diseases and resulting varied symptoms, which differ depending on the disease, environment, and lifestyle of the patients, make searching for therapies for this group of disorders a formidable challenge. Currently, most neurodegenerative diseases are considered incurable. An important aspect in the fight against and prevention of neurodegenerative diseases may be broadly understood lifestyle choices, and more specifically, what we will focus on in this review, a diet. One proposal that may help in the fight against the spread of neurodegenerative diseases is a diet rich in flavonoids. Flavonoids are compounds widely found in products considered healthy, such as fruits, vegetables, and herbs. Many studies indicated not only the neuroprotective effects of these compounds but also their ability to reverse changes occurring during the progression of diseases such as Alzheimer's, Parkinson's and amyotrophic lateral sclerosis. Here, we present the main groups of flavonoids, discussing their characteristics and mechanisms of action. The most widely described mechanisms point to neuroprotective functions due to strong antioxidant and anti-inflammatory effects, accompanied with their ability to penetrate the blood-brain barrier, as well as the ability to inhibit the formation of protein aggregates. The latter feature, together with promoting removal of the aggregates is especially important in neurodegenerative diseases. We discuss a therapeutic potential of selected flavonoids in the fight against neurodegenerative diseases, based on in vitro studies, and their impact when included in the diet of animals (laboratory research) and humans (population studies). Thus, this review summarizes flavonoids' actions and impacts on neurodegenerative diseases. Therapeutic use of these compounds in the future is potentially possible but depends on overcoming key challenges such as low bioavailability, determining the therapeutic dose, and defining what a flavonoid-rich diet is and determining its potential negative effects. This review also suggests further research directions to address these challenges.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (A.S.); (K.W.); (M.Ż.); (L.G.); (M.S.); (Z.O.); (K.P.)
| | | |
Collapse
|
7
|
Mohamed Yusof NIS, Mohd Fauzi F. Nature's Toolbox for Alzheimer's Disease: A Review on the Potential of Natural Products as Alzheimer's Disease Drugs. Neurochem Int 2024; 176:105738. [PMID: 38616012 DOI: 10.1016/j.neuint.2024.105738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/18/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
Numerous clinical trials involving natural products have been conducted to observe cognitive performances and biomarkers in Alzheimer's Disease (AD) patients. However, to date, no natural-based drugs have been approved by the FDA as treatments for AD. In this review, natural product-based compounds that were tested in clinical trials from 2011 to 2023, registered at www.clinicaltrials.gov were reviewed. Thirteen compounds, encompassing 7 different mechanisms of action were covered. Several observations were deduced, which are: i) several compounds showed cognitive improvement, but these improvements may not extend to AD, ii) compounds that are endogenous to the human body showed better outcomes, and iii) Docosahexaenoic acid (DHA) and cerebrolysin had the most potential as AD drugs among the 13 compounds. Based on the current findings, natural products may be more suitable as a supplement than AD drugs in most cases. However, the studies covered here were conducted in a relatively short amount of time, where compounds acting on AD pathways may take time to show any effect. Given the diverse pathways that these natural products are involved in, they may potentially produce synergistic effects that would be beneficial in treating AD. Additionally, natural products benefit from both physicochemical properties being in more favorable ranges and active transport playing a more significant role than it does for synthetic compounds.
Collapse
Affiliation(s)
| | - Fazlin Mohd Fauzi
- Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam Campus, 42 300 Bandar Puncak Alam, Selangor, Malaysia; Center for Drug Discovery Research, Faculty of Pharmacy, Universiti Teknologi MARA Selangor, Puncak Alam Campus, 42 300 Bandar Puncak Alam, Selangor, Malaysia.
| |
Collapse
|
8
|
Agulló V, Favari C, Pilla N, Bresciani L, Tomás-Barberán FA, Crozier A, Del Rio D, Mena P. Using Targeted Metabolomics to Unravel Phenolic Metabolites of Plant Origin in Animal Milk. Int J Mol Sci 2024; 25:4536. [PMID: 38674121 PMCID: PMC11050474 DOI: 10.3390/ijms25084536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Milk holds a high nutritional value and is associated with diverse health benefits. The understanding of its composition of (poly)phenolic metabolites is limited, which necessitates a comprehensive evaluation of the subject. This study aimed at analyzing the (poly)phenolic profile of commercial milk samples from cows and goats and investigating their sterilization treatments, fat content, and lactose content. Fingerprinting of phenolic metabolites was achieved by using ultra-high-performance liquid chromatography coupled with triple-quadrupole mass spectrometry (UHPLC-QqQ-MS/MS). Two hundred and three potential microbial and phase II metabolites of the main dietary (poly)phenols were targeted. Twenty-five metabolites were identified, revealing a diverse array of phenolic metabolites in milk, including isoflavones and their microbial catabolites equol and O-desmethylangolensin, phenyl-γ-valerolactones (flavan-3-ol microbial catabolites), enterolignans, urolithins (ellagitannin microbial catabolites), benzene diols, and hippuric acid derivates. Goat's milk contained higher concentrations of these metabolites than cow's milk, while the sterilization process and milk composition (fat and lactose content) had minimal impact on the metabolite profiles. Thus, the consumption of goat's milk might serve as a potential means to supplement bioactive phenolic metabolites, especially in individuals with limited production capacity. However, further research is needed to elucidate the potential health effects of milk-derived phenolics.
Collapse
Affiliation(s)
- Vicente Agulló
- Human Nutrition Unit, Department of Food & Drug, University of Parma, 43125 Parma, Italy; (C.F.); (N.P.); (L.B.); (D.D.R.)
| | - Claudia Favari
- Human Nutrition Unit, Department of Food & Drug, University of Parma, 43125 Parma, Italy; (C.F.); (N.P.); (L.B.); (D.D.R.)
| | - Niccolò Pilla
- Human Nutrition Unit, Department of Food & Drug, University of Parma, 43125 Parma, Italy; (C.F.); (N.P.); (L.B.); (D.D.R.)
| | - Letizia Bresciani
- Human Nutrition Unit, Department of Food & Drug, University of Parma, 43125 Parma, Italy; (C.F.); (N.P.); (L.B.); (D.D.R.)
| | - Francisco A. Tomás-Barberán
- Quality, Safety, and Bioactivity of Plant Foods Research Group, Laboratory of Food & Health, CEBAS–CSIC, Espinardo P.O. Box 164, 30100 Murcia, Spain;
| | - Alan Crozier
- Department of Chemistry, King Saud University, Riyadh 11451, Saudi Arabia;
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow G12 8QQ, UK
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food & Drug, University of Parma, 43125 Parma, Italy; (C.F.); (N.P.); (L.B.); (D.D.R.)
- Microbiome Research Hub, University of Parma, 43125 Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food & Drug, University of Parma, 43125 Parma, Italy; (C.F.); (N.P.); (L.B.); (D.D.R.)
- Microbiome Research Hub, University of Parma, 43125 Parma, Italy
| |
Collapse
|
9
|
Ticinesi A, Nouvenne A, Cerundolo N, Parise A, Mena P, Meschi T. The interaction between Mediterranean diet and intestinal microbiome: relevance for preventive strategies against frailty in older individuals. Aging Clin Exp Res 2024; 36:58. [PMID: 38448632 PMCID: PMC10917833 DOI: 10.1007/s40520-024-02707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/22/2024] [Indexed: 03/08/2024]
Abstract
Age-related changes in intestinal microbiome composition and function are increasingly recognized as pivotal in the pathophysiology of aging and are associated with the aging phenotype. Diet is a major determinant of gut-microbiota composition throughout the entire lifespan, and several of the benefits of a healthy diet in aging could be mediated by the microbiome. Mediterranean diet (MD) is a traditional dietary pattern regarded as the healthy diet paradigm, and a large number of studies have demonstrated its benefits in promoting healthy aging. MD has also a positive modulatory effect on intestinal microbiome, favoring bacterial taxa involved in the synthesis of several bioactive compounds, such as short-chain fatty acids (SCFAs), that counteract inflammation, anabolic resistance, and tissue degeneration. Intervention studies conducted in older populations have suggested that the individual response of older subjects to MD, in terms of reduction of frailty scores and amelioration of cognitive function, is significantly mediated by the gut-microbiota composition and functionality. In this context, the pathophysiology of intestinal microbiome in aging should be considered when designing MD-based interventions tailored to the needs of geriatric patients.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy.
- Microbiome Research Hub, University of Parma, Parma, Italy.
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria Di Parma, Parma, Italy.
| | - Antonio Nouvenne
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria Di Parma, Parma, Italy
| | - Nicoletta Cerundolo
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria Di Parma, Parma, Italy
| | - Alberto Parise
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria Di Parma, Parma, Italy
| | - Pedro Mena
- Microbiome Research Hub, University of Parma, Parma, Italy
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria Di Parma, Parma, Italy
| |
Collapse
|
10
|
Ma YY, Li X, Yu JT, Wang YJ. Therapeutics for neurodegenerative diseases by targeting the gut microbiome: from bench to bedside. Transl Neurodegener 2024; 13:12. [PMID: 38414054 PMCID: PMC10898075 DOI: 10.1186/s40035-024-00404-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
The aetiologies and origins of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD), are complex and multifaceted. A growing body of evidence suggests that the gut microbiome plays crucial roles in the development and progression of neurodegenerative diseases. Clinicians have come to realize that therapeutics targeting the gut microbiome have the potential to halt the progression of neurodegenerative diseases. This narrative review examines the alterations in the gut microbiome in AD, PD, ALS and HD, highlighting the close relationship between the gut microbiome and the brain in neurodegenerative diseases. Processes that mediate the gut microbiome-brain communication in neurodegenerative diseases, including the immunological, vagus nerve and circulatory pathways, are evaluated. Furthermore, we summarize potential therapeutics for neurodegenerative diseases that modify the gut microbiome and its metabolites, including diets, probiotics and prebiotics, microbial metabolites, antibacterials and faecal microbiome transplantation. Finally, current challenges and future directions are discussed.
Collapse
Affiliation(s)
- Yuan-Yuan Ma
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, 400042, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042, China
| | - Xin Li
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University, Shigatse, 857000, China
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200040, China.
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing, 400042, China.
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, 400042, China.
| |
Collapse
|
11
|
Santa K, Kumazawa Y, Watanabe K, Nagaoka I. The Potential Use of Vitamin D3 and Phytochemicals for Their Anti-Ageing Effects. Int J Mol Sci 2024; 25:2125. [PMID: 38396804 PMCID: PMC10889119 DOI: 10.3390/ijms25042125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Unlike other vitamins, vitamin D3 is synthesised in skin cells in the body. Vitamin D3 has been known as a bone-related hormone. Recently, however, it has been considered as an immune vitamin. Vitamin D3 deficiency influences the onset of a variety of diseases. Vitamin D3 regulates the production of proinflammatory cytokines such as tumour necrosis factor-α (TNF-α) through binding to vitamin D receptors (VDRs) in immune cells. Since blood levels of vitamin D3 (25-OH-D3) were low in coronavirus disease 2019 (COVID-19) patients, there has been growing interest in the importance of vitamin D3 to maintaining a healthy condition. On the other hand, phytochemicals are compounds derived from plants with over 7000 varieties and have various biological activities. They mainly have health-promoting effects and are classified as terpenoids, carotenoids, flavonoids, etc. Flavonoids are known as the anti-inflammatory compounds that control TNF-α production. Chronic inflammation is induced by the continuous production of TNF-α and is the fundamental cause of diseases like obesity, dyslipidaemia, diabetes, heart and brain diseases, autoimmune diseases, Alzheimer's disease, and cancer. In addition, the ageing process is induced by chronic inflammation. This review explains the cooperative effects of vitamin D3 and phytochemicals in the suppression of inflammatory responses, how it balances the natural immune response, and its link to anti-ageing effects. In addition, vitamin D3 and phytochemicals synergistically contribute to anti-ageing by working with ageing-related genes. Furthermore, prevention of ageing processes induced by the chronic inflammation requires the maintenance of healthy gut microbiota, which is related to daily dietary habits. In this regard, supplementation of vitamin D3 and phytochemicals plays an important role. Recently, the association of the prevention of the non-disease condition called "ME-BYO" with the maintenance of a healthy condition has been an attractive regimen, and the anti-ageing effect discussed here is important for a healthy and long life.
Collapse
Affiliation(s)
- Kazuki Santa
- Department of Biotechnology, Tokyo College of Biotechnology, Ota-ku, Tokyo 114-0032, Japan;
| | - Yoshio Kumazawa
- Vino Science Japan Inc., Kawasaki 210-0855, Kanagawa, Japan
- Department of Biochemistry and Systems Biomedicine, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kenji Watanabe
- Center for Kampo Medicine, Keio University, Shinjuku-ku, Tokyo 160-8582, Japan
- Yokohama University of Pharmacy, Yokohama 245-0066, Kanagawa, Japan
| | - Isao Nagaoka
- Department of Biochemistry and Systems Biomedicine, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo 113-8421, Japan
- Faculty of Medical Science, Juntendo University, Urayasu 279-0013, Chiba, Japan
| |
Collapse
|
12
|
Santa K, Kumazawa Y, Watanabe K, Nagaoka I. The Recommendation of the Mediterranean-styled Japanese Diet for Healthy Longevity. Endocr Metab Immune Disord Drug Targets 2024; 24:1794-1812. [PMID: 38343059 DOI: 10.2174/0118715303280097240130072031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 10/22/2024]
Abstract
The Mediterranean diet, listed as the intangible cultural heritage of humanity by UNESCO, is known as healthy and consumed worldwide. The Japanese diet is also listed and considered healthy. This narrative review compares the Mediterranean diet with its Japanese counterpart. Research has reported that people in Mediterranean regions, such as Italy and Greece, have one-third of the mortality ratio from cardiovascular diseases compared to people in the United States and Northern Europe because of the difference in eating habits. Therefore, Mediterranean diets are considered as healthy. A typical Western diet containing high amounts of fat, sugar, and calories is responsible for several diseases like metabolic syndrome and obesity, which are induced by chronic inflammation. In contrast, Mediterranean and Japanese diets contain them only less. The similarity between Mediterranean and Japanese diets is the substantial intake of vegetables, beans, and fish. On the other hand, the Mediterranean diet consumes large amounts of olive oil, especially polyphenol-rich extra virgin olive oil and dairy products, but meat consumption is relatively small. In contrast, the Japanese diet does not use oil and fat, contains abundant fermented foods, and consumes seaweed. Japan is known for its longevity, and people think that a well-balanced diet daily is good for preventing and curing illness. In this regard, finding non-disease conditions, so-called "ME-BYO," and curing them before the manifestation of diseases is becoming more common. In this review, we discuss the healthy eating habit, "The Mediterranean-styled Japanese diet," which prevents ME-BYO condition and reduces the risk of various diseases. The Mediterranean-styled Japanese diet, a hybrid of Mediterranean and Japanese diets, reduces the risk of various diseases by suppressing chronic inflammation. This nutritional intervention prevents ME-BYO and is beneficial for healthy longevity. Hence, a Mediterranean-styled Japanese diet might be helpful for healthy longevity in Japan and around the world.
Collapse
Affiliation(s)
- Kazuki Santa
- Department of Biotechnology, Tokyo College of Biotechnology, Ota-ku, Tokyo, Japan
| | - Yoshio Kumazawa
- Vino Science Japan, Inc., Kawasaki, Japan
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Kenji Watanabe
- Center for Kampo Medicine, Keio University, Shinjuku-ku, Tokyo, Japan
- Yokohama University of Pharmacy, Yokohama, Japan
| | - Isao Nagaoka
- Department of Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
- Faculty of Medical Science, Juntendo University, Urayasu, Japan
| |
Collapse
|
13
|
Cantone M. Molecular Mechanisms of Dementia. Int J Mol Sci 2023; 24:13027. [PMID: 37685834 PMCID: PMC10487875 DOI: 10.3390/ijms241713027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
The various forms of dementia and the other neurodegenerative disorders that affect memory, cognition, and behavior have become a public health priority across the developed world [...].
Collapse
Affiliation(s)
- Mariagiovanna Cantone
- Neurology Unit, Policlinico University Hospital "G. Rodolico-San Marco", 95123 Catania, Italy
| |
Collapse
|
14
|
Zhu L, Chen Y, Miao M, Liang H, Xi J, Wang Y, Yang K, Wang Z, Yuan W. Prenatal exposures to isoflavones and neurobehavioral development in children at 2 and 4 years of age: A birth cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115176. [PMID: 37393818 DOI: 10.1016/j.ecoenv.2023.115176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/11/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
Isoflavones (ISOs) are plant-derived estrogen-like compounds, which were already proved with cognition benefits on elderly people. However, studies assessing the associations between prenatal ISOs exposure and children's neurodevelopment are scarce. This study aimed to examine the associations between maternal urinary ISOs concentrations, including genistein (GEN), daidzein (DAD), glycitein (GLY), and metabolite equol (EQU), and children's neurodevelopment, based on a Chinese cohort study. Participants in this study were pregnant women recruited at 12-16 weeks of gestation, and they provided a single spot urine sample for the ISOs assay. Neurodevelopment was measured using the Child Behavior Checklist (CBCL) at 2 and 4 years of age. Negative binomial regression analysis and Generalized Estimating Equation (GEE) were performed to examine the associations between maternal urinary ISOs concentrations and CBCL scores. Associations were observed between moderate levels of prenatal ISOs exposure and decreased risks of childhood neurobehavioral problems, while the highest level of prenatal ISOs exposure was associated with increased risks of neurobehavioral problems among children. The neuroprotective effects were consistently between moderate DAD exposure and specific neurobehavioral problems, across different ages and sexes. For example, compared with the lowest exposure level, the third quartile group was associated with less Anxious/Depressed problems in boys at 2 years of age (RR=0.72 (95%CI: 0.52, 0.99)), girls at 2 years of age (RR=0.70 (95%CI: 0.46, 1.06)), boys at 4 years of age (RR=0.73 (95%CI: 0.55, 0.96)), and girls at 4 years of age (RR=0.95 (95%CI: 0.68, 1.31)).
Collapse
Affiliation(s)
- Lin Zhu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Yao Chen
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Maohua Miao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Hong Liang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Jianya Xi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Yan Wang
- School of Pharmacy, Shanghai Jiaotong University, Shanghai, China
| | - Kaige Yang
- School of Pharmacy, Shanghai Jiaotong University, Shanghai, China
| | - Ziliang Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China.
| | - Wei Yuan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| |
Collapse
|
15
|
Gong Y, Lv J, Pang X, Zhang S, Zhang G, Liu L, Wang Y, Li C. Advances in the Metabolic Mechanism and Functional Characteristics of Equol. Foods 2023; 12:2334. [PMID: 37372545 DOI: 10.3390/foods12122334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Equol is the most potent soy isoflavone metabolite and is produced by specific intestinal microorganisms of mammals. It has promising application possibilities for preventing chronic diseases such as cardiovascular disease, breast cancer, and prostate cancer due to its high antioxidant activity and hormone-like activity. Thus, it is of great significance to systematically study the efficient preparation method of equol and its functional activity. This paper elaborates on the metabolic mechanism of equol in humans; focuses on the biological characteristics, synthesis methods, and the currently isolated equol-producing bacteria; and looks forward to its future development and application direction, aiming to provide guidance for the application and promotion of equol in the field of food and health products.
Collapse
Affiliation(s)
- Yining Gong
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Jiaping Lv
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Xiaoyang Pang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Shuwen Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Guofang Zhang
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Libo Liu
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunna Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Chun Li
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Green Food Science Research Institute, Harbin 150030, China
| |
Collapse
|
16
|
Leyrolle Q, Prado-Perez L, Layé S. The gut-derived metabolites as mediators of the effect of healthy nutrition on the brain. Front Nutr 2023; 10:1155533. [PMID: 37360297 PMCID: PMC10289296 DOI: 10.3389/fnut.2023.1155533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/10/2023] [Indexed: 06/28/2023] Open
Abstract
Nutrition is now well recognized to be an environmental factor which positively or negatively influences the risk to develop neurological and psychiatric disorders. The gut microbiota has recently been shown to be an important actor mediating the relationship between environmental factors, including nutrition, and brain function. While its composition has been widely studied and associated with the risk of brain diseases, the mechanisms underlying the relationship between the gut and brain diseases remain to be explored. The wide range of bioactive molecules produced by the gut microbiota, called gut-derived metabolites (GDM), represent new players in the gut to brain interactions and become interesting target to promote brain health. The aim of this narrative review is to highlight some GDMs of interest that are produced in response to healthy food consumption and to summarize what is known about their potential effects on brain function. Overall, GDMs represent future useful biomarkers for the development of personalized nutrition. Indeed, their quantification after nutritional interventions is a useful tool to determine individuals' ability to produce microbiota-derived bioactive compounds upon consumption of specific food or nutrients. Moreover, GDMs represent also a new therapeutic approach to counteract the lack of response to conventional nutritional interventions.
Collapse
Affiliation(s)
- Quentin Leyrolle
- NutriNeurO, UMR 1286, Bordeaux INP, INRAE, University of Bordeaux, Bordeaux, France
| | | | | |
Collapse
|
17
|
Soukup ST, Engelbert AK, Watzl B, Bub A, Kulling SE. Microbial Metabolism of the Soy Isoflavones Daidzein and Genistein in Postmenopausal Women: Human Intervention Study Reveals New Metabotypes. Nutrients 2023; 15:nu15102352. [PMID: 37242235 DOI: 10.3390/nu15102352] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Soy isoflavones belong to the group of phytoestrogens and are associated with beneficial health effects but are also discussed to have adverse effects. Isoflavones are intensively metabolized by the gut microbiota leading to metabolites with altered estrogenic potency. The population is classified into different isoflavone metabotypes based on individual metabolite profiles. So far, this classification was based on the capacity to metabolize daidzein and did not reflect genistein metabolism. We investigated the microbial metabolite profile of isoflavones considering daidzein and genistein. METHODS Isoflavones and metabolites were quantified in the urine of postmenopausal women receiving a soy isoflavone extract for 12 weeks. Based on these data, women were clustered in different isoflavone metabotypes. Further, the estrogenic potency of these metabotypes was estimated. RESULTS Based on the excreted urinary amounts of isoflavones and metabolites, the metabolite profiles could be calculated, resulting in 5 metabotypes applying a hierarchical cluster analysis. The metabotypes differed in part strongly regarding their metabolite profile and their estimated estrogenic potency.
Collapse
Affiliation(s)
- Sebastian T Soukup
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| | - Ann Katrin Engelbert
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| | - Bernhard Watzl
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| | - Achim Bub
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| | - Sabine E Kulling
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| |
Collapse
|