1
|
Khan SA, Álvarez JV, Nidhi F, Benincore-Florez E, Tomatsu S. Evaluation of AAV vectors with tissue-specific or ubiquitous promoters in a mouse model of mucopolysaccharidosis type IVA. Mol Ther Methods Clin Dev 2025; 33:101447. [PMID: 40231249 PMCID: PMC11994321 DOI: 10.1016/j.omtm.2025.101447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/11/2025] [Indexed: 04/16/2025]
Abstract
Mucopolysaccharidosis type IVA (MPS IVA) is caused by a deficiency of N-acetyl-galactosamine-6-sulfate sulfatase (GALNS), leading to the accumulation of keratan sulfate and chondroitin-6-sulfate and development of severe skeletal dysplasia. Enzyme replacement therapy and hematopoietic stem cell transplantation are current treatment options but have limited impact on bone lesions. In this study, we investigated adeno-associated virus (AAV)8 or AAV9 vectors with liver-specific thyroxine-binding globulin or liver-specific promoter-a modification of hAAT (LSPX), liver-muscle tandem (LMTP), liver-bone tandem (LBTP), and ubiquitous cytomegalovirus early enhancer/chicken β-actin (CAG) promoters in MPS IVA mice to compare therapeutic efficacy on biochemical markers and bone pathology. All vectors provided near- or supraphysiological levels of GALNS enzyme activity in plasma. Enzyme activities were also detected in various tissues, including bone. AAV9co-CAG, AAV9co-LMTP, and AAV9co-LBTP showed higher enzyme activities in the liver; however, AAV8co-CAG and AAV9co-LMTP have higher activities in most other tissues. All vectors normalized keratan sulfate levels in plasma, liver, and bone. Pathological analyses showed the reduction or complete absence of vacuolated cells in heart muscle and valves in all treated mice, while the AAV9co-LMTP vector most improved bone pathology. Overall, all studied vectors indicated a substantial improvement in biochemical parameters and pathology, and the AAV9co-LMTP vector demonstrated the best combined therapeutic efficacy.
Collapse
Affiliation(s)
- Shaukat A. Khan
- Department of Biomedical Research, Nemours Children’s Health, Wilmington, DE 19803, USA
| | - Jose Victor Álvarez
- Department of Biomedical Research, Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Pediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain
| | - F.N.U. Nidhi
- Department of Biomedical Research, Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | | | - Shunji Tomatsu
- Department of Biomedical Research, Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Pediatrics, Shimane University, Izumo 693-8501, Japan
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1193, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
2
|
Laurent M, Harb R, Jenny C, Oustelandt J, Jimenez S, Cosette J, Landini F, Ferrante A, Corre G, Vujic N, Piccoli C, Brassier A, Van Wittenberghe L, Ronzitti G, Kratky D, Pacelli C, Amendola M. Rescue of lysosomal acid lipase deficiency in mice by rAAV8 liver gene transfer. COMMUNICATIONS MEDICINE 2025; 5:110. [PMID: 40216942 PMCID: PMC11992068 DOI: 10.1038/s43856-025-00816-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Lysosomal acid lipase deficiency (LAL-D) is an autosomal recessive disorder caused by mutations in the LIPA gene, which results in lipid accumulation leading to multi-organ failure. If left untreated, the severe form of LAL-D results in premature death within the first year of life due to failure to thrive and hepatic insufficiency. Weekly systemic injections of recombinant LAL protein, referred as enzyme replacement therapy, is the only available supportive treatment. METHOD Here, we characterized a novel Lipa-/- mouse model and developed a curative gene therapy treatment based on the in vivo administration of recombinant (r)AAV8 vector encoding the human LIPA transgene under the control of a hepatocyte-specific promoter. RESULTS Here we define the minimal rAAV8 dose required to rescue disease lethality and to correct cholesterol and triglyceride accumulation in multiple organs and blood. Finally, using liver transcriptomic and biochemical analysis, we show mitochondrial impairment in Lipa-/- mice and its recovery by gene therapy. CONCLUSIONS Overall, our in vivo gene therapy strategy achieves a stable long-term LAL expression sufficient to correct the disease phenotype in the Lipa-/- mouse model and offers a new therapeutic option for LAL-D patients.
Collapse
Affiliation(s)
- Marine Laurent
- Genethon, 91000, Evry, France
- Paris-Saclay University, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, 91000, Evry, France
| | - Rim Harb
- Genethon, 91000, Evry, France
- Paris-Saclay University, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, 91000, Evry, France
| | - Christine Jenny
- Genethon, 91000, Evry, France
- Paris-Saclay University, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, 91000, Evry, France
| | - Julie Oustelandt
- Genethon, 91000, Evry, France
- Paris-Saclay University, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, 91000, Evry, France
| | | | | | - Francesca Landini
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Aristide Ferrante
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Guillaume Corre
- Genethon, 91000, Evry, France
- Paris-Saclay University, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, 91000, Evry, France
| | - Nemanja Vujic
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medicine University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Claudia Piccoli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Anais Brassier
- Necker-Enfants-Malades University Hospital, Paris, France
| | | | - Giuseppe Ronzitti
- Genethon, 91000, Evry, France
- Paris-Saclay University, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, 91000, Evry, France
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medicine University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Consiglia Pacelli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Mario Amendola
- Genethon, 91000, Evry, France.
- Paris-Saclay University, Univ Evry, Inserm, Genethon, Integrare research unit UMR_S951, 91000, Evry, France.
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| |
Collapse
|
3
|
Purdy R, John M, Bray A, Clare AJ, Copland DA, Chan YK, Henderson RH, Nerinckx F, Leroy BP, Yang P, Pennesi ME, MacLaren RE, Fischer MD, Dick AD, Xue K. Gene Therapy-Associated Uveitis (GTAU): Understanding and mitigating the adverse immune response in retinal gene therapy. Prog Retin Eye Res 2025; 106:101354. [PMID: 40090458 DOI: 10.1016/j.preteyeres.2025.101354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 03/18/2025]
Abstract
Retinal gene therapy using adeno-associated viral (AAV) vectors has been a groundbreaking step-change in the treatment of inherited retinal diseases (IRDs) and could also be used to treat more common retinal diseases such as age-related macular degeneration and diabetic retinopathy. The delivery and expression of therapeutic transgenes in the eye is limited by innate and adaptive immune responses against components of the vector product, which has been termed gene therapy-associated uveitis (GTAU). This is clinically important as intraocular inflammation could lead to irreversible loss of retinal cells, deterioration of visual function and reduced durability of treatment effect associated with a costly one-off treatment. For retinal gene therapy to achieve an improved efficacy and safety profile for treating additional IRDs and more common diseases, the risk of GTAU must be minimised. We have collated insights from pre-clinical research, clinical trials, and the real-world implementation of AAV-mediated retinal gene therapy to help understand the risk factors for GTAU. We draw attention to an emerging framework, which includes patient demographics, vector construct, vector dose, route of administration, and choice of immunosuppression regime. Importantly, we consider efforts to date and potential future strategies to mitigate the adverse immune response across each of these domains. We advocate for more targeted immunomodulatory approaches to the prevention and treatment of GTAU based on better understanding of the underlying immune response.
Collapse
Affiliation(s)
- Ryan Purdy
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Molly John
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | | | - Alison J Clare
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK; University College London (UCL) Institute of Ophthalmology, London, UK; NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, London, UK
| | - David A Copland
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK; University College London (UCL) Institute of Ophthalmology, London, UK; NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, London, UK
| | - Ying Kai Chan
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA; Cirrus Therapeutics, Cambridge, MA, USA
| | - Robert H Henderson
- University College London (UCL) Great Ormond Street Institute of Child Health, London, UK; Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Fanny Nerinckx
- Chirec Delta Hospital, Brussels, Belgium; Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - Bart P Leroy
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium; Center for Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium; Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Paul Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, USA
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, USA; Retina Foundation of the Southwest, Dallas, TX, USA
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - M Dominik Fischer
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Andrew D Dick
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, Bristol, UK; University College London (UCL) Institute of Ophthalmology, London, UK; NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, London, UK
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| |
Collapse
|
4
|
Walkey CJ, Snow KJ, Bulcha J, Cox AR, Martinez AE, Ljungberg MC, Lanza DG, De Giorgi M, Chuecos MA, Alves-Bezerra M, Suarez CF, Hartig SM, Hilsenbeck SG, Hsu CW, Saville E, Gaitan Y, Duryea J, Hannigan S, Dickinson ME, Mirochnitchenko O, Wang D, Lutz CM, Heaney JD, Gao G, Murray SA, Lagor WR. A comprehensive atlas of AAV tropism in the mouse. Mol Ther 2025; 33:1282-1299. [PMID: 39863928 PMCID: PMC11897767 DOI: 10.1016/j.ymthe.2025.01.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/19/2024] [Accepted: 01/22/2025] [Indexed: 01/27/2025] Open
Abstract
Gene therapy with adeno-associated virus (AAV) vectors requires knowledge of their tropism within the body. Here we analyze the tropism of 10 naturally occurring AAV serotypes (AAV3B, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAVrh8, AAVrh10, and AAVrh74) following systemic delivery into male and female mice. A transgene-expressing ZsGreen and Cre recombinase was used to identify transduction in a cell-dependent manner based on fluorescence. Cre-driven activation of tdTomato fluorescence offered superior sensitivity for transduced cells. All serotypes except AAV3B and AAV4 had high liver tropism. Fluorescence activation revealed transduction of unexpected tissues, including adrenals, testes, and ovaries. Rare transduced cells within tissues were also readily visualized. Biodistribution of AAV genomes correlated with fluorescence, except in immune tissues. AAV4 was found to have a pan-endothelial tropism while also targeting pancreatic beta cells. This public resource enables selection of the best AAV serotypes for basic science and preclinical applications in mice.
Collapse
Affiliation(s)
- Christopher J Walkey
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kathy J Snow
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA
| | - Jote Bulcha
- Horae Gene Therapy Center and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Aaron R Cox
- Section of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexa E Martinez
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - M Cecilia Ljungberg
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Denise G Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Marco De Giorgi
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marcel A Chuecos
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michele Alves-Bezerra
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Carlos Flores Suarez
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sean M Hartig
- Section of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Susan G Hilsenbeck
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Chih-Wei Hsu
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ethan Saville
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA
| | - Yaned Gaitan
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA
| | - Jeff Duryea
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA
| | - Seth Hannigan
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA
| | - Mary E Dickinson
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Oleg Mirochnitchenko
- Office of Research Infrastructure Programs, Division of Program Coordination, Planning, and Strategic Initiatives, Office of the Director, National Institutes of Health, Bethesda, MD USA
| | - Dan Wang
- Horae Gene Therapy Center and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA; RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Cathleen M Lutz
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Guangping Gao
- Horae Gene Therapy Center and Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA; Li Weibo Institute for Rare Diseases Research, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Stephen A Murray
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA
| | - William R Lagor
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Clare AJ, Langer PM, Ward A, Chan YK, Dick AD, Copland DA. Characterization of the ocular inflammatory response to AAV reveals divergence by sex and age. Mol Ther 2025; 33:1246-1263. [PMID: 39825566 PMCID: PMC11897812 DOI: 10.1016/j.ymthe.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/12/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025] Open
Abstract
Progress for ocular adeno-associated virus (AAV) gene therapy has been hindered by AAV-induced inflammation, limiting dose escalation and long-term efficacy. Broadly, the extent of inflammatory responses alters with age and sex, yet these factors are poorly represented in pre-clinical development of ocular AAV gene therapies. Here, we combined clinical imaging, flow cytometry, and bulk sequencing of sorted microglia to interrogate the longitudinal inflammatory response following intravitreal delivery of AAV2 in young (3-month-old), middle aged (9-month-old), and old (18-month-old) Cx3cr1-creER:R26tdTomato+/- mice of both sexes. Young males and females exhibited a similar dynamic response, with peak inflammation evident at days 10-12 and signs of clinical resolution by day 28. However, the magnitude of the transcriptional response by microglia and adaptive T cell infiltrate differed between sexes. With age, increased and persistent inflammation were observed in both sexes, although old males maintained their microglia transcriptional AAV response signature. Contrarily, females demonstrated greater divergence in their inflammatory response across age, with enriched cellular stress and inflammatory gene expression in older mice and corresponding signs of retinal degeneration. These findings inform crucial sex and age differences for the therapeutic application of ocular gene therapy, highlighting the need to further understand these factors to overcome AAV immunogenicity.
Collapse
Affiliation(s)
- Alison J Clare
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, BS8 1TD Bristol, UK; NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, EC1V 2PD London, UK.
| | - Philip M Langer
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, BS8 1TD Bristol, UK
| | - Amy Ward
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, BS8 1TD Bristol, UK
| | - Ying Kai Chan
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, BS8 1TD Bristol, UK; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Andrew D Dick
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, BS8 1TD Bristol, UK; School of Cellular and Molecular Medicine, University of Bristol, BS8 1TD Bristol, UK; NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, EC1V 2PD London, UK; University College London Institute of Ophthalmology, EC1V 9EL London, UK
| | - David A Copland
- Academic Unit of Ophthalmology, Translational Health Sciences, University of Bristol, BS8 1TD Bristol, UK; NIHR Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital, EC1V 2PD London, UK.
| |
Collapse
|
6
|
Kuklin A, Slabber CF, Tortola L, Kwan CL, Liebisch G, Kondylis V, Mair F, Kopf M, Weber A, Werner S. An Nrf2-NF-κB Crosstalk Controls Hepatocyte Proliferation in the Normal and Injured Liver. Cell Mol Gastroenterol Hepatol 2025:101480. [PMID: 39970988 DOI: 10.1016/j.jcmgh.2025.101480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND & AIMS The liver has remarkable regenerative and detoxification capacities, which require the Nrf2 and NF-κB transcription factors. Although their individual functions in hepatocytes are well characterized, knowledge about their crosstalk in the adult liver is limited. METHODS We performed AAV8-Cre inducible, hepatocyte-specific knockout of Nrf2, the NF-κB subunit p65, or both genes to determine the individual and combined roles of these transcription factors in the intact liver of male adult mice and after acute CCl4 injury. Mice were characterized using histologic and immunohistochemical stainings, serum and liver bile acid analysis, flow cytometry, and RNA sequencing. To distinguish between cell-autonomous and non-cell-autonomous mechanisms, we generated and analyzed knockout and knockdown AML12 liver cells. Clodronate liposome-mediated macrophage depletion was used to determine the role of these immune cells in hepatocyte proliferation after CCl4 injection. RESULTS Loss of p65 alone or p65 in combination with Nrf2 caused spontaneous liver inflammation and necrosis. Gene expression profiling identified individual and common target genes of both transcription factors, including genes involved in the control of cell proliferation. Consistent with the expression of these genes, hepatocyte proliferation was reduced by Nrf2 deficiency under homeostatic conditions and after CCl4 injury, which was rescued by additional loss of p65. The increased hepatocyte proliferation in the double-knockout mice was non-cell-autonomous and correlated with macrophage accumulation in the liver. Depletion of macrophages in these mice suppressed hepatocyte proliferation after CCl4 treatment. CONCLUSIONS These results reveal a crosstalk between Nrf2 and p65 in the control of hepatocyte proliferation and point to a key role of macrophages in this effect.
Collapse
Affiliation(s)
- Andrii Kuklin
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland.
| | | | - Luigi Tortola
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Chan Lap Kwan
- Department of Pathology and Molecular Pathology, University of Zurich and University Hospital Zurich, Zurich, Switzerland; Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Vangelis Kondylis
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of Düsseldorf, Düsseldorf, Germany
| | - Florian Mair
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Manfred Kopf
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University of Zurich and University Hospital Zurich, Zurich, Switzerland; Institute of Molecular Cancer Research, University of Zurich, Zurich, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Belur LR, Huber AK, Mantone H, Robertson M, Smith MC, Karlen AD, Kitto KF, Ou L, Whitley CB, Braunlin E, Furcich J, Lund TC, Seelig D, Fairbanks CA, Buss N, Kim KH, McIvor RS. Intrathecal or intravenous AAV9-IDUA/RGX-111 at minimal effective dose prevents cardiac, skeletal and neurologic manifestations of murine MPS I. Mol Ther Methods Clin Dev 2024; 32:101369. [PMID: 39687731 PMCID: PMC11646787 DOI: 10.1016/j.omtm.2024.101369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/31/2024] [Indexed: 12/18/2024]
Abstract
Mucopolysaccharidosis type I (MPS I) is a rare metabolic disorder caused by deficiency of α-L-iduronidase (IDUA), resulting in glycosaminoglycan (GAG) accumulation and multisystemic disease. Current treatments include hematopoietic stem cell transplantation and enzyme replacement therapy, but these do not address all manifestations of the disease. We infused MPS I mice with an adeno-associated virus 9 (AAV9)-IDUA vector (RGX-111) at doses from 107 to 1010 vector genomes (vg) via intrathecal (IT), intravenous (IV), and intrathecal+intravenous (IT+IV) routes of administration. In mice administered doses ≤109 vg IT or ≤108 vg IV, there was no therapeutic benefit, while in mice administered 109 vg IV, there was a variable increase in IDUA activity with inconclusive neurocognitive and cardiac assessments. However, at the 1010 vg dose, we observed substantial metabolic correction, with restored IDUA levels and normalized tissue GAGs for all treatment groups. Aortic insufficiency was mostly normalized, neurologic deficit was prevented, and microcomputed tomography (micro-CT) analysis showed normalization of skeletal parameters. Histologic analysis showed minimal GAG storage and lysosomal pathology. We thus report a minimal effective dose of 1010 vg (5 × 1011 per kg) RGX-111 for IV and IT routes of administration in MPS I mice, which prevented neurocognitive deficit, cardiac insufficiency, and skeletal manifestations, as a model for genetic therapy of human MPS I.
Collapse
Affiliation(s)
- Lalitha R. Belur
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Avery K. Huber
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Hillary Mantone
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Mason Robertson
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Miles C. Smith
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Andrea D. Karlen
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Kelley F. Kitto
- Department of Pharmaceutics, University of Minnesota, Minneapolis MN, USA
| | - Li Ou
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Justin Furcich
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Troy C. Lund
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Davis Seelig
- Comparative Pathology Shared Resource, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | - R. Scott McIvor
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
8
|
Herreño-Pachón AM, Sawamoto K, Stapleton M, Khan S, Piechnik M, Álvarez JV, Tomatsu S. Adeno-Associated Virus Gene Transfer Ameliorates Progression of Skeletal Lesions in Mucopolysaccharidosis IVA Mice. Hum Gene Ther 2024; 35:955-968. [PMID: 39450470 DOI: 10.1089/hum.2024.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Mucopolysaccharidosis type IVA (MPS IVA) is an autosomal congenital metabolic lysosomal disease caused by a deficiency of the N-acetyl-galactosamine-6-sulfate sulfatase (GALNS) gene, leading to severe skeletal dysplasia. The available therapeutics for patients with MPS IVA, enzyme replacement therapy and hematopoietic stem cell transplantation, revealed limitations in the impact of skeletal lesions. Our previous study, a significant leap forward in MPS IVA research, showed that liver-targeted adeno-associated virus (AAV) gene transfer of human GALNS (hGALNS) restored GALNS enzymatic activity in blood and multiple tissues and partially improved the aberrant accumulation of storage materials. This promising approach was further validated in our current study, where we delivered AAV8 vectors expressing hGALNS, under the control of a liver-specific or ubiquitous promoter, into MPS IVA murine disease models. The results were highly encouraging, with both AAV8 vectors leading to supraphysiological enzymatic activity in plasma and improved cytoplasmic vacuolization of chondrocytes in bone lesions of MPS IVA mice. Notably, the ubiquitous promoter constructs, a potential game-changer, resulted in significantly greater enzyme activity levels in bone and improved pathological findings of cartilage lesions in these mice than in a liver-specific one during the 12-week monitoring period, reinforcing the positive outcomes of our research in MPS IVA treatment.
Collapse
Affiliation(s)
- Angélica María Herreño-Pachón
- Nemours Children's Health, Wilmington, Delaware, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, Delaware, USA
| | | | - Molly Stapleton
- Nemours Children's Health, Wilmington, Delaware, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, Delaware, USA
- Philadelphia College of Osteopathic Medicine, Philadelphia, Pennsylvania, USA
- Lehigh Valley Health Network, 1200 S. Cedar Crest Blvd. Allentown PA 18103
| | - Shaukat Khan
- Nemours Children's Health, Wilmington, Delaware, USA
| | - Matthew Piechnik
- Nemours Children's Health, Wilmington, Delaware, USA
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jose Victor Álvarez
- Nemours Children's Health, Wilmington, Delaware, USA
- Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, Santiago de Compostela, Spain
| | - Shunji Tomatsu
- Nemours Children's Health, Wilmington, Delaware, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, Delaware, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
McMurphy TB, Park A, Heizer PJ, Bottenfield C, Kurasawa JH, Ikeda Y, Doran MR. AAV-mediated co-expression of an immunogenic transgene plus PD-L1 enables sustained expression through immunological evasion. Sci Rep 2024; 14:28853. [PMID: 39572604 PMCID: PMC11582688 DOI: 10.1038/s41598-024-75698-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 10/08/2024] [Indexed: 11/24/2024] Open
Abstract
Adeno-associated virus (AAV) vectors can mediate long-term expression of immunogenic transgenes in vivo through transduction of tolerogenic cells in the liver. Tissue-targeted AAV vectors allow transduction of non-hepatic cells, but this necessitates development of strategies to minimize transgene immunogenicity. Here, we first validated that AAV capsids with tissue-specific tropism and transgene promoters enabled expression of the immunogenic protein, firefly luciferase, in liver, muscle, or adipose tissue. Cellular immunity was detectable in animals where luciferase was expressed in muscle or adipose, but not liver tissue. With the objective of enhancing tolerance of transduced non-hepatic cells, AAV vectors were engineered to co-express luciferase plus the immune checkpoint protein, PD-L1. In animals where transduced cells expressed luciferase but not PD-L1, there was incremental depletion of transduced cells over time. By contrast, the bioluminescent signal increased incrementally over the study, and was significantly greater, in the muscle and adipose tissue of animals where PD-L1 was co-expressed with luciferase. Our data demonstrate that PD-L1 co-expression facilitates persistent, tissue-targeted expression of immunogenic transgenes without transducing tolerogenic hepatic cells. Our strategy of PD-L1 co-expression may provide a versatile platform for sustained expression of immunogenic transgenes in gene and cell therapies.
Collapse
Affiliation(s)
- Travis B McMurphy
- Biologics Engineering, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Andrew Park
- Biologics Engineering, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Patrick J Heizer
- Biologics Engineering, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Crystal Bottenfield
- Biologics Engineering, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - James H Kurasawa
- Biologics Engineering, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Yasuhiro Ikeda
- Biologics Engineering, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA.
| | - Michael R Doran
- Biologics Engineering, Oncology R&D, AstraZeneca, One MedImmune Way, Gaithersburg, MD, 20878, USA.
| |
Collapse
|
10
|
Wiśniewska K, Rintz E, Żabińska M, Gaffke L, Podlacha M, Cyske Z, Węgrzyn G, Pierzynowska K. Comprehensive evaluation of pathogenic protein accumulation in fibroblasts from all subtypes of Sanfilippo disease patients. Biochem Biophys Res Commun 2024; 733:150718. [PMID: 39305572 DOI: 10.1016/j.bbrc.2024.150718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024]
Abstract
Sanfilippo disease is a lysosomal storage disorder from the group of mucopolysaccharidoses (MPS), characterized by storage of glycosaminoglycans (GAGs); thus, it is also called MPS type III. The syndrome is divided into 4 subtypes (MPS III A, B, C and D). Despite the storage of the same GAG, heparan sulfate (HS), the course of these subtypes can vary considerably. Here, we comprehensively evaluated the levels of protein aggregates (APP, β-amyloid, p-tau, α-synuclein, TDP43) in fibroblasts derived from patients with all MPS III subtypes, and tested whether lowering GAG levels results in a decrease in the levels of the investigated proteins and the number of aggregates they form. Elevated levels of APP, β-amyloid, tau, and TDP43 proteins were evident in all MPS III subtypes, and elevated levels of p-tau and α-synuclein were demonstrated in all subtypes except MPS IIIC. These findings were confirmed in the neural tissue of MPS IIIB mice. Fluorescence microscopy studies also indicated a high number of protein aggregates formed by β-amyloid and tau in all cell lines tested, and a high number of aggregates of p-tau, TDP43, and α-synuclein in all lines except MPS IIIC. Reduction of GAG levels by genistein led to the decrease of levels of all tested proteins and their aggregates except α-synuclein, indicating a relationship between GAG levels and those of some protein aggregates. This work describes for the first time the problem of deposited protein aggregates in all subtypes of Sanfilippo disease and suggests that GAGs are partly responsible for the formation of protein aggregates.
Collapse
Affiliation(s)
- Karolina Wiśniewska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Magdalena Żabińska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Lidia Gaffke
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Magdalena Podlacha
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Zuzanna Cyske
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| |
Collapse
|
11
|
Walkey CJ, Snow KJ, Bulcha J, Cox AR, Martinez AE, Ljungberg MC, Lanza DG, Giorgi MD, Chuecos MA, Alves-Bezerra M, Suarez CF, Hartig SM, Hilsenbeck SG, Hsu CW, Saville E, Gaitan Y, Duryea J, Hannigan S, Dickinson ME, Mirochnitchenko O, Wang D, Lutz CM, Heaney JD, Gao G, Murray SA, Lagor WR. A Comprehensive Atlas of AAV Tropism in the Mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612279. [PMID: 39314496 PMCID: PMC11418986 DOI: 10.1101/2024.09.10.612279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Gene therapy with Adeno-Associated Viral (AAV) vectors requires knowledge of their tropism within the body. Here we analyze the tropism of ten naturally occurring AAV serotypes (AAV3B, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAVrh8, AAVrh10 and AAVrh74) following systemic delivery into male and female mice. A transgene expressing ZsGreen and Cre recombinase was used to identify transduction in a cell-dependent manner based on fluorescence. Cre-driven activation of tdTomato fluorescence offered superior sensitivity for transduced cells. All serotypes except AAV3B and AAV4 had high liver tropism. Fluorescence activation revealed transduction of unexpected tissues, including adrenals, testes and ovaries. Rare transduced cells within tissues were also readily visualized. Biodistribution of AAV genomes correlated with fluorescence, except in immune tissues. AAV4 was found to have a pan-endothelial tropism while also targeting pancreatic beta cells. This public resource enables selection of the best AAV serotypes for basic science and preclinical applications in mice.
Collapse
|
12
|
Słyk Ż, Stachowiak N, Małecki M. Recombinant Adeno-Associated Virus Vectors for Gene Therapy of the Central Nervous System: Delivery Routes and Clinical Aspects. Biomedicines 2024; 12:1523. [PMID: 39062095 PMCID: PMC11274884 DOI: 10.3390/biomedicines12071523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
The Central Nervous System (CNS) is vulnerable to a range of diseases, including neurodegenerative and oncological conditions, which present significant treatment challenges. The blood-brain barrier (BBB) restricts molecule penetration, complicating the achievement of therapeutic concentrations in the CNS following systemic administration. Gene therapy using recombinant adeno-associated virus (rAAV) vectors emerges as a promising strategy for treating CNS diseases, demonstrated by the registration of six gene therapy products in the past six years and 87 ongoing clinical trials. This review explores the implementation of rAAV vectors in CNS disease treatment, emphasizing AAV biology and vector engineering. Various administration methods-such as intravenous, intrathecal, and intraparenchymal routes-and experimental approaches like intranasal and intramuscular administration are evaluated, discussing their advantages and limitations in different CNS contexts. Additionally, the review underscores the importance of optimizing therapeutic efficacy through the pharmacokinetics (PK) and pharmacodynamics (PD) of rAAV vectors. A comprehensive analysis of clinical trials reveals successes and challenges, including barriers to commercialization. This review provides insights into therapeutic strategies using rAAV vectors in neurological diseases and identifies areas requiring further research, particularly in optimizing rAAV PK/PD.
Collapse
Affiliation(s)
- Żaneta Słyk
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
- Laboratory of Gene Therapy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Natalia Stachowiak
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Maciej Małecki
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
- Laboratory of Gene Therapy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
13
|
Rintz E, Celik B, Fnu N, Herreño-Pachón AM, Khan S, Benincore-Flórez E, Tomatsu S. Molecular therapy and nucleic acid adeno-associated virus-based gene therapy delivering combinations of two growth-associated genes to MPS IVA mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102211. [PMID: 38831899 PMCID: PMC11145352 DOI: 10.1016/j.omtn.2024.102211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/03/2024] [Indexed: 06/05/2024]
Abstract
Mucopolysaccharidosis type IVA (MPS IVA) is caused by a deficiency of the galactosamine (N-acetyl)-6-sulfatase (GALNS) enzyme responsible for the degradation of specific glycosaminoglycans (GAGs). The progressive accumulation of GAGs leads to various skeletal abnormalities (short stature, hypoplasia, tracheal obstruction) and several symptoms in other organs. To date, no treatment is effective for patients with bone abnormalities. To improve bone pathology, we propose a novel combination treatment with the adeno-associated virus (AAV) vectors expressing GALNS enzyme and a natriuretic peptide C (CNP; NPPC gene) as a growth-promoting agent for MPS IVA. In this study, an MPS IVA mouse model was treated with an AAV vector expressing GALNS combined with another AAV vector expressing NPPC gene, followed for 12 weeks. After the combination therapy, bone growth in mice was induced with increased enzyme activity in tissues (bone, liver, heart, lung) and plasma. Moreover, there were significant changes in bone morphology in CNP-treated mice with increased CNP activity in plasma. Delivering combinations of CNP and GALNS gene therapies enhanced bone growth in MPS IVA mice more than in GALNS gene therapy alone. Enzyme expression therapy alone fails to reach the bone growth region; our results indicate that combining it with CNP offers a potential alternative.
Collapse
Affiliation(s)
- Estera Rintz
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland
| | - Betul Celik
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
| | - Nidhi Fnu
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
| | - Angélica María Herreño-Pachón
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
| | - Shaukat Khan
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | | | - Shunji Tomatsu
- Nemours Children’s Health, Wilmington, DE 19803, USA
- Faculty of Arts and Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| |
Collapse
|
14
|
Smith MC, Belur LR, Karlen AD, Erlanson O, Furcich J, Lund TC, Seelig D, Kitto KF, Fairbanks CA, Kim KH, Buss N, McIvor RS. Comparative dose effectiveness of intravenous and intrathecal AAV9.CB7.hIDS, RGX-121, in mucopolysaccharidosis type II mice. Mol Ther Methods Clin Dev 2024; 32:101201. [PMID: 38374962 PMCID: PMC10875268 DOI: 10.1016/j.omtm.2024.101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/24/2024] [Indexed: 02/21/2024]
Abstract
Mucopolysaccharidosis type II (MPS II) is an X-linked recessive lysosomal disease caused by iduronate-2-sulfatase (IDS) deficiency, leading to accumulation of glycosaminoglycans (GAGs) and the emergence of progressive disease. Enzyme replacement therapy is the only currently approved treatment, but it leaves neurological disease unaddressed. Cerebrospinal fluid (CSF)-directed administration of AAV9.CB7.hIDS (RGX-121) is an alternative treatment strategy, but it is unknown if this approach will affect both neurologic and systemic manifestations. We compared the effectiveness of intrathecal (i.t.) and intravenous (i.v.) routes of administration (ROAs) at a range of vector doses in a mouse model of MPS II. While lower doses were completely ineffective, a total dose of 1 × 109 gc resulted in appreciable IDS activity levels in plasma but not tissues. Total doses of 1 × 1010 and 1 × 1011 gc by either ROA resulted in supraphysiological plasma IDS activity, substantial IDS activity levels and GAG reduction in nearly all tissues, and normalized zygomatic arch diameter. In the brain, a dose of 1 × 1011 gc i.t. achieved the highest IDS activity levels and the greatest reduction in GAG content, and it prevented neurocognitive deficiency. We conclude that a dose of 1 × 1010 gc normalized metabolic and skeletal outcomes, while neurologic improvement required a dose of 1 × 1011 gc, thereby suggesting the prospect of a similar direct benefit in humans.
Collapse
Affiliation(s)
- Miles C. Smith
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lalitha R. Belur
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Andrea D. Karlen
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Olivia Erlanson
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Justin Furcich
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Troy C. Lund
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Davis Seelig
- Comparative Pathology Shared Resource, University of Minnesota, St. Paul, MN 55455, USA
| | - Kelley F. Kitto
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carolyn A. Fairbanks
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Nick Buss
- REGENXBIO Inc., Rockville, MD 20850, USA
| | - R. Scott McIvor
- Center for Genome Engineering, Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
15
|
Notarte KI, Catahay JA, Macasaet R, Liu J, Velasco JV, Peligro PJ, Vallo J, Goldrich N, Lahoti L, Zhou J, Henry BM. Infusion reactions to adeno-associated virus (AAV)-based gene therapy: Mechanisms, diagnostics, treatment and review of the literature. J Med Virol 2023; 95:e29305. [PMID: 38116715 DOI: 10.1002/jmv.29305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/03/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
The use of adeno-associated virus (AAV) vectors in gene therapy has demonstrated great potential in treating genetic disorders. However, infusion-associated reactions (IARs) pose a significant challenge to the safety and efficacy of AAV-based gene therapy. This review provides a comprehensive summary of the current understanding of IARs to AAV therapy, including their underlying mechanisms, clinical presentation, and treatment options. Toll-like receptor activation and subsequent production of pro-inflammatory cytokines are associated with IARs, stimulating neutralizing antibodies (Nabs) and T-cell responses that interfere with gene therapy. Risk factors for IARs include high titers of pre-existing Nabs, previous exposure to AAV, and specific comorbidities. Clinical presentation ranges from mild flu-like symptoms to severe anaphylaxis and can occur during or after AAV administration. There are no established guidelines for pre- and postadministration tests for AAV therapies, and routine laboratory requests are not standardized. Treatment options include corticosteroids, plasmapheresis, and supportive medications such as antihistamines and acetaminophen, but there is no consensus on the route of administration, dosage, and duration. This review highlights the inadequacy of current treatment regimens for IARs and the need for further research to improve the safety and efficacy of AAV-based gene therapy.
Collapse
Affiliation(s)
- Kin Israel Notarte
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jesus Alfonso Catahay
- Department of Medicine, Saint Peter's University Hospital, New Brunswick, New Jersey, USA
| | - Raymart Macasaet
- Department of Medicine, Monmouth Medical Center, Long Branch, New Jersey, USA
| | - Jin Liu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | - Jolaine Vallo
- Faculty of Medicine and Surgery, University of Santo Tomas, Manila, Philippines
| | | | - Lokesh Lahoti
- Department of Medicine, Saint Peter's University Hospital, New Brunswick, New Jersey, USA
| | - Jiayan Zhou
- Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Brandon Michael Henry
- Clinical Laboratory, Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|