1
|
Laurindo LF, Rodrigues VD, Laurindo LF, Cherain LMA, de Lima EP, Boaro BL, da Silva Camarinha Oliveira J, Chagas EFB, Catharin VCS, Dos Santos Haber JF, Dos Santos Bueno PC, Direito R, Barbalho SM. Targeting AMPK with Irisin: Implications for metabolic disorders, cardiovascular health, and inflammatory conditions - A systematic review. Life Sci 2025; 360:123230. [PMID: 39532260 DOI: 10.1016/j.lfs.2024.123230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/28/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Irisin-based interventions have gained attention for their potential to modulate the adenosine monophosphate (AMP)-activated protein kinase (AMPK) pathway in various diseases. Physiologically, irisin is a myokine released during physical exercise that exerts anti-inflammatory effects and is a metabolic and cardiometabolic enhancer. On the other hand, AMPK is crucial for maintaining energy balance and metabolic homeostasis. Therefore, individuals presenting low blood levels of irisin and AMPK dysregulation are more predisposed to metabolic disorders and cardiovascular health inflammatory conditions since regulating energy balance and metabolic homeostasis are crucial for preventing or treating these disorders. In light of those mentioned above and considering that no review has addressed the intricate relationships between irisin and AMPK regulation in the realm of metabolic disorders, cardiovascular health, and inflammatory conditions, we comprehensively reviewed studies involving irisin's effects on AMPK signaling in different models and interventions. Our systematic analysis involved in vitro studies, animal models, and their relevant clinical implications of irisin targeting AMPK due to the absence of relevant clinical trials. The outcomes and limitations of the included studies were extensively highlighted. Objectively, irisin improved metabolic disorders by enhancing β-cell function and insulin secretion in diabetes, mitigating myocardial injury in cardiovascular conditions, and reducing inflammation and oxidative stress in various injury models by targeting AMPK. However, the lack of clinical trials limits the generalizability of these findings to human subjects. Future research should focus on translating these findings into clinical applications and exploring the broader implications of irisin-based interventions in human health.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, 17519-030 São Paulo, Brazil; Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil; Department of Administration, Associate Degree in Hospital Management, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil.
| | - Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, 17519-030 São Paulo, Brazil
| | - Lívia Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, 15090-000 São Paulo, Brazil
| | - Luana Maria Amaral Cherain
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, 17519-030 São Paulo, Brazil
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil
| | - Beatriz Leme Boaro
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, 17519-030 São Paulo, Brazil
| | - Jéssica da Silva Camarinha Oliveira
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, 17519-030 São Paulo, Brazil
| | - Eduardo Federighi Baisi Chagas
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil
| | - Vitor Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil
| | | | - Patrícia Cincotto Dos Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil
| | - Rosa Direito
- Laboratory of Systems Integration Pharmacology, Clinical and Regulatory Science, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisbon, Portugal.
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil; Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, 17500-000 São Paulo, Brazil; UNIMAR Charity Hospital, Universidade de Marília (UNIMAR), Marília, 17525-902 São Paulo, Brazil
| |
Collapse
|
2
|
Nunes YC, Santos GDO, Machado NM, Otoboni AMMB, Laurindo LF, Bishayee A, Fimognari C, Bishayee A, Barbalho SM. Corrigendum to Peanut (Arachis hypogaea L.) seeds and by-products in metabolic syndrome and cardiovascular disorders: A systematic review of clinical studies Phytomedicine 123 (2024) 155170. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024:155870. [PMID: 39592301 DOI: 10.1016/j.phymed.2024.155870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
BACKGROUND Cardiovascular diseases (CVDs) are the leading causes of death worldwide. The main risk factors are hypertension, diabetes, obesity, and increased serum lipids. The peanut (Arachis hypogaea L.), also known as the groundnut, goober, pindar, or monkey nut, belongs to the Fabaceae family and is the fourth most cultivated oilseed in the world. The seeds and skin of peanuts possess a rich phytochemical profile composed of antioxidants, such as phenolic acids, stilbenes, flavonoids, and phytosterols. Peanut consumption can provide numerous health benefits, such as anti-obesity, antidiabetic, antihypertensive, and hypolipidemic effects. Accordingly, peanuts have the potential to treat CVD and counteract its risk factors. PURPOSE This study aims to critically evaluate the effects of peanuts on metabolic syndrome (MetS) and CVD risk factors based on clinical studies. METHOD This review includes studies indexed in MEDLINE-PubMed, COCHRANE, and EMBASE, and the Preferred Reporting Items for a Systematic Review and Meta-Analysis guidelines were adhered to. RESULTS Nineteen studies were included and indicated that the consumption of raw peanuts or differing forms of processed foods containing peanut products and phytochemicals could improve metabolic parameters, such as glycemia, insulinemia, glycated hemoglobin, lipids, body mass index, waist circumference, atherogenic indices, and endothelial function. CONCLUSION We propose that this legume and its products be used as a sustainable and low-cost alternative for the prevention and treatment of MetS and CVD. However, further research with larger sample sizes, longer intervention durations, and more diverse populations is needed to understand the full benefit of peanut consumption in MetS and CVD.
Collapse
Affiliation(s)
- Yandra Cervelim Nunes
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Gian de Oliveira Santos
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Nathália Mendes Machado
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Alda M M B Otoboni
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, São Paulo, Brazil
| | - Anusha Bishayee
- Department of Statistics and Data Science, College of Arts and Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Carmela Fimognari
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| | - Sandra Maria Barbalho
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil; Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil.
| |
Collapse
|
3
|
Yang Z, Li X, Song W, Zhang Y. Associations between meeting 24-h movement guidelines and sarcopenia risk among adults aged ≥ 55 years in five low- and middle-income countries. Complement Ther Clin Pract 2024; 57:101887. [PMID: 39084129 DOI: 10.1016/j.ctcp.2024.101887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/09/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVE To diminish the negative influence of sarcopenia on senior adults, the study aimed to investigate the association between adherence to 24-h movement behavior guidelines (physical activity, sedentary behavior, sleep duration) and the risk of sarcopenia among individuals aged ≥55 years in five low- and middle-income countries (LMICs). METHODS A total of 16,503 adults aged ≥55 years were included in this cross-sectional study. The study utilized data from Global Aging and Adult Health Survey (SAGE). Participants reported their information about physical activity, sedentary behavior, and sleep duration using the questionnaire. Sarcopenia was identified as low skeletal muscle mass with a diminished gait speed or weakened handgrip strength. Multiple logistic regression models were used to investigate the association between adherence to 24-h movement behavior guidelines and the risk of sarcopenia. RESULTS Merely 32.73 % of participants met all three 24-h movement behavior guidelines (physical activity, less sedentary behavior, sleep). Meeting all three guidelines (p < 0.01) was significantly associated with a lower risk of sarcopenia. Meeting physical activity only (p < 0.05), or meeting both physical activity and sedentary behaivor (p < 0.05), or meeting both physical activity and sleep duration (p < 0.01) guidelines were also associated with a reduced risk of sarcopenia. Moreover, adults aged 65+ years who adhered to 24-h movement behavior guidelines exhibited a significantly reduced risk of developing sarcopenia. CONCLUSION The findings suggest that the adherence to 24-h movement behavior guidelines for regular physical activity, limited sedentary behavior, and sufficient sleep duration was associated with a reduced risk of sarcopenia in adults aged ≥55 years in five LMICs.
Collapse
Affiliation(s)
- Ziyi Yang
- School of Humanities and Social Science, The Chinese University of Hong Kong, Shenzhen, 518172, China; Physical Activity and Health Promotion Laboratory, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Xinxing Li
- Department of Physical Education, Seoul National University, Seoul, 08826, South Korea; Institute on Aging, Seoul National University, Seoul, 08826, South Korea.
| | - Wook Song
- Department of Physical Education, Seoul National University, Seoul, 08826, South Korea; Institute on Aging, Seoul National University, Seoul, 08826, South Korea; Institute of Sport Science, Seoul National University, 08826, Seoul Korea
| | - Yanjie Zhang
- School of Humanities and Social Science, The Chinese University of Hong Kong, Shenzhen, 518172, China; Physical Activity and Health Promotion Laboratory, The Chinese University of Hong Kong, Shenzhen, 518172, China.
| |
Collapse
|
4
|
Laurindo LF, Laurindo LF, Rodrigues VD, Chagas EFB, da Silva Camarinha Oliveira J, Catharin VMCS, Barbalho SM. Mechanisms and effects of AdipoRon, an adiponectin receptor agonist, on ovarian granulosa cells-a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03441-9. [PMID: 39292249 DOI: 10.1007/s00210-024-03441-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024]
Abstract
Granulosa cells, crucial components of ovarian follicles, play a fundamental role in follicle development, hormone production, and overall reproductive health. These cells are integral to steroidogenesis, including the synthesis and secretion of key hormones such as estrogen and progesterone. Dysregulation of granulosa cells can lead to reproductive disorders, including polycystic ovary syndrome and infertility. This systematic review provides a comprehensive evaluation of AdipoRon, a synthetic agonist of adiponectin receptors AdipoR1 and AdipoR2, and its effects on ovarian function, with a particular focus on granulosa cells. Due to the absence of clinical trials, the review centers on preclinical studies to explore AdipoRon's potential therapeutic benefits and to suggest future research directions. A detailed literature search across databases such as PubMed, Scopus, Web of Science, Embase, and Google Scholar was conducted using terms related to AdipoRon and ovarian function. The review encompasses four preclinical studies involving various models: primary granulosa cells from rats, laying hens' granulosa cells, human luteinized granulosa cells, and chicken ovary follicles. Findings indicate that AdipoRon enhances glucose absorption in rat granulosa cells by stimulating glucose transporter 1 expression, modulates steroid hormone secretion in laying hens' granulosa cells, and affects cell proliferation and steroidogenesis in human luteinized granulosa cells. Additionally, AdipoRon, in conjunction with recombinant chicken adiponectin, influences ovarian follicular cell proliferation and steroidogenesis in chicken ovary follicles. This review highlights the need for further investigation into AdipoRon's long-term effects and its potential applications in reproductive health and therapy.
Collapse
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil.
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil.
- Department of Administration, Associate Degree in Hospital Management, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil.
| | - Lívia Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de São José Do Rio Preto (FAMERP), São José Do Rio Preto, São Paulo, 15090-000, Brazil
| | - Victória Dogani Rodrigues
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil
| | - Eduardo Federighi Baisi Chagas
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- School of Medicine, Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Jéssica da Silva Camarinha Oliveira
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil
| | - Virgínia Maria Cavallari Strozze Catharin
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- School of Medicine, Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- School of Medicine, Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, 17500-000, Brazil
- UNIMAR Charity Hospital, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| |
Collapse
|
5
|
Nunes YC, Mendes NM, Pereira de Lima E, Chehadi AC, Lamas CB, Haber JFS, dos Santos Bueno M, Araújo AC, Catharin VCS, Detregiachi CRP, Laurindo LF, Tanaka M, Barbalho SM, Marin MJS. Curcumin: A Golden Approach to Healthy Aging: A Systematic Review of the Evidence. Nutrients 2024; 16:2721. [PMID: 39203857 PMCID: PMC11357524 DOI: 10.3390/nu16162721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Aging-related disorders pose significant challenges due to their complex interplay of physiological and metabolic factors, including inflammation, oxidative stress, and mitochondrial dysfunction. Curcumin, a natural compound with potent antioxidant and anti-inflammatory properties, has emerged as a promising candidate for mitigating these age-related processes. However, gaps in understanding the precise mechanisms of curcumin's effects and the optimal dosages for different conditions necessitate further investigation. This systematic review synthesizes current evidence on curcumin's potential in addressing age-related disorders, emphasizing its impact on cognitive function, neurodegeneration, and muscle health in older adults. By evaluating the safety, efficacy, and mechanisms of action of curcumin supplementation, this review aims to provide insights into its therapeutic potential for promoting healthy aging. A systematic search across three databases using specific keywords yielded 2256 documents, leading to the selection of 15 clinical trials for synthesis. Here, we highlight the promising potential of curcumin as a multifaceted therapeutic agent in combating age-related disorders. The findings of this review suggest that curcumin could offer a natural and effective approach to enhancing the quality of life of aging individuals. Further research and well-designed clinical trials are essential to validate these findings and optimize the use of curcumin in personalized medicine approaches for age-related conditions.
Collapse
Affiliation(s)
- Yandra Cervelim Nunes
- Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, SP, Brazil; (Y.C.N.); (L.F.L.)
| | - Nathalia M. Mendes
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
| | - Amanda Chabrour Chehadi
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
| | - Caroline Barbalho Lamas
- Department of Gerontology, School of Gerontology, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
| | - Jesselina F. S. Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
| | - Manoela dos Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (V.C.S.C.); (C.R.P.D.)
| | - Vitor C. Strozze Catharin
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (V.C.S.C.); (C.R.P.D.)
| | - Claudia Rucco P. Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (V.C.S.C.); (C.R.P.D.)
| | - Lucas Fornari Laurindo
- Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, SP, Brazil; (Y.C.N.); (L.F.L.)
| | - Masaru Tanaka
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (V.C.S.C.); (C.R.P.D.)
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil
- Research Coordination, Hospital Beneficente (HBU), University of Marília (UNIMAR), Marília 17525-160, SP, Brazil
| | | |
Collapse
|
6
|
Yen CT, Livneh H, Huang HL, Lu MC, Chen WJ, Tsai TY. Decreased Risk of Osteoporosis Incident in Subjects Receiving Chinese Herbal Medicine for Sjögren syndrome Treatment: A Retrospective Cohort Study with a Nested Case-Control Analysis. Pharmaceuticals (Basel) 2024; 17:745. [PMID: 38931412 PMCID: PMC11207029 DOI: 10.3390/ph17060745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Sjögren syndrome (SS) is a long-lasting inflammatory autoimmune disease that may cause diverse manifestations, particularly osteoporosis. Though usage of Chinese herbal medicine (CHM) can safely manage autoimmune disease and treatment-related symptoms, the relation between CHM use and osteoporosis risk in SS persons is not yet recognized. With that in mind, this population-level nested case-control study aimed to compare the risk of osteoporosis with and without CHM use. Potential subjects aged 20-70 years, diagnosed with SS between 2001 and 2010, were retrieved from a national health claims database. Those diagnosed with osteoporosis after SS were identified and randomly matched to those without osteoporosis. We capitalize on the conditional logistic regression to estimate osteoporosis risk following CHM use. A total of 1240 osteoporosis cases were detected and randomly matched to 1240 controls at a ratio of 1:1. Those receiving conventional care plus CHM had a substantially lower chance of osteoporosis than those without CHM. Prolonged use of CHM, especially for one year or more, markedly dwindled sequent osteoporosis risk by 71%. Integrating CHM into standard care may favor the improvement of bone function, but further well-designed randomized controlled trials to investigate the possible mechanism are needed.
Collapse
Affiliation(s)
- Chieh-Tsung Yen
- Department of Neurology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
| | - Hanoch Livneh
- Rehabilitation Counseling Program, Portland State University, Portland, OR 97207-0751, USA
| | - Hua-Lung Huang
- Department of Rehabilitation, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
| | - Ming-Chi Lu
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
| | - Wei-Jen Chen
- Department of Chinese Medicine, Dalin Tzuchi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 333325, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Center of Sports Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
| | - Tzung-Yi Tsai
- Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan
| |
Collapse
|
7
|
Hu J, Wang Y, Ji X, Zhang Y, Li K, Huang F. Non-Pharmacological Strategies for Managing Sarcopenia in Chronic Diseases. Clin Interv Aging 2024; 19:827-841. [PMID: 38765795 PMCID: PMC11102744 DOI: 10.2147/cia.s455736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
This article focuses on a range of non-pharmacological strategies for managing sarcopenia in chronic diseases, including exercise, dietary supplements, traditional Chinese exercise, intestinal microecology, and rehabilitation therapies for individuals with limited limb movement. By analyzing multiple studies, the article aims to summarize the available evidence to manage sarcopenia in individuals with chronic diseases. The results strongly emphasize the role of resistance training in addressing chronic diseases and secondary sarcopenia. Maintaining the appropriate frequency and intensity of resistance training can help prevent muscle atrophy and effectively reduce inflammation. Although aerobic exercise has limited ability to improve skeletal muscle mass, it does have some positive effects on physical function. Building upon this, the article explores the potential benefits of combined training approaches, highlighting their helpfulness for overall quality of life. Additionally, the article also highlights the importance of dietary supplements in combating muscle atrophy in chronic diseases. It focuses on the importance of protein intake, supplements rich in essential amino acids and omega-3, as well as sufficient vitamin D to prevent muscle atrophy. Combining exercise with dietary supplements appears to be an effective strategy for preventing sarcopenia, although the optimal dosage and type of supplement remain unclear. Furthermore, the article explores the potential benefits of intestinal microecology in sarcopenia. Probiotics, prebiotics, and bacterial products are suggested as new treatment options for sarcopenia. Additionally, emerging therapies such as whole body vibration training, blood flow restriction, and electrical stimulation show promise in treating sarcopenia with limited limb movement. Overall, this article provides valuable insights into non-pharmacological strategies for managing sarcopenia in individuals with chronic diseases. It emphasizes the importance of a holistic and integrated approach that incorporates exercise, nutrition, and multidisciplinary interventions, which have the potential to promote health in the elderly population. Future research should prioritize high-quality randomized controlled trials and utilize wearable devices, smartphone applications, and other advanced surveillance methods to investigate the most effective intervention strategies for sarcopenia associated with different chronic diseases.
Collapse
Affiliation(s)
- Jiawen Hu
- Department of Rheumatology and Immunology, First Medical Center of Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Yiwen Wang
- Department of Rheumatology and Immunology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiaojian Ji
- Department of Rheumatology and Immunology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yinan Zhang
- Department of Rheumatology and Immunology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Kunpeng Li
- Department of Rheumatology and Immunology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Feng Huang
- Department of Rheumatology and Immunology, First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Barbalho SM, de Alvares Goulart R, Minniti G, Bechara MD, de Castro MVM, Dias JA, Laurindo LF. Unraveling the rationale and conducting a comprehensive assessment of KD025 (Belumosudil) as a candidate drug for inhibiting adipogenic differentiation-a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2681-2699. [PMID: 37966572 DOI: 10.1007/s00210-023-02834-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/02/2023] [Indexed: 11/16/2023]
Abstract
Rho-associated kinases (ROCKs) are crucial during the adipocyte differentiation process. KD025 (Belumosudil) is a newly developed inhibitor that selectively targets ROCK2. It has exhibited consistent efficacy in impeding adipogenesis across a spectrum of in vitro models of adipogenic differentiation. Given the novelty of this treatment, a comprehensive systematic review has not been conducted yet. This systematic review aims to fill this knowledge void by providing readers with an extensive examination of the rationale behind KD025 and its impacts on adipogenesis. Preclinical evidence was gathered owing to the absence of clinical trials. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed, and the study's quality was assessed using the Joanna Briggs Institute (JBI) Checklist Critical Appraisal Tool for Systematic Reviews. In various in vitro models, such as 3T3-L1 cells, human orbital fibroblasts, and human adipose-derived stem cells, KD025 demonstrated potent anti-adipogenic actions. At a molecular level, KD025 had significant effects, including decreasing fibronectin (Fn) expression, inhibiting ROCK2 and CK2 activity, suppressing lipid droplet formation, and reducing the expression of proadipogenic genes peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα). Additionally, KD025 resulted in the suppression of fatty acid-binding protein 4 (FABP4 or AP2) expression, a decrease in sterol regulatory element binding protein 1c (SREBP-1c) and Glut-4 expression. Emphasis must be placed on the fact that while KD025 shows potential in preclinical studies and experimental models, extensive research is crucial to assess its efficacy, safety, and potential therapeutic applications thoroughly and directly in human subjects.
Collapse
Affiliation(s)
- Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília, São Paulo, 17500-000, Brazil
| | - Ricardo de Alvares Goulart
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Giulia Minniti
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Marcela Vialogo Marques de Castro
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Jefferson Aparecido Dias
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília, São Paulo, 17525-902, Brazil.
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo, 17519-030, Brazil.
| |
Collapse
|
9
|
Cai L, Tan J, Chen X, Wang F, Zhang X, Chen J, Liu C, Sun Y. Ambient air pollution exposure and the risk of probable sarcopenia: A prospective cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116273. [PMID: 38564861 DOI: 10.1016/j.ecoenv.2024.116273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Sarcopenia is characterized by decreased muscle mass and strength, posing threat to quality of life. Air pollutants are increasingly recognized as risk factors for diseases, while the relationship between the two remains to be elucidated. This study investigated whether exposure to ambient air pollution contributes to the development of sarcopenia. METHODS We employed the data from the UK Biobank with 303,031 eligible participants. Concentrations of PM2·5, NO2, and NOx were estimated. Cox proportional hazard regression models were applied to investigate the associations between pollutants and sarcopenia. RESULTS 30,766 probable sarcopenia cases was identified during the follow-up. We observed that exposure to PM2.5 (HR, 1.232; 95% CI, 1.053-1.440), NO2 (HR, 1.055; 95% CI, 1.032-1.078) and NOx (HR, 1.016; 95% CI, 1.007-1.026) were all significantly associated with increased risk for probable sarcopenia for each 10 μg/m3 increase in pollutant concentration. In comparison with individuals in the lowest quartiles of exposure, those in the upper quartiles had significantly increased risk of probable sarcopenia. Sarcopenia-related factors, e.g., reduced lean muscle mass, diminished walking pace, and elevated muscle fat infiltration ratio, also exhibited positive associations with exposure to ambient air pollution. On the contrary, high level physical activity significantly mitigated the influence of air pollutants on the development of probable sarcopenia. CONCLUSIONS Air pollution exposure elevated the risk of developing sarcopenia and related manifestations in a dose-dependent manner, while physical activity maintained protective under this circumstance. Efforts should be made to control air pollution and emphasize the importance of physical activity for skeletal muscle health under this circumstance.
Collapse
Affiliation(s)
- Lubing Cai
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Jiale Tan
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Xinyi Chen
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Fuchao Wang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Xingyu Zhang
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Jiwu Chen
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| | - Yaying Sun
- Department of Sports Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China.
| |
Collapse
|
10
|
Ghazaiean M, Najafi B, Zamanfar D, Alipour MJ. Risk factors for suboptimal glycemic control in pediatrics with type 1 diabetes mellitus: a cross-sectional study. Sci Rep 2024; 14:7492. [PMID: 38553464 PMCID: PMC10980686 DOI: 10.1038/s41598-024-57205-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
The objective of this research is to analyze the influence of various factors on glycemic control in pediatrics with type 1 diabetes mellitus (T1DM). The study, a cross-sectional analysis, involved 221 T1DM patients below 18 years old who visited our clinic between 2011 and 2020, predating the COVID-19 outbreak. Out of the initial pool, 204 participants were chosen based on specific criteria. By computing odds ratios and 95% confidence intervals, we determined the correlation between these factors and achieving optimal glycemic control (HbA1c < 7.5%). Of the 204 individuals, 55.9% (113 patients) were female. The average age at diagnosis was 6.93 ± 3.9 years. Mean HbA1c (A1C) level of optimal and suboptimal groups were 6.97, 95% CI 6.84 to 7.1 and 8.86, 95% CI 8.68 to 9.03, respectively (p-value < 0.001). Fifty patients had optimal glycemic control and 154 people experienced suboptimal glycemic control during the follow-up that the prevalence of each of them was 24.51, 95% CI 18.7 to 31 and 75.49, 95% CI 68.99 to 81.22, respectively. In the assessment of risk factors associated with suboptimal glycemic control, patients aged 10-14 years had the highest likelihood of experiencing suboptimal glycemic control (crude odds ratio [COR] 3.12, 95% CI 1.04 to 9.3), followed by duration of diabetes (COR 2.85, 95% CI 1.2 to 6.8), which both were significant. By utilizing multivariable logistic regression analysis, a noteworthy finding emerged. It was revealed that patients aged 10-14 years exhibited a significant association with suboptimal glycemic control, [adjusted odds ratio (AOR) 4.85, 95% CI 1.32 to 17.7]. Additionally, a statistically significant correlation was identified between individuals with a body mass index (BMI) falling within the ≥ 95th percentile category and suboptimal glycemic control, Cramer's V = 0.21, p-value = 0.01. Our research has revealed a significant correlation between patients aged 10-14 years and obese individuals (BMI ≥ 95th) with suboptimal glycemic control. It is crucial to consider these factors as they can offer valuable insights during diagnosis, highlighting the increased risk of long-term suboptimal glycemic control.
Collapse
Affiliation(s)
- Mobin Ghazaiean
- Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Gut and Liver Research Center, Non-Communicable Disease Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Behnam Najafi
- Gastrointestinal Research Center, Non-Communicable Disease Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Daniel Zamanfar
- Department of Pediatric Endocrinology, Diabetes Research Center of Mazandaran, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Javad Alipour
- Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
11
|
De Cól JP, de Lima EP, Pompeu FM, Cressoni Araújo A, de Alvares Goulart R, Bechara MD, Laurindo LF, Méndez-Sánchez N, Barbalho SM. Underlying Mechanisms behind the Brain-Gut-Liver Axis and Metabolic-Associated Fatty Liver Disease (MAFLD): An Update. Int J Mol Sci 2024; 25:3694. [PMID: 38612504 PMCID: PMC11011299 DOI: 10.3390/ijms25073694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) includes several metabolic dysfunctions caused by dysregulation in the brain-gut-liver axis and, consequently, increases cardiovascular risks and fatty liver dysfunction. In MAFLD, type 2 diabetes mellitus, obesity, and metabolic syndrome are frequently present; these conditions are related to liver lipogenesis and systemic inflammation. This study aimed to review the connection between the brain-gut-liver axis and MAFLD. The inflammatory process, cellular alterations in hepatocytes and stellate cells, hypercaloric diet, and sedentarism aggravate the prognosis of patients with MAFLD. Thus, to understand the modulation of the physiopathology of MAFLD, it is necessary to include the organokines involved in this process (adipokines, myokines, osteokines, and hepatokines) and their clinical relevance to project future perspectives of this condition and bring to light new possibilities in therapeutic approaches. Adipokines are responsible for the activation of distinct cellular signaling in different tissues, such as insulin and pro-inflammatory cytokines, which is important for balancing substances to avoid MAFLD and its progression. Myokines improve the quantity and quality of adipose tissues, contributing to avoiding the development of MAFLD. Finally, hepatokines are decisive in improving or not improving the progression of this disease through the regulation of pro-inflammatory and anti-inflammatory organokines.
Collapse
Affiliation(s)
- Júlia Pauli De Cól
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil; (J.P.D.C.); (M.D.B.)
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil; (J.P.D.C.); (M.D.B.)
| | - Fernanda Moris Pompeu
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil; (J.P.D.C.); (M.D.B.)
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil; (J.P.D.C.); (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil;
| | - Ricardo de Alvares Goulart
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil;
| | - Marcelo Dib Bechara
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil; (J.P.D.C.); (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil;
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília, São Paulo 17519-080, Brazil;
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City 14050, Mexico;
- Faculty of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil; (J.P.D.C.); (M.D.B.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), São Paulo 17525-902, Brazil;
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), São Paulo 17500-000, Brazil
| |
Collapse
|
12
|
Jin L, Diaz-Canestro C, Wang Y, Tse MA, Xu A. Exerkines and cardiometabolic benefits of exercise: from bench to clinic. EMBO Mol Med 2024; 16:432-444. [PMID: 38321233 PMCID: PMC10940599 DOI: 10.1038/s44321-024-00027-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Regular exercise has both immediate and long-lasting benefits on cardiometabolic health, and has been recommended as a cornerstone of treatment in the management of diabetes and cardiovascular conditions. Exerkines, which are defined as humoral factors responsive to acute or chronic exercise, have emerged as important players conferring some of the multiple cardiometabolic benefits of exercise. Over the past decades, hundreds of exerkines released from skeletal muscle, heart, liver, adipose tissue, brain, and gut have been identified, and several exerkines (such as FGF21, IL-6, and adiponectin) have been exploited therapeutically as exercise mimetics for the treatment of various metabolic and cardiovascular diseases. Recent advances in metagenomics have led to the identification of gut microbiota, a so-called "hidden" metabolic organ, as an additional class of exerkines determining the efficacy of exercise in diabetes prevention, cardiac protection, and exercise performance. Furthermore, multiomics-based studies have shown the feasibility of using baseline exerkine signatures to predict individual responses to exercise with respect to metabolic and cardiorespiratory health. This review aims to explore the molecular pathways whereby exerkine networks mediate the cardiometabolic adaptations to exercise by fine-tuning inter-organ crosstalk, and discuss the roadmaps for translating exerkine-based discovery into the therapeutic application and personalized medicine in the management of the cardiometabolic disease.
Collapse
Affiliation(s)
- Leigang Jin
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Candela Diaz-Canestro
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Michael Andrew Tse
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Centre for Sports and Exercise, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.
- Department of Medicine, The University of Hong Kong, Hong Kong, China.
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
13
|
Peng P, Wu J, Fang W, Tian J, He M, Xiao F, Lin K, Xu X, He W, Liu W, Wei Q. Association between sarcopenia and osteoarthritis among the US adults: a cross-sectional study. Sci Rep 2024; 14:296. [PMID: 38167445 PMCID: PMC10761973 DOI: 10.1038/s41598-023-50528-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
The association between sarcopenia and OA still presents many uncertainties. We aimed to assess whether sarcopenia is associated with occurrence of OA in US adults. We conducted a cross-sectional study consisting of 11,456 participants from National Health and Nutrition Examination Survey 1999-2006. Sarcopenia was defined by a low muscle mass. The skeletal muscle index (SMI) was calculated as the appendicular skeletal muscle mass divided by body mass indexes (BMI) or body weight. OA status was assessed by using self-reported questionnaire. We evaluated the association between sarcopenia and OA using multivariate regression models. In addition, subgroup and interaction analysis were performed. Sarcopenia was associated with OA when it was defined by the BMI-adjusted SMI (OR = 1.23 [95% CI, 1.01, 1.51]; P = 0.038) and defined by the weight-adjusted SMI (OR = 1.30 [95% CI, 1.10, 1.55]; P = 0.003). Subgroup and interaction analysis found that the strongest positive association mainly exists in smoker (OR = 1.54 [95% CI, 1.21, 1.95], Pint = 0.006), and this association is not significant in other groups. In conclusion, we found that sarcopenia was associated with occurrence of OA. Subgroup analysis revealed that the association between sarcopenia and OA was more pronounced in smoker. Further well-designed prospective cohort studies are needed to assess our results.
Collapse
Affiliation(s)
- Peng Peng
- Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Jiawei Wu
- Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Weihua Fang
- Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Jiaqing Tian
- Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Mincong He
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, No. 261, Longxi Road, Liwan District, Guangzhou, 510378, People's Republic of China
- Department of Orthopaedics, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Fangjun Xiao
- Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Kun Lin
- Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Xuemeng Xu
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, No. 60, Hengfu Road, Yuexiu District, Guangzhou, 510405, People's Republic of China
| | - Wei He
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, No. 261, Longxi Road, Liwan District, Guangzhou, 510378, People's Republic of China
- Department of Orthopaedics, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Wengang Liu
- Guangdong Provincial Second Hospital of Traditional Chinese Medicine, No. 60, Hengfu Road, Yuexiu District, Guangzhou, 510405, People's Republic of China.
| | - Qiushi Wei
- Guangdong Research Institute for Orthopedics and Traumatology of Chinese Medicine, No. 261, Longxi Road, Liwan District, Guangzhou, 510378, People's Republic of China.
- Department of Orthopaedics, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.
| |
Collapse
|
14
|
Fu X, Murakami M, Hashimoto O, Matsui T, Funaba M. Regulatory mechanisms underlying interleukin-6 expression in murine brown adipocytes. Cell Biochem Funct 2024; 42:e3915. [PMID: 38269513 DOI: 10.1002/cbf.3915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/26/2024]
Abstract
Three types of adipocytes, white, brown, and beige, regulate the systemic energy balance through the storage and expenditure of chemical energy. In addition, adipocytes produce various bioactive molecules known as adipokines. In contrast to white adipocyte-derived molecules, less information is available on the adipokines produced by brown adipocytes (batokine). This study explored the regulatory expression of interleukin (IL)-6 in cell culture studies. Norepinephrine or a nonselective β-adrenergic receptor agonist increased the expression of IL-6 in primary brown adipocytes and HB2 brown adipocytes. Treatment with forskolin (Fsk), an activator of the cAMP-dependent protein kinase (PKA) pathway (downstream signaling of the β-adrenergic receptor), efficiently stimulated IL-6 expression in brown adipocytes and myotubes. Phosphorylated CREB and phosphorylated p38 MAP kinase levels were increased in Fsk-treated brown adipocytes within 5 min. In contrast, a long-term (∼60 min and ∼4 h) treatment with Fsk was required for increase in STAT3 phosphorylation and C/EBPβ expression, respectively. The PKA, p38 MAP kinase, STAT3, and C/EBPβ pathways are required for the maximal IL-6 expression induced by Fsk, which were verified by use of various inhibitors of these signal pathways. Vitamin C enhanced Fsk-induced IL-6 expression through the extracellular signal-regulated kinase activity. The present study provides basic information on the regulatory expression of IL-6 in activated brown adipocytes.
Collapse
Affiliation(s)
- Xiajie Fu
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masaru Murakami
- Laboratory of Molecular Biology, Azabu University School of Veterinary Medicine, Sagamihara, Japan
| | - Osamu Hashimoto
- Department of Veterinary Medicine, College of Bioresource Science, Nihon University, Fujisawa, Japan
| | - Tohru Matsui
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masayuki Funaba
- Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
Nunes YC, Santos GDO, Machado NM, Otoboni AMMB, Laurindo LF, Bishayee A, Fimognari C, Bishayee A, Barbalho SM. Peanut (Arachis hypogaea L.) seeds and by-products in metabolic syndrome and cardiovascular disorders: A systematic review of clinical studies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155170. [PMID: 38000103 DOI: 10.1016/j.phymed.2023.155170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/08/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Cardiovascular disease (CVDs) is the leading cause of death worldwide. The main risk factors are hypertension, diabetes, obesity, and increased serum lipids. The peanut (Arachis hypogaea L.), also known as the groundnut, goober, pindar, or monkey nut, belongs to the Fabaceae family and is the fourth most cultivated oilseed in the world. The seeds and skin of peanuts possess a rich phytochemical profile composed of antioxidants, such as phenolic acids, stilbenes, flavonoids, and phytosterols. Peanut consumption can provide numerous health benefits, such as anti-obesity, antidiabetic, antihypertensive, and hypolipidemic effects. Accordingly, peanuts have the potential to treat CVD and counteract its risk factors. PURPOSE This study aims to critically evaluate the effects of peanuts on metabolic syndrome (MetS) and CVD risk factors based on clinical studies. METHOD This review includes studies indexed in MEDLINE-PubMed, COCHRANE, and EMBASE, and the Preferred Reporting Items for a Systematic Review and Meta-Analysis guidelines were adhered to. RESULTS Nineteen studies were included and indicated that the consumption of raw peanuts or differing forms of processed foods containing peanut products and phytochemicals could improve metabolic parameters, such as glycemia, insulinemia, glycated hemoglobin, lipids, body mass index, waist circumference, atherogenic indices, and endothelial function. CONCLUSION We propose that this legume and its products be used as a sustainable and low-cost alternative for the prevention and treatment of MetS and CVD. However, further research with larger sample sizes, longer intervention durations, and more diverse populations is needed to understand the full benefit of peanut consumption in MetS and CVD.
Collapse
Affiliation(s)
- Yandra Cervelim Nunes
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Gian de Oliveira Santos
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Nathália Mendes Machado
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Alda M M B Otoboni
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, São Paulo, Brazil
| | - Anusha Bishayee
- Department of Statistics and Data Science, College of Arts and Sciences, Cornell University, Ithaca, NY 14850, USA
| | - Carmela Fimognari
- Department for Life Quality Studies, University of Bologna, 47921 Rimini, Italy
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| | - Sandra Maria Barbalho
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil; Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil; Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil.
| |
Collapse
|
16
|
Lisco G, Disoteo OE, De Tullio A, De Geronimo V, Giagulli VA, Monzani F, Jirillo E, Cozzi R, Guastamacchia E, De Pergola G, Triggiani V. Sarcopenia and Diabetes: A Detrimental Liaison of Advancing Age. Nutrients 2023; 16:63. [PMID: 38201893 PMCID: PMC10780932 DOI: 10.3390/nu16010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Sarcopenia is an age-related clinical complaint characterized by the progressive deterioration of skeletal muscle mass and strength over time. Type 2 diabetes (T2D) is associated with faster and more relevant skeletal muscle impairment. Both conditions influence each other, leading to negative consequences on glycemic control, cardiovascular risk, general health status, risk of falls, frailty, overall quality of life, and mortality. PubMed/Medline, Scopus, Web of Science, and Google Scholar were searched for research articles, scientific reports, observational studies, clinical trials, narrative and systematic reviews, and meta-analyses to review the evidence on the pathophysiology of di-abetes-induced sarcopenia, its relevance in terms of glucose control and diabetes-related outcomes, and diagnostic and therapeutic challenges. The review comprehensively addresses key elements for the clinical definition and diagnostic criteria of sarcopenia, the pathophysiological correlation be-tween T2D, sarcopenia, and related outcomes, a critical review of the role of antihyperglycemic treatment on skeletal muscle health, and perspectives on the role of specific treatment targeting myokine signaling pathways involved in glucose control and the regulation of skeletal muscle metabolism and trophism. Prompt diagnosis and adequate management, including lifestyle inter-vention, health diet programs, micronutrient supplementation, physical exercise, and pharmaco-logical treatment, are needed to prevent or delay skeletal muscle deterioration in T2D.
Collapse
Affiliation(s)
- Giuseppe Lisco
- Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.T.); (V.A.G.); (E.J.); (E.G.)
| | - Olga Eugenia Disoteo
- Unit of Endocrinology, Diabetology, Dietetics and Clinical Nutrition, Sant Anna Hospital, 22020 San Fermo della Battaglia, Italy;
| | - Anna De Tullio
- Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.T.); (V.A.G.); (E.J.); (E.G.)
| | - Vincenzo De Geronimo
- Unit of Endocrinology, Clinical Diagnostic Center Morgagni, 95100 Catania, Italy;
| | - Vito Angelo Giagulli
- Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.T.); (V.A.G.); (E.J.); (E.G.)
| | - Fabio Monzani
- Geriatrics Unit, Department of Clinical & Experimental Medicine, University of Pisa, 56126 Pisa, Italy;
| | - Emilio Jirillo
- Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.T.); (V.A.G.); (E.J.); (E.G.)
| | - Renato Cozzi
- Division of Endocrinology, Niguarda Hospital, 20162 Milan, Italy;
| | - Edoardo Guastamacchia
- Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.T.); (V.A.G.); (E.J.); (E.G.)
| | - Giovanni De Pergola
- Center of Nutrition for the Research and the Care of Obesity and Metabolic Diseases, National Institute of Gastroenterology IRCCS “Saverio de Bellis”, 70013 Castellana Grotte, Italy;
| | - Vincenzo Triggiani
- Section of Internal Medicine, Geriatrics, Endocrinology and Rare Diseases, Interdisciplinary Department of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.T.); (V.A.G.); (E.J.); (E.G.)
| |
Collapse
|
17
|
Li HH, Livneh H, Huang HL, Wang YH, Lu MC, Chen WJ, Tsai TY. Integrating Chinese Herbal Medicine into Conventional Care Was Related to Lower Risk of Sarcopenia Among Rheumatid Arthritis Patients: A Retrospective, Population-Based Study. J Multidiscip Healthc 2023; 16:3117-3127. [PMID: 37901596 PMCID: PMC10612505 DOI: 10.2147/jmdh.s428948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
Objective Sarcopenia is a frequently observed comorbidity of rheumatoid arthritis (RA) due to the chronic activation of the innate immune system. Accumulating evidence has indicated that Chinese herbal medicine (CHM) safely suppresses proinflammatory pathways and controls inflammation-associated disease, but its effect in reducing the risk of developing sarcopenia among RA subjects has not been established. We conducted a population-level cohort study to compare the sarcopenia risk in patients with RA who use or do not use CHM. Methods Using claims from a nationwide insurance database, we recruited patients with newly diagnosed RA and without sarcopenia between 2002 and 2010. Propensity score matching was applied to randomly select sets of CHM users and non-CHM users to compare the sarcopenia risk until the end of 2013. The risk of new-onset sarcopenia was assessed using the Cox proportional hazards model. Results As compared to non-CHM users, those receiving CHM treatment had a lower incidence of sarcopenia (7.69 vs 9.83 per 1000 person-years). CHM was correlated with a decreased chance of sarcopenia after controlling for potential covariates. Notably, use of CHM for more than two years may diminish the risk of getting sarcopenia by about 47% when taken as prescribed. Prescriptions of several herbal formulae may benefit the reduction of sarcopenia risk, such as Yan-Hu-Suo, Bei-Mu, Da-Huang, Huang Qin, Ping-Wei-San (PWS), Shu-Jing-Huo-Xue-Tang (SJHXT) and Chuan-Xiong-Cha-Tiao-San (CXCTS). Conclusion This study produced new evidence as it is the first to show that the longer duration of CHM use was correlated to reduced risk of sarcopenia in a dose-dependent manner, implying that CHM treatment could be embraced as a routine care strategy for preventing sarcopenia.
Collapse
Affiliation(s)
- Hsin-Hua Li
- Department of Chinese Medicine, Dalin Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Chiayi, 62247, Taiwan
| | - Hanoch Livneh
- Rehabilitation Counseling Program, Portland State University, Portland, OR, 97207-0751, USA
| | - Hua-Lung Huang
- Department of Rehabilitation, Dalin Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
| | - Yu-Han Wang
- Center of Sports Medicine, Dalin Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Chiayi, 62247, Taiwan
| | - Ming-Chi Lu
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Chiayi, 62247, Taiwan
- School of Medicine, Tzu Chi University, Hualien, 97004, Taiwan
| | - Wei-Jen Chen
- Department of Chinese Medicine, Dalin Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Chiayi, 62247, Taiwan
- Center of Sports Medicine, Dalin Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Chiayi, 62247, Taiwan
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, 97004, Taiwan
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan, 33301, Taiwan
| | - Tzung-Yi Tsai
- Department of Medical Research, Dalin Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Chiayi, 62247, Taiwan
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien, 97004, Taiwan
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, 70428, Taiwan
| |
Collapse
|
18
|
Menegucci T, Chagas EFB, de Oliveira Zanuso B, Quesada K, dos Santos Haber JF, Menegucci Zutin TL, Felipe Pimenta L, Cressoni Araújo A, Landgraf Guiguer E, Rucco P. Detregiachi C, Gabaldi Rocha M, Cincotto dos Santos Bueno P, Fornari Laurindo L, Barbalho SM. The Influence of Body Fat and Lean Mass on HbA1c and Lipid Profile in Children and Adolescents with Type 1 Diabetes Mellitus. Diseases 2023; 11:125. [PMID: 37873769 PMCID: PMC10594441 DOI: 10.3390/diseases11040125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/25/2023] Open
Abstract
Glycated hemoglobin (HbA1c) is used to assess glycemic control in Type 1 diabetes (DM1) patients. Apolipoproteins play an essential role in DM1 pathophysiology and may be associated with complications and HbA1c. This cross-sectional observational study of 81 children and adolescents of both sexes diagnosed with DM1 investigated the relationship between body fat distribution and lean mass with HbA1C and apolipoprotein values, analyzing biochemical and body composition measurements. A Shapiro-Wilk test with Lilliefors correction, a non-parametric Mann-Whitney test, and others were used with a significance level of 5%. The sample had a diagnosis time of 4.32 years and high blood glucose levels (mean 178.19 mg/dL) and HbA1c (mean 8.57%). Subjects also had a moderate level of adiposity, as indicated by arm and thigh fat areas. The study also found significant differences in the distribution of patients concerning levels of apolipoproteins A and B, with a smaller proportion of patients having undesirable levels. Finally, the study found a significant difference in the distribution of patients with estimated cardiovascular risk based on the ApoB/ApoA-I ratio. Conclusively, visceral fat in children and adolescents with DM1 may increase the risk of DM1 long-term complications owing to its association with elevated HbA1C and apolipoprotein values.
Collapse
Affiliation(s)
- Thais Menegucci
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil; (T.M.)
| | - Eduardo Federighi Baisi Chagas
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil; (T.M.)
- Postgraduate Program of Health and Aging, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, São Paulo, Brazil
- Interdisciplinary Center on Diabetes (CENID), Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
| | - Barbara de Oliveira Zanuso
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil (L.F.L.)
| | - Karina Quesada
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil (L.F.L.)
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Jesselina Francisco dos Santos Haber
- Interdisciplinary Center on Diabetes (CENID), Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil (L.F.L.)
| | - Tereza Laís Menegucci Zutin
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil; (T.M.)
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil (L.F.L.)
| | - Luis Felipe Pimenta
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil; (T.M.)
| | - Adriano Cressoni Araújo
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil; (T.M.)
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil (L.F.L.)
| | - Elen Landgraf Guiguer
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil; (T.M.)
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil (L.F.L.)
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| | - Claudia Rucco P. Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil; (T.M.)
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil (L.F.L.)
| | - Marcia Gabaldi Rocha
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil (L.F.L.)
| | | | - Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil (L.F.L.)
- Department of Biochemistry and Pharmacology, School of Medicine, Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, São Paulo, Brazil
| | - Sandra M. Barbalho
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil; (T.M.)
- Department of Biochemistry and Pharmacology, School of Medicine, Universidade de Marília (UNIMAR), Marília 17525-902, São Paulo, Brazil (L.F.L.)
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, São Paulo, Brazil
| |
Collapse
|
19
|
Calvani R, Picca A, Coelho-Júnior HJ, Tosato M, Marzetti E, Landi F. "Diet for the prevention and management of sarcopenia". Metabolism 2023:155637. [PMID: 37352971 DOI: 10.1016/j.metabol.2023.155637] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
Sarcopenia is a geriatric condition characterized by a progressive loss of skeletal muscle mass and strength, with an increased risk of adverse health outcomes (e.g., falls, disability, institutionalization, reduced quality of life, mortality). Pharmacological remedies are currently unavailable for preventing the development of sarcopenia, halting its progression, or impeding its negative health outcomes. The most effective strategies to contrast sarcopenia rely on the adoption of healthier lifestyle behaviors, including adherence to high-quality diets and regular physical activity. In this review, the role of nutrition in the prevention and management of sarcopenia is summarized. Special attention is given to current "blockbuster" dietary regimes and agents used to counteract age-related muscle wasting, together with their putative mechanisms of action. Issues related to the design and implementation of effective nutritional strategies are discussed, with a focus on unanswered questions on the most appropriate timing of nutritional interventions to preserve muscle health and function into old age. A brief description is also provided on new technologies that can facilitate the development and implementation of personalized nutrition plans to contrast sarcopenia.
Collapse
Affiliation(s)
- Riccardo Calvani
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy.
| | - Anna Picca
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy; Department of Medicine and Surgery, LUM University, 70100 Casamassima, Italy.
| | - Hélio José Coelho-Júnior
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Matteo Tosato
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy.
| | - Emanuele Marzetti
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy.
| | - Francesco Landi
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, 00168 Rome, Italy.
| |
Collapse
|
20
|
Tapanya W, Maharan S, Amput P, Sangkarit N, Suwannakul B. The Influence of Knee Extensor and Ankle Plantar Flexor Strength on Single-Leg Standing Balance in Older Women. J Funct Morphol Kinesiol 2023; 8:jfmk8020067. [PMID: 37218863 DOI: 10.3390/jfmk8020067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/13/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023] Open
Abstract
Impaired balance is a significant risk factor for falls among older adults. The precise impact of lower-extremity muscles, including the proportion of muscle strength, on the performance of single-leg standing balance tests in older individuals is very interesting. The aim of this study is to examine the correlation between the knee extensor (KE), ankle plantar flexor (AP) muscle strength, and performance in single-leg standing balance tests in older females. Additionally, it aims to evaluate the combined proportion of KE and AP muscle strength in maintaining balance during single-leg standing. A total of 90 older females (mean age 67.83 ± 8.00 years) were recruited. All participants underwent maximum voluntary isometric contraction (MVIC) testing of the KE and AP muscles, as well as single-leg standing balance tests with eyes open (SSEO) and eyes closed (SSEC). To examine the influence of KE and AP muscle strength on balance performance, multiple regression analysis was conducted. Low correlations were found between SSEO and MVIC of KE and AP muscles, but moderate correlations were found with percentage of MVIC to body weight ratio (%MVIC/BW). The best model for SSEO included 0.99 times of the %MVIC/BW of AP and 0.66 times that of KE muscles as independent predictor variables (r = 0.682). In conclusion, AP muscle strength was found to have a greater impact on single-leg standing balance compared with KE muscle strength.
Collapse
Affiliation(s)
- Weerasak Tapanya
- Department of Physical Therapy, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand
- Unit of Excellence of Human Performance and Rehabilitations, University of Phayao, Phayao 56000, Thailand
| | - Sinthuporn Maharan
- Department of Physical Therapy, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand
| | - Patchareeya Amput
- Department of Physical Therapy, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand
- Unit of Excellence of Human Performance and Rehabilitations, University of Phayao, Phayao 56000, Thailand
| | - Noppharath Sangkarit
- Department of Physical Therapy, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand
- Unit of Excellence of Human Performance and Rehabilitations, University of Phayao, Phayao 56000, Thailand
| | - Boonsita Suwannakul
- Department of Physical Therapy, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand
| |
Collapse
|
21
|
Mallardo M, D'Alleva M, Lazzer S, Giovanelli N, Graniero F, Billat V, Fiori F, Marinoni M, Parpinel M, Daniele A, Nigro E. Improvement of adiponectin in relation to physical performance and body composition in young obese males subjected to twenty-four weeks of training programs. Heliyon 2023; 9:e15790. [PMID: 37215851 PMCID: PMC10196512 DOI: 10.1016/j.heliyon.2023.e15790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Obesity and related metabolic diseases represent a worldwide health problem. The main factor predisposing to obesity is an unhealthy lifestyle including the lack of physical activity. A pivotal role in the etio-pathogenesis of obesity is carried out by adipose tissue, an endocrine organ secreting several adipokines involved in numerous metabolic and inflammatory processes. Among these, of particular importance is adiponectin, an adipokine involved in the regulation of insulin sensibility and in anti-inflammatory processes. The aim of the study was to determine the effects of 24 weeks of two different training programs polarized (POL) and threshold training (THR) on body composition, physical capacities and adiponectin expression. Thirteen male obese subjects (BMI: 32.0 ± 3.0 kg m-2) followed 24 weeks of two different training programs, POL and THR, consisting of walking or running (or a combination of the two methods) in their normal living conditions. Before (T0) and after the end of the program (T1), the assessment of body composition was assessed by bioelectrical impedance and the concentration of salivary and serum adiponectin was analyzed by enzyme-linked immunosorbent assay and western blotting. Although the results obtained did not show significant differences between the two training programs, body mass and body mass index decreased by a mean of -4.46 ± 2.90 kg and 1.43 ± 0.92 kg m-2 (P < 0.05). Fat mass decreased by -4.47 ± 2.78 kg (P < 0.05). V'O2max increased by a mean of 0.20 ± 0.26 L min-1 (P < 0.05) Also, we observed an increase in saliva and in serum of adiponectin concentrations at T1 compared to T0 by 4.72 ± 3.52 μg mL-1 and 5.22 ± 4.74 ng mL-1 (P < 0.05) respectively. Finally, we found significant correlations between Δ serum adiponectin and Δ Hip (R = -0.686, P = 0.001) and between Δ salivary adiponectin and ΔWaist (R = -0.678, P = 0.011). Our results suggest that a 24 weeks training program, independently from intensity and volume, induces an amelioration of body composition and fitness performance. These improvements are associated with an increase in total and HMW adiponectin expression in both saliva and in serum.
Collapse
Affiliation(s)
- Marta Mallardo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania “Luigi Vanvitelli”, via A. Vivaldi, 81100, Caserta, Italy
- CEINGE Biotecnologie Avanzate “Franco Salvatore” scarl, Via G. Salvatore 486, 80145, Napoli, Italy
| | - Mattia D'Alleva
- Department of Medicine, University of Udine, Udine, Italy
- School of Sport Sciences, University of Udine, Udine, Italy
| | - Stefano Lazzer
- Department of Medicine, University of Udine, Udine, Italy
- School of Sport Sciences, University of Udine, Udine, Italy
| | - Nicola Giovanelli
- Department of Medicine, University of Udine, Udine, Italy
- School of Sport Sciences, University of Udine, Udine, Italy
| | - Francesco Graniero
- Physical Exercise Prescription Center, Azienda Sanitaria Universitaria Friuli Centrale, Gemona del Friuli, Udine, Italy
| | - Véronique Billat
- Unité de Biologie Intégrative des Adaptations à l’Exercice, Université Paris-Saclay, Univ Evry, 91000, Evry-Courcouronnes, France
- BillaTraining SAS, 32 rue Paul Vaillant-Couturier, 94140, Alforville, France
| | - Federica Fiori
- Department of Medicine, University of Udine, Udine, Italy
| | | | - Maria Parpinel
- Department of Medicine, University of Udine, Udine, Italy
| | - Aurora Daniele
- CEINGE Biotecnologie Avanzate “Franco Salvatore” scarl, Via G. Salvatore 486, 80145, Napoli, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, via Pansini, Napoli, 80131, Italy
| | - Ersilia Nigro
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche, Farmaceutiche, Università della Campania “Luigi Vanvitelli”, via A. Vivaldi, 81100, Caserta, Italy
- CEINGE Biotecnologie Avanzate “Franco Salvatore” scarl, Via G. Salvatore 486, 80145, Napoli, Italy
| |
Collapse
|