1
|
Amr A, Abdel Karim AE, Abd El-Wahed AA, El-Seedi HR, Augustyniak M, El Wakil A, El-Samad LM, Hassan MA. Liquid chromatography–mass spectrometry profiling of propolis and royal jelly and their ameliorative effects on cadmium-instigated pathological consequences in ovarian tissues of rats. Microchem J 2024; 207:111800. [DOI: 10.1016/j.microc.2024.111800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
|
2
|
Kaya S, Yalçın T. Linalool may have a therapeutic effect on cadmium-induced nephrotoxicity by regulating NF-κB/TNF and GRP78/CHOP signaling pathways. J Trace Elem Med Biol 2024; 86:127510. [PMID: 39216431 DOI: 10.1016/j.jtemb.2024.127510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/09/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Cadmium (Cd) is an environmental pollutant heavy metal with nephrotoxic effect. One of the primary constituents of essential oils is Linalool (Lin), a monoterpene having a variety of pharmacological properties including antimicrobial, anti-inflammatory, and antioxidant effects. The purpose of this study was to ascertain how Lin affected endoplasmic reticulum stress (ERS) and pro-inflammatory mediators in Cd-induced nephrotoxicity. In the experiment, 28 male rats were randomly divided into four equal groups as control (no application), Cd (Cd at a dose of 3 mg/kg for the first 7 days), Cd+Lin (Cd at a dose of 3 mg/kg for the first 7 days and 100 mg/kg/day Lin) and Lin (100 mg/kg/day Lin) (n=7). The experiment was completed on the 15th day after all treatments were performed. Blood serum and kidney tissue samples were used for analyses. Cd-induced histopathological changes, inflammation, oxidative stress, and apoptosis were determined to increase in kidney tissue. However, it was observed that Cd-induced adverse effects in kidney tissue were mainly eliminated by Lin treatment. In conclusion, Lin demonstrated anti-inflammatory, anti-oxidant and anti-apoptotic effects in Cd-induced nephrotoxicity. Therefore, we believe that Lin may represent a high potential therapeutic strategy against renal tissue damage.
Collapse
Affiliation(s)
- Sercan Kaya
- Vocational Higher School of Healthcare Studies, Batman University, Batman, Turkey,.
| | - Tuba Yalçın
- Vocational Higher School of Healthcare Studies, Batman University, Batman, Turkey,.
| |
Collapse
|
3
|
Beheshtian N, Karimi E, Oskoueian E, Shokryazdan P, Faseleh Jahromi M. Lactic acid bacteria supplementation: A bioprotective approach to mitigating cadmium-induced toxicity and modulating gene expression in murine models. Food Chem Toxicol 2024; 193:115043. [PMID: 39413950 DOI: 10.1016/j.fct.2024.115043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/24/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
This study aimed to assess the effects of different strains of lactic acid bacteria, namely LeviLactobacillus brevis (AC10), Lacticaseibacillus rhamnosus (AC11), and Pediococcus acidilactici (AC15), on mice exposed to cadmium-induced oxidative stress. The study assessed weight gain, liver enzymes, antioxidant enzymes, immunoglobulin factors, lipid peroxidation, and gene expression in liver and brain of mice. The findings revealed that the AC10 and AC11 strains had a higher ability to absorb Cd as compared to AC15. The in vivo analysis demonstrated that the dietary dual supplementation of AC10 and AC11 resulted in significant (p < 0.05) improvements, including increased body weight and food intake, reduced cadmium tissue deposition, decreased lipid peroxidation, enhanced cellular antioxidant redox potential, suppressed inflammation genes in the liver and brain tissues, and improved morpho-characteristics of the jejunum in mice challenged by cadmium-induced toxicity. The multiple mechanisms of action, including heavy metal sequestration, antioxidant enhancement, and maintenance of intestinal integrity, highlight the potential of these probiotics' intervention as a viable approach to counteract the deleterious effects of cadmium exposure.
Collapse
Affiliation(s)
- Nadia Beheshtian
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | | | | | | |
Collapse
|
4
|
Li CX, Talukder M, Xu YR, Zhu SY, Wang YX, Li JL. Cadmium causes cerebral mitochondrial dysfunction through regulating mitochondrial HSF1. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124677. [PMID: 39127336 DOI: 10.1016/j.envpol.2024.124677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/15/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Mitochondria, as the powerhouse of the cell, play a vital role in maintaining cellular energy homeostasis and are known to be a primary target of cadmium (Cd) toxicity. The improper targeting of proteins to mitochondria can compromise the normal functions of the mitochondria. However, the precise mechanism by which protein localization contributes to the development of mitochondrial dysfunction induced by Cd is still not fully understood. For this research, Hy-Line white variety chicks (1-day-old) were used and equally distributed into 4 groups: the Control group (fed with a basic diet), the Cd35 group (basic diet with 35 mg/kg CdCl2), the Cd70 group (basic diet with 70 mg/kg CdCl2) and the Cd140 group (basic diet with 140 mg/kg CdCl2), respectively for 90 days. It was found that Cd caused the accumulation of heat shock factor 1 (HSF1) in the mitochondria, and the overexpression of HSF1 in the mitochondria led to mitochondrial dysfunction and neuronal damage. This process is due to the mitochondrial HSF1 (mtHSF1), causing mitochondrial fission through the upregulation of dynamin-related protein 1 (Drp1) content, while inhibiting oligomer formation of single-stranded DNA-binding protein 1 (SSBP1), resulting in the mitochondrial DNA (mtDNA) deletion. The findings unveil an unforeseen role of HSF1 in triggering mitochondrial dysfunction.
Collapse
Affiliation(s)
- Chen-Xi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Ya-Ru Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shi-Yong Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yu-Xiang Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
5
|
Ma Y, Su Q, Zhao L, Zhu J, Zhao H, Song R, Zou H, Liu Z. Melatonin prevents cadmium-induced osteoporosis by affecting the osteoblast and osteoclast differentiation and pyroptosis in duck. Poult Sci 2024; 103:103934. [PMID: 38981361 PMCID: PMC11294718 DOI: 10.1016/j.psj.2024.103934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 07/11/2024] Open
Abstract
Cadmium (Cd), is a highly toxic environmental pollutant, which seriously threatens the health of poultry and humans. The occurrence of osteoporosis is the main manifestation of cadmium toxicity. Pyroptosis plays an important role in the development of osteoporosis. Melatonin has been shown to affect preserving bone health. However, the underlying mechanism has not been elucidated. In the present study, these functions of melatonin have been investigated in duck bone tissue and osteoblast during cadmium exposure. In vivo, the studies suggest that melatonin protects against cadmium-induced duck osteoporosis by improving the osteogenesis function, inhibiting bone resorption, and suppressing the occurrence of pyroptosis. In vitro, the findings demonstrated that melatonin alleviated the inhibition effect of cadmium on duck bone marrow-derived mesenchymal stem cells (BMSC) osteogenic differentiation, and suppressed the cadmium-induced osteoclast differentiation. In addition, we also found that melatonin prevents cytokines release of lactate dehydrogenase (LDH), interleukin-18 (IL-18), and interleukin-1β (IL-1β) by cadmium-induced, and reduces the expression of n-terminal Gasdermin D (N-GSDMD), alleviates the osteoblast death rate. In short, melatonin as a potential therapeutic agent has bright prospects in cadmium-induced bone toxicity.
Collapse
Affiliation(s)
- Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Qunchao Su
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Li Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
6
|
Jin F, Li J, Zhao C, Gu L, Pu M, Jiang S, Liang M, Zhao Y, Shen J, Agabuwei A, Han Q, Liao D. Quercetin alleviates kidney damage caused by mercury Chloride: The protective effects of quercetin on autophagy and inflammation were studied based on TRIM32/TLR4/LC3 pathway. Toxicon 2024; 248:108031. [PMID: 39033964 DOI: 10.1016/j.toxicon.2024.108031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
OBJECTIVE Mercury is one of the heavy metal pollutants causing serious harm to human health. Quercetin was observed to repair kidney damage through the TLR4/TRIM32 pathway, and the detoxification effect of quercetin on heavy metal poisoning was observed. METHODS For the study, the researchers divided 40 male mice from the KM strain into five groups: control, HgCl2, QU30, HgCl2+QU15, and HgCl2+QU30. The biological effects of those mice in each group were detected by the biochemical experiment, histopathology experiment and protein expression experiment respectively. RESULTS HgCl2 had effects in increasing the level of malondialdehyde (MDA) and decreasing the activity of antioxidant enzymes (P < 0.05). HgCl2 induced inflammation by increasing tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) and Toll Like Receptor 4 (TLR-4) (P < 0.05). The expression of creatinine (CRE) and urea nitrogen (BUN) showed that HgCl2 promoted kidney injury. HgCl2 altered renal tissue integrity and TRIM32 expression which resulted in the increased autophagy associated protein levels of LC3. In contrast, quercetin reduced oxidative stress, autophagy, inflammation and histopathological changes (P < 0.05). CONCLUSION Quercetin has the renal protection effects of anti-inflammation, anti-oxidation and anti-autophagy.
Collapse
Affiliation(s)
- Fan Jin
- School of Public Health, Chengdu Medical College, Chengdu 610500, PR China
| | - JiaYue Li
- Chengdu Medical College, Chengdu 610500, PR China
| | - Chenyu Zhao
- School of Public Health, Chengdu Medical College, Chengdu 610500, PR China
| | - Lixiang Gu
- School of Public Health, Chengdu Medical College, Chengdu 610500, PR China
| | - Min Pu
- Chengdu Medical College, Chengdu 610500, PR China
| | - Simin Jiang
- School of Public Health, Chengdu Medical College, Chengdu 610500, PR China
| | - Mingming Liang
- School of Public Health, Chengdu Medical College, Chengdu 610500, PR China
| | - Ying Zhao
- School of Public Health, Chengdu Medical College, Chengdu 610500, PR China
| | - Jianli Shen
- School of Public Health, Chengdu Medical College, Chengdu 610500, PR China
| | - Agabuwei Agabuwei
- School of Public Health, Chengdu Medical College, Chengdu 610500, PR China
| | - Qin Han
- School of Public Health, Chengdu Medical College, Chengdu 610500, PR China.
| | - Dan Liao
- Chengdu Medical College, Chengdu 610500, PR China; Mianyang Hospital, School of Medicine, University of Electronic Science and Technology of China,Mianyang621000,PR China.
| |
Collapse
|
7
|
Zhao S, Yin G, Zhao M, Wu J, Liu X, Wei L, Xu Q, Xu J. Inflammation as a pathway for heavy metal-induced liver damage-Insights from a repeated-measures study in residents exposed to metals and bioinformatics analysis. Int J Hyg Environ Health 2024; 261:114417. [PMID: 38968837 DOI: 10.1016/j.ijheh.2024.114417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/08/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Epidemiological studies on heavy metal exposure and liver injury are predominantly cross-sectional, lacking longitudinal data and exploration of potential mechanisms. METHOD We conducted a repeated-measures study in Northeast China from 2016 to 2019, involving 322 participants. Linear mixed models (LMM) and Bayesian kernel machine regression (BKMR) were employed to explore the associations between individual and mixed blood metal concentrations [chromium (Cr), cadmium (Cd), vanadium (V), manganese (Mn), lead (Pb)] and liver function biomarkers [alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin (ALB), globulin (GLB), total protein (TP)]. Mediation and enrichment analyses were used to determine whether the inflammatory response is a critical pathway for heavy metal-induced liver damage. RESULT We obtained a total of 958 observations. The results from LMM and BKMR indicated significant associations between individual and mixed heavy metals and liver function biomarkers. Longitudinal analysis revealed associations between Cd and the annual increase rate of ALT (β = 2.61; 95% CI: 0.97, 4.26), the annual decrease rate of ALB (β = -0.21; 95% CI: -0.39, -0.03), Mn and the annual increase rate of GLB (β = 0.38; 95% CI: 0.05, 0.72), and V and the annual decrease rate of ALB/GLB (β = -1.15; 95% CI: -2.00, -0.31). Mediation analysis showed that high-sensitivity C-reactive protein (hsCRP) mediated the associations between Cd and AST, TP, with mediation effects of 27.7% and 13.4%, respectively. Additionally, results from Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses supported the role of inflammatory response pathways. CONCLUSION Our findings indicate that heavy metal exposure leads to liver damage, with the inflammatory response potentially serving as a crucial pathway in this process. This study offers a novel perspective on understanding heavy metal-induced liver injury and provides insights for preventive measures against the health damage caused by heavy metals.
Collapse
Affiliation(s)
- Shuanzheng Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Guohuan Yin
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jingtao Wu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Xiaolin Liu
- Department of Epidemiology and Biostatistics, Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Lanping Wei
- Jinzhou Central Hospital, Jinzhou, 121001, Liaoning, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China; Center of Environmental and Health Sciences, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
8
|
Laib I, Ali BD, Alsalme A, Cornu D, Bechelany M, Barhoum A. Therapeutic Efficacy of Helianthemum lippii Extract and Silver Nanoparticles Synthesized from the Extract against Cadmium-Induced Renal Nephrotoxicity in Wistar Rats. Pharmaceuticals (Basel) 2024; 17:982. [PMID: 39204087 PMCID: PMC11357364 DOI: 10.3390/ph17080982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
This study explored the therapeutic efficacy of Helianthemum lippii and silver nanoparticles (Ag NPs) synthesized using a H. lippii extract to alleviate cadmium-induced nephrotoxicity in Wistar rats. Sub-acute toxicity assessments of H. lippii (100 mg/kg, 1000 mg/kg, and 4000 mg/kg) and Ag NPs (2 mg/kg and 10 mg/kg) did not find any significant difference, compared with untreated control rats (n = 3 animals/group). Then, the adult Wistar rats were divided into one control (untreated/unexposed) and six experimental groups (n = 5/group): Ag NPs alone, H. lippii alone, exposure to 50 mg/kg CdCl2 in drinking water for 35 days, exposure to CdCl2 for 35 days followed by treatment with 0.1 mg/kg/day Ag NPs (intraperitoneal injection) and/or 100 mg/kg/day H. lippii by gavage for 15 days. In the CdCl2-exposed group, body weight decreased; urea, creatinine, and uric acid concentrations increased (p < 0.05 vs. control), indicative of nephrotoxicity, antioxidant defenses (SOD, GSH, and CAT) were reduced, and malondialdehyde concentration increased. Moreover, the kidney's architecture in CdCl2-exposed rats was altered: fibrosis, inflammatory cell infiltration, glomerular destruction, and tubular dilatation. Treatment with H. lippii and/or Ag NPs after CdCl2 exposure improved some of the renal function and architecture alterations induced by CdCl2, and also increased body weight. This study underscores the potential therapeutic applications of H. lippii and Ag NPs to decrease oxidative stress and promote xenobiotic detoxification, in line with the growing emphasis on environmentally conscious practices in scientific research and healthcare.
Collapse
Affiliation(s)
- Ibtissam Laib
- Department of Cellular and Molecular Biology, Faculty of Natural and Life Sciences, El Oued University, El Oued 39000, Algeria; (I.L.); (B.D.A.)
- Laboratory of Biology, Environment and Health, Faculty of Natural and Life Sciences, El Oued University, El-Oued 39000, Algeria
- Higher School of Saharan Agriculture, El Oued 39000, Algeria
| | - Boutlilis Djahra Ali
- Department of Cellular and Molecular Biology, Faculty of Natural and Life Sciences, El Oued University, El Oued 39000, Algeria; (I.L.); (B.D.A.)
- Laboratory of Biology, Environment and Health, Faculty of Natural and Life Sciences, El Oued University, El-Oued 39000, Algeria
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - David Cornu
- Institut Européen des Membranes (IEM), UMR 5635, University of Montpellier, ENSCM, CNRS, 34095 Montpellier, France; (D.C.); (M.B.)
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR 5635, University of Montpellier, ENSCM, CNRS, 34095 Montpellier, France; (D.C.); (M.B.)
- Functional Materials Group, Gulf University for Science and Technology (GUST), Mubarak Al-Abdullah 32093, Kuwait
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| |
Collapse
|
9
|
Dong PF, Liu TB, Chen K, Li D, Li Y, Lian CY, Wang ZY, Wang L. Cadmium targeting transcription factor EB to inhibit autophagy-lysosome function contributes to acute kidney injury. J Adv Res 2024:S2090-1232(24)00297-2. [PMID: 39033876 DOI: 10.1016/j.jare.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/03/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024] Open
Abstract
INTRODUCTION Environmental and occupational exposure to cadmium (Cd) has been shown to cause acute kidney injury (AKI). Previous studies have demonstrated that autophagy inhibition and lysosomal dysfunction are important mechanisms of Cd-induced AKI. OBJECTIVES Transcription factor EB (TFEB) is a critical transcription regulator that modulates autophagy-lysosome function, but its role in Cd-induced AKI is yet to be elucidated. Thus, in vivo and in vitro studies were conducted to clarify this issue. METHODS AND RESULTS Data firstly showed that reduced TFEB expression and nuclear translocation were evident in Cd-induced AKI models, accompanied by autophagy-lysosome dysfunction. Pharmacological and genetic activation of TFEB improved Cd-induced AKI via alleviating autophagy inhibition and lysosomal dysfunction, whereas Tfeb knockdown further aggravated this phenomenon, suggesting the key role of TFEB in Cd-induced AKI by regulating autophagy. Mechanistically, Cd activated mechanistic target of rapamycin complex 1 (mTORC1) to enhance TFEB phosphorylation and thereby inhibiting TFEB nuclear translocation. Cd also activated chromosome region maintenance 1 (CRM1) to promote TFEB nuclear export. Meanwhile, Cd activated general control non-repressed protein 5 (GCN5) to enhance nuclear TFEB acetylation, resulting in the decreased TFEB transcriptional activity. Moreover, inhibition of CRM1 or GCN5 alleviated Cd-induced AKI by enhancing TFEB activity, respectively. CONCLUSION In summary, these findings reveal that TFEB phosphorylation, nuclear export and acetylation independently suppress TFEB activity to cause Cd-induced AKI via regulating autophagy-lysosome function, suggesting that TFEB activation might be a promising treatment strategy for Cd-induced AKI.
Collapse
Affiliation(s)
- Peng-Fei Dong
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an City, 271017, Shandong Province, China
| | - Tian-Bin Liu
- New Drug Evaluation Center of Shandong Academy of Pharmaceutical Sciences, Shandong Academy of Pharmaceutical Sciences, 989 Xinluo Street, Ji'nan City, 250101, Shandong Province, China
| | - Kai Chen
- New Drug Evaluation Center of Shandong Academy of Pharmaceutical Sciences, Shandong Academy of Pharmaceutical Sciences, 989 Xinluo Street, Ji'nan City, 250101, Shandong Province, China
| | - Dan Li
- Shandong Medicine Technician College, 999 Fengtian Street, Tai'an City, 271016, Shandong Province, China
| | - Yue Li
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an City, 271017, Shandong Province, China
| | - Cai-Yu Lian
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an City, 271017, Shandong Province, China
| | - Zhen-Yong Wang
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an City, 271017, Shandong Province, China
| | - Lin Wang
- College of Veterinary Medicine, Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, 7 Panhe Street, Tai'an City, 271017, Shandong Province, China.
| |
Collapse
|
10
|
Shi Y, Gao Z, Xu B, Mao J, Wang Y, Liu Z, Wang J. Protective effect of naringenin on cadmium chloride-induced renal injury via alleviating oxidative stress, endoplasmic reticulum stress, and autophagy in chickens. Front Pharmacol 2024; 15:1440877. [PMID: 39070780 PMCID: PMC11275578 DOI: 10.3389/fphar.2024.1440877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
Cadmium (Cd) is a highly hazardous toxic substance that can cause serious harm to animals. Previous studies have indicated that cadmium chloride (CdCl2) can damage organs, such as the liver, ovaries, and testicles. Naringenin (Nar) represents a flavonoid with various properties that promote the alleviation of Cd-induced damage. In this experiment, 60 chickens were divided into the control group, 150 mg/kg CdCl2 treatment group, 250 mg/kg Nar treatment group, and 150 mg/kg CdCl2 + 250 mg/kg Nar co-treatment group, which were treated for 8 weeks. Kidney tissues samples were collected to investigate kidney function, including oxidative stress (OS), endoplasmic reticulum (ER) stress, and autophagy activity. Experimental results showed the decreased weight of chickens and increased relative weight of their kidneys after CdCl2 treatment. The increase in NAG, BUN, Cr, and UA activities, as well as the increase in MDA and GSH contents, and the decrease activities of T-AOC, SOD, and CAT in the kidney, manifested renal injury by OS in the chickens. TUNEL staining revealed that CdCl2 induced apoptosis in renal cells. CdCl2 upregulates the mRNA and protein expression levels of GRP78, PERK, eIF2α, ATF4, ATF6, CHOP, and LC3, and inhibited the mRNA and protein expression levels of P62 proteins, which leads to ER stress and autophagy. The CdCl2 + Nar co-treatment group exhibited alleviated CdCl2-induced kidney injury, OS, ER stress, and autophagy. Research has demonstrated that Nar reduces CdCl2-induced kidney injury through alleviation of OS, ER stress, and autophagy.
Collapse
Affiliation(s)
- Yaning Shi
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Zhixin Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Bing Xu
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Junbing Mao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Yue Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Jicang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
11
|
Zhou YS, Huang J, Cao WX, Yu AX, Li P, Liang JL, Leng XY, Jin J, Yu P, Liu J. The therapeutic mechanism of Compound Lurong Jiangu Capsule for the treatment of cadmium-induced osteoporosis: network pharmacology and experimental verification. Front Endocrinol (Lausanne) 2024; 15:1331488. [PMID: 39050570 PMCID: PMC11266182 DOI: 10.3389/fendo.2024.1331488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/03/2024] [Indexed: 07/27/2024] Open
Abstract
Background Among bone diseases, osteoporosis-like skeleton, such as trabecular thinning, fracture and so on, is the main pathological change of cadmium-induced osteoporosis(Cd-OP), accompanied by brittle bone and increased fracture rate. However, the mechanism underlying cadmium-induced osteoporosis has remained elusive. Compound Lurong Jiangu Capsule (CLJC) is an experienced formula for the treatment of bone diseases, which has the effect of tonifying kidney and strengthening bones, promoting blood circulation and relieving pain. Objective Network pharmacology and molecular docking technology combined with experiments were used to investigate the potential mechanism of CLJC in treating Cd-OP. Method The active compounds and corresponding targets of each herb in CLJC were searched in the TCMSP and BATMAN-TCM databases. The DisGeNet, OMIM, and GeneCards databases searched for Cd-OP targets. The relationship between both of them was visualized by establishing an herb-compound-target network using Cytoscape 3.9.1 software. Gene ontology (GO), and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analyses were performed after determining the intersection of the targets from CLJC and Cd-OP. What's more, molecular docking was performed to validate the results. All of them were aim to obtain hud signaling pathways for further study. Finally, BAX, BCL-2, and CASPASE-3 were screened and selected for further experiments, which included bone imaging and reconstruction analysis (Micro-CT), hematoxylin-eosin Staining (HE), and western blot (WB). Results 106 common targets from CLJC and Cd-OP targets were identified. KEGG pathway analysis suggested that multiple signaling pathways, such as the pathways in cancer, may play roles in treatment. Verification of the molecular docking was successful. Here we showed that Cd-OP displayed Tb.Th and Tb.N significantly reduced and even broke, irregular proliferation of bone cortex, uneven and loose trabecular bone arrangement, changed in apoptosis-related proteins, such as significant upregulation of CASPASE-3, BAX protein and significant downregulation of BCL-2 protein in vivo, while CLJC rescued these phenotypes. Conclusion This study revealed that CLJC can reduce the expression of apoptosis-related proteins, and multiple components and multiple targets inhibit Cd-OP through apoptosis signaling pathway.
Collapse
Affiliation(s)
- Ya-shuang Zhou
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jian Huang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, Jilin, China
| | - Wen-xuan Cao
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Ao-xue Yu
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Pan Li
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jin-ling Liang
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiang-yang Leng
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jian Jin
- Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Peng Yu
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Jia Liu
- Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
12
|
Wang X, Zhang K, Ali W, Li J, Huang Q, Liu D, Liu G, Ran D, Liu Z. Luteolin alleviates cadmium-induced metabolism disorder through antioxidant and anti-inflammatory mechanisms in chicken kidney. Poult Sci 2024; 103:103817. [PMID: 38759568 PMCID: PMC11107462 DOI: 10.1016/j.psj.2024.103817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024] Open
Abstract
Cadmium (Cd) is a common environmental pollutant associated with an increased incidence of renal metabolic diseases. Luteolin (Lut), a natural flavonoid, is widely used for its multifaceted therapeutic properties in inflammatory diseases. However, whether Lut protects against Cd-induced nephrotoxicity is still equivocal. The present study investigated the effects of Lut supplementation on renal oxidative stress, inflammation and metabolism and their related mechanisms. Therefore, 40 chickens were treated with Cd and/or Lut with automatic water and free food intake for 1 mo and then the kidney tissues were collected to explore this issue. In this study, Cd exposure induced renal glycolipid metabolism disorders and resultant kidney damage by periodic acid Schiff (PAS) staining, Oil Red O staining, total cholesterol (TC), triglyceride (TG), and glucose (Glu) levels in kidney, which were significantly ameliorated by Lut. Moreover, Lut also normalized the expression levels of factors related to Cd-disturbed glycolipid metabolism, improving metabolic homeostasis, and contributing to alleviating kidney damage. Furthermore, Lut demonstrated therapeutic potential against Cd-induced renal oxidative stress and inflammation by enhancing antioxidant capacity and inhibiting cytokine production in the kidney tissues. Mechanistically, Lut activated the AMPK/SIRT1/FOXO1 signaling pathway, attenuating oxidative stress and inflammatory responses, ameliorating the metabolic disturbance. In conclusion, these observations demonstrate that Lut treatment activates AMPK/SIRT1/FOXO1 signaling pathway, decreases oxidative stress and inflammation response, which may contribute to prevent Cd-induced metabolism disorder and consequent kidney damage.
Collapse
Affiliation(s)
- Xueru Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Kanglei Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Jiahui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Qing Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Dongdi Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Gang Liu
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Di Ran
- College of Veterinary Medicine, Southwest University, Chongqing 400715, P.R. China; College of Medicine, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.
| |
Collapse
|
13
|
Corbatón Anchuelo A, Martell Claros N, Abad Cardiel M, García Donaire JA, Fuentes Ferrer M, Bravo Gómez A, Llorente Martín E, Zamora Trillo A, Bonmatí Torres G, González-Estecha M. Are lead, cadmium and mercury risk factors for resistant hypertension? J Trace Elem Med Biol 2024; 84:127417. [PMID: 38479042 DOI: 10.1016/j.jtemb.2024.127417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/14/2024] [Accepted: 02/19/2024] [Indexed: 05/27/2024]
Abstract
BACKGROUND Lead (Pb), cadmium (Cd) and mercury (Hg) are toxic trace elements that represent a public health problem as risk factors for cardiovascular disease and hypertension (HT) and could also contribute to the development of resistant hypertension (rHT) AIMS: To compare the blood concentrations of Pb, Cd and Hg in subjects with resistant and non-resistant HT and to define whether there is a relationship between its levels and rHT. METHODS Cross-sectional study. Subjects aged ≥ 21 to ≤ 80 years with a body mass index < 40 kg/m2 were recruited on a discretionary basis from October 2001 to October 2004 in a hypertension unit of a tertiary hospital amongst those sent to the hypertension unit by their family physician. Resistant hypertension was defined according to the American Heart Association (AHA) criteria. Whole blood concentrations of Cd, Pb and Hg were measured by electrothermal atomic absorption spectrometry. RESULTS 46 out of 73 included subjects (63%) suffered from rHT. Blood Pb median: HT 3.9 (IQR 2.7-5.2) vs. rHT 3.6 (IQR 2.8-6.0) µg/dL (p=0.941). Blood Cd median: HT 0.07 (IQR 0.07-0.80) vs. rHT 0.30 (IQR 0.07-0.65) µg/L (p=0.681). Blood Hg median: HT 7.9 (IQR 5.8-12.9) vs. rHT 7.3 (IQR 4.6-13.3) µg/L (p=0.611). Considering the 75th percentile of each element (Pb: 5.55 µg/dL, Cd: 0.75 µg/L, Hg: 13.15 µg/L), a multiple logistic regression analysis (adjusted for age, BMI, diabetes mellitus, clearance of creatinine and only for Cd the smoking habit) showed an OR = 3.44 (0.84-14.10, p=0.086) for Pb, OR = 1.80 (0.39-8.24, p=0.451), for Cd and OR = 2.31 (0.59-9.14, p=0.232) for Hg. Moreover, the stratified analyses showed that men with Pb ≥5.55 µg/dL have a 14 times higher risk of suffering from rHT (p=0.026). Interestingly, a 9-fold increased risk was found for non-obese subjects with elevated Pb levels, above 5.55 µg/dL (p=0.029). Also in men, the probability of suffering from rHT was more than 7 times higher if Cd levels were ≥ 0.75 µg/L (p=0.076). Most smokers had higher Cd levels, with a high risk of suffering from rHT (ORa 12.6 (0.8-200.2), p=0.072). CONCLUSION A higher blood Pb levels, defined by the 75th percentile (Pb ≥ 5.55 µg/dL), is associated with a greater risk of suffering from rHT and to a lesser extent in the case of Cd and Hg.
Collapse
Affiliation(s)
- Arturo Corbatón Anchuelo
- Vascular risk group, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain; Hypertension and Vascular Risk Unit, Internal Medicine Service, San Carlos Clinical Hospital, Madrid, Spain.
| | - Nieves Martell Claros
- Vascular risk group, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain; Hypertension and Vascular Risk Unit, Internal Medicine Service, San Carlos Clinical Hospital, Madrid, Spain; Faculty of Medicine, Complutense University of Madrid (UCM), Madrid, Spain
| | - María Abad Cardiel
- Vascular risk group, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain; Hypertension and Vascular Risk Unit, Internal Medicine Service, San Carlos Clinical Hospital, Madrid, Spain; Department of Laboratory Medicine, Gregorio Marañón Hospital, Madrid, Spain
| | - José Antonio García Donaire
- Vascular risk group, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain; Hypertension and Vascular Risk Unit, Internal Medicine Service, San Carlos Clinical Hospital, Madrid, Spain; Faculty of Medicine, Complutense University of Madrid (UCM), Madrid, Spain
| | - Manuel Fuentes Ferrer
- Research Institute of Nuestra Señora de Candelaria Hospital, Santa Cruz de Tenerife, Spain
| | - Adrián Bravo Gómez
- Department of Laboratory Medicine, Gregorio Marañón Hospital, Madrid, Spain
| | | | | | | | - Montserrat González-Estecha
- Faculty of Medicine, Complutense University of Madrid (UCM), Madrid, Spain; Department of Laboratory Medicine, Gregorio Marañón Hospital, Madrid, Spain
| |
Collapse
|
14
|
Yin G, Zhao S, Zhao M, Xu J, Ge X, Wu J, Zhou Y, Liu X, Wei L, Xu Q. Complex interplay of heavy metals and renal injury: New perspectives from longitudinal epidemiological evidence. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116424. [PMID: 38723382 DOI: 10.1016/j.ecoenv.2024.116424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Epidemiological studies have reported associations between heavy metals and renal function. However, longitudinal studies are required to further validate these associations and explore the interactive effects of heavy metals on renal function and their directional influence. METHOD This study, conducted in Northeast China from 2016 to 2021, included a four-time repeated measures design involving 384 participants (1536 observations). Urinary concentrations of chromium (Cr), cadmium (Cd), manganese (Mn), and lead (Pb) were measured, along with renal biomarkers including urinary microalbumin (umAlb), urinary albumin-to-creatinine ratio (UACR), N-acetyl-β-D-glucosaminidase (NAG), and β2-microglobulin (β2-MG) levels. Estimated glomerular filtration rate (eGFR) was calculated. A Linear Mixed Effects Model (LME) examined the association between individual metal exposure and renal biomarkers. Subsequently, Quantile g-computation and Bayesian Kernel Machine Regression (BKMR) models assessed the overall effects of heavy metal mixtures. Marginal Effect models examined the directional impact of metal interactions in the BKMR on renal function. RESULT Results indicate significant impacts of individual and combined exposures of Cr, Cd, Pb, and Mn on renal biomarkers. Metal interactions in the BKMR model were observed, with synergistic effects of Cd-Cr on NAG, umAlb, UACR; Cd-Pb on NAG, UACR; Pb-Cr on umAlb, UACR, eGFR-MDRD, eGFR-EPI; and an antagonistic effect of Mn-Pb-Cr on UACR. CONCLUSION Both individual and combined exposures to heavy metals are associated with renal biomarkers, with significant synergistic interactions leading to renal damage. Our findings elucidate potential interactions among these metals, offering valuable insights into the mechanisms linking multiple metal exposures to renal injury.
Collapse
Affiliation(s)
- Guohuan Yin
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Shuanzheng Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Meiduo Zhao
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Jing Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Xiaoyu Ge
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Jingtao Wu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Yifan Zhou
- Civil Aviation Medicine Center, Civil Aviation Administration of China, Beijing 100123, China
| | - Xiaolin Liu
- Department of Epidemiology and Biostatistics, Jinzhou Medical University, Jinzhou, Liaoning 121001, China
| | - Lanping Wei
- Jinzhou Central Hospital, Jinzhou, Liaoning 121001, China
| | - Qun Xu
- Department of Epidemiology and Biostatistics, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
15
|
Dong W, Zhang K, Wang X, Li J, Zou H, Yuan Y, Gu J, Zhu J, Liu G, Liu Z, Song R. SIRT1 alleviates Cd nephrotoxicity through NF-κB/p65 deacetylation-mediated pyroptosis in rat renal tubular epithelial cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172392. [PMID: 38608885 DOI: 10.1016/j.scitotenv.2024.172392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Cadmium (Cd) is a widely distributed environmental pollutant, primarily causing nephrotoxicity through renal proximal tubular cell impairment. Pyroptosis is an inflammation-related nucleotide-binding oligomerization segment-like receptor family 3 (NLRP3)-dependent pathway for programmed cell death. We previously reported that inappropriate inflammation caused by Cd is a major contributor to kidney injury. Therefore, research on Cd-induced inflammatory response and pyroptosis may clarify the mechanisms underlying Cd-induced nephrotoxicity. In this study, we observed that Cd-induced nephrotoxicity is associated with NLRP3 inflammasome activation, leading to an increase in proinflammatory cytokine expression and secretion, as well as pyroptosis-related gene upregulation, both in primary rat proximal tubular (rPT) cells and kidney tissue from Cd-treated rats. In vitro, these effects were significantly abrogated through siRNA-based Nlrp3 silencing; thus, Cd may trigger pyroptosis through an NLRP3 inflammasome-dependent pathway. Moreover, Cd exposure considerably elevated reactive oxygen species (ROS) content. N-acetyl-l-cysteine, an ROS scavenger, mitigated Cd-induced NLRP3 inflammasome activation and subsequent pyroptosis. Mechanistically, Cd hindered the expression and deacetylase activity of SIRT1, eventually leading to a decline in SIRT1-p65 interactions, followed by an elevation in acetylated p65 levels. The administration of resveratrol (a SIRT1 agonist) or overexpression of Sirt1 counteracted Cd-induced RELA/p65/NLRP3 pathway activation considerably, leading to pyroptosis. This is the first study to reveal significant contributions of SIRT1-triggered p65 deacetylation to pyroptosis and its protective effects against Cd-induced chronic kidney injury. Our results may aid in developing potential therapeutic strategies for preventing Cd-induced pyroptosis through SIRT1-mediated p65 deacetylation.
Collapse
Affiliation(s)
- Wenxuan Dong
- Laboratory of Animal Nutrition Metabolic and Poisoning Diseases, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China; College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Kanglei Zhang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Xueru Wang
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jiahui Li
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Gang Liu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China; Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| |
Collapse
|
16
|
Li H, Cheng BJ, Yang PY, Wang C, Meng K, Li TL, Wang J, Liu R. Associations of Urinary Heavy Metal Mixtures with High Remnant Cholesterol among US Adults: Evidence from the National Health and Nutrition Examination Survey (1998-2018). TOXICS 2024; 12:430. [PMID: 38922110 PMCID: PMC11209470 DOI: 10.3390/toxics12060430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
The main objective of our study is to explore the associations between combined exposure to urinary heavy metals and high remnant cholesterol (HRC), a known cardiovascular risk factor. Utilizing data from the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2018, we conducted a cross-sectional analysis of 5690 participants, assessing urinary concentrations of ten heavy metals. Ten heavy metals in urine were measured by inductively coupled plasma mass spectrometry (ICP-MS). Fasting residual cholesterol ≥0.8 mmol/L was defined as HRC (using blood samples). Statistical analyses included weighted multivariable logistic regression, weighted quantile sum (WQS) regression, quantile g-computation (qgcomp), and Bayesian kernel machine regression (BKMR) to evaluate the associations of heavy metal exposure with HRC. Stratified analyses based on individual characteristics were also conducted. Multivariable logistic regression found that the four metals (OR Q4 vs. Q1: 1.33, 95% CI: 1.01-1.75 for barium (Ba); OR Q4 vs. Q1: 1.50, 95% CI: 1.16-1.94 for cadmium (Cd); OR Q4 vs. Q1: 1.52, 95% CI: 1.15-2.01 for mercury (Hg); OR Q4 vs. Q1: 1.35, 95% CI: 1.06-1.73 for lead (Pb)) were positively correlated with the elevated risk of HRC after adjusting for covariates. In addition, all three mixed models, including WQS (OR: 1.25; 95% CI: 1.07-1.46), qgcomp (OR: 1.17; 95% CI: 1.03-1.34), and BKMR, consistently showed a significant positive correlation between co-exposure to heavy metal mixtures and HRC, with Ba and Cd being the main contributors within the mixture. These associations were more pronounced in younger adults (20 to 59 years), males, and those with a higher body mass index status (≥25 kg/m2). Our findings reveal a significant relationship between exposure to the mixture of heavy metals and HRC among US adults, with Ba and Cd being the major contributors to the mixture's overall effect. Public health efforts aimed at reducing heavy metal exposure can help prevent HRC and, in turn, cardiovascular disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China; (H.L.); (B.-J.C.); (P.-Y.Y.); (C.W.); (K.M.); (T.-L.L.); (J.W.)
| |
Collapse
|
17
|
Shao Y, Zheng L, Jiang Y. Cadmium toxicity and autophagy: a review. Biometals 2024; 37:609-629. [PMID: 38277035 DOI: 10.1007/s10534-023-00581-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/31/2023] [Indexed: 01/27/2024]
Abstract
Cadmium (Cd) is an important environmental pollutant that poses a threat to human health and represents a critical component of air pollutants, food sources, and cigarette smoke. Cd is a known carcinogen and has toxic effects on the environment and various organs in humans. Heavy metals within an organism are difficult to biodegrade, and those that enter the respiratory tract are difficult to remove. Autophagy is a key mechanism for counteracting extracellular (microorganisms and foreign bodies) or intracellular (damaged organelles and proteins that cannot be degraded by the proteasome) stress and represents a self-protective mechanism for eukaryotes against heavy metal toxicity. Autophagy maintains cellular homeostasis by isolating and gathering information about foreign chemicals associated with other molecular events. However, autophagy may trigger cell death under certain pathological conditions, including cancer. Autophagy dysfunction is one of the main mechanisms underlying Cd-induced cytotoxicity. In this review, the toxic effects of Cd-induced autophagy on different human organ systems were evaluated, with a focus on hepatotoxicity, nephrotoxicity, respiratory toxicity, and neurotoxicity. This review also highlighted the classical molecular pathways of Cd-induced autophagy, including the ROS-dependent signaling pathways, endoplasmic reticulum (ER) stress pathway, Mammalian target of rapamycin (mTOR) pathway, Beclin-1 and Bcl-2 family, and recently identified molecules associated with Cd. Moreover, research directions for Cd toxicity regarding autophagic function were proposed. This review presents the latest theories to comprehensively reveal autophagy behavior in response to Cd toxicity and proposes novel potential autophagy-targeted prevention and treatment strategies for Cd toxicity and Cd-associated diseases in humans.
Collapse
Affiliation(s)
- Yueting Shao
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Liting Zheng
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yiguo Jiang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China.
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
18
|
Xu G, Li W, Zhao Y, Fan T, Gao Q, Wang Y, Zhang F, Gao M, An Z, Yang Z. Overexpression of Lias Gene Alleviates Cadmium-Induced Kidney Injury in Mice Involving Multiple Effects: Metabolism, Oxidative Stress, and Inflammation. Biol Trace Elem Res 2024; 202:2797-2811. [PMID: 37804446 DOI: 10.1007/s12011-023-03883-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/23/2023] [Indexed: 10/09/2023]
Abstract
Oxidative stress is an important mechanism underlying toxicity induced by cadmium (Cd) exposure. However, there are significant differences of the antioxidant baseline in different populations. This means that different human has different intensity of oxidative stress in vivo after exposure to toxicants. LiasH/H mouse is a specific model which is created by genetically modifying the Lias 3'-untranslated region (3'-UTR). LiasH/H mice express high levels of LA and have high endogenous antioxidant capacity which is approximately 150% higher than wild-type C57BL/6 J mice (WT, Lias+/+). But more importantly, they have dual roles of metal chelator and antioxidant. Here, we applied this mouse model to evaluate the effect of endogenous antioxidant levels in the body on alleviating Cd-induced renal injury including Cd metabolism, oxidative stress, and inflammation. In the experiment, mice drank water containing Cd (50 mg/L), for 12 weeks. Many biomarkers of Cd metabolism, oxidative stress, inflammation, and major pathological changes in the kidney were examined. The results showed overexpression of the Lias gene decreased Cd burden in the body of mice, mitigated oxidative stress, attenuated the inflammatory response, and subsequent alleviated cadmium-induced kidney injury in mice.
Collapse
Affiliation(s)
- Guangcui Xu
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China.
| | - Weibing Li
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Yingzheng Zhao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Ting Fan
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Qiyu Gao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Yongbin Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Fengquan Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Mingjing Gao
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Zhen An
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China
| | - Zijiang Yang
- School of Public Health, Xinxiang Medical University, Xinxiang, Henan Province, 453003, People's Republic of China.
| |
Collapse
|
19
|
Qu F, Zheng W. Cadmium Exposure: Mechanisms and Pathways of Toxicity and Implications for Human Health. TOXICS 2024; 12:388. [PMID: 38922068 PMCID: PMC11209188 DOI: 10.3390/toxics12060388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024]
Abstract
Cadmium (Cd), a prevalent environmental contaminant, exerts widespread toxic effects on human health through various biochemical and molecular mechanisms. This review encapsulates the primary pathways through which Cd inflicts damage, including oxidative stress induction, disruption of Ca2+ signaling, interference with cellular signaling pathways, and epigenetic modifications. By detailing the absorption, distribution, metabolism, and excretion (ADME) of Cd, alongside its interactions with cellular components such as mitochondria and DNA, this paper highlights the extensive damage caused by Cd2+ at the cellular and tissue levels. The role of Cd in inducing oxidative stress-a pivotal mechanism behind its toxicity-is discussed with emphasis on how it disrupts the balance between oxidants and antioxidants, leading to cellular damage and apoptosis. Additionally, the review covers Cd's impact on signaling pathways like Mitogen-Activated Protein Kinase (MAPK), Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB), and Tumor Protein 53 (p53) pathways, illustrating how its interference with these pathways contributes to pathological conditions and carcinogenesis. The epigenetic effects of Cd, including DNA methylation and histone modifications, are also explored to explain its long-term impact on gene expression and disease manifestation. This comprehensive analysis not only elucidates the mechanisms of Cd toxicity but also underscores the critical need for enhanced strategies to mitigate its public health implications.
Collapse
Affiliation(s)
- Fei Qu
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China;
| | - Weiwei Zheng
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai 200032, China;
- Center for Water and Health, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
20
|
Wang D, Wu Y, Zhou X, Liang C, Ma Y, Yuan Q, Wu Z, Hao X, Zhu X, Li X, Shi J, Chen J, Fan H. Cadmium exposure induced neuronal ferroptosis and cognitive deficits via the mtROS-ferritinophagy pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123958. [PMID: 38621452 DOI: 10.1016/j.envpol.2024.123958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024]
Abstract
Exposure to environmental cadmium (Cd) is known to cause neuronal death and cognitive decline in humans. Ferroptosis, a novel iron-dependent type of regulated cell death, is involved in various neurological disorders. In the present study, Cd exposure triggered ferroptosis in the mouse hippocampus and in the HT22 murine hippocampal neuronal cell line, as indicated by significant increases in ferroptotic marker expression, intracellular iron levels, and lipid peroxidation. Interestingly, ferroptosis of hippocampal neurons in response to Cd exposure relied on the induction of autophagy since the suppression of autophagy by 3-methyladenine (3-MA) and chloroquine (CQ) substantially ameliorated Cd-induced ferroptosis. Furthermore, nuclear receptor coactivator 4 (NCOA4)-mediated degradation of ferritin was required for the Cd-induced ferroptosis of hippocampal neurons, demonstrating that NCOA4 knockdown decreased intracellular iron levels and lipid peroxidation and increased cell survival, following Cd exposure. Moreover, Cd-induced mitochondrial reactive oxygen species (mtROS) generation was essential for the ferritinophagy-mediated ferroptosis of hippocampal neurons. Importantly, pretreatment with the ferroptosis inhibitor ferrostatin-1 (Fer-1) effectively attenuated Cd-induced hippocampal neuronal death and cognitive impairment in mice. Taken together, these findings indicate that ferroptosis is a novel mechanism underlying Cd-induced neurotoxicity and cognitive impairment and that the mtROS-ferritinophagy axis modulates Cd-induced neuronal ferroptosis.
Collapse
Affiliation(s)
- Dongmei Wang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yiran Wu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xiang Zhou
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Chen Liang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yilu Ma
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Quan Yuan
- Henan Province Rongkang Hospital, Luoyang, China
| | - Ziyue Wu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xueqin Hao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xiaoying Zhu
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xinyu Li
- Office of Research & Innovation, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Jian Shi
- Office of Research & Innovation, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Junliang Chen
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Hua Fan
- Office of Research & Innovation, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
21
|
Yu Z, Yu T, Li X, Lin W, Li X, Zhai M, Yin J, Zhao L, Liu X, Zhao B, Duan C, Cheng H, Wang F, Wei Z, Yang Y. Cadmium exposure activates mitophagy through downregulating thyroid hormone receptor/PGC1α signal in preeclampsia. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116259. [PMID: 38581905 DOI: 10.1016/j.ecoenv.2024.116259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024]
Abstract
Gestational cadmium exposure increases the risk of preeclampsia. Placenta mitophagy was activated in preeclampsia. The aim of present study was to explore the mechanism of cadmium-induced mitophagy activation and its association with preeclampsia. Mitophagy markers expression levels were detected by quantitative real-time PCR, Western blot, immunofluorescence and immunochemistry in preeclampsia placenta. JEG3 cells were treated with CdCl2, iopanoic acid (IOP), 3-methyladenine and PGC1α SiRNA to verify mechanism of cadmium-induced mitophagy. Mitophagy marker LC3BII/I and P62 expression were increased and mitochondrial membrane receptor protein TOM20 and FUNDC1 expression were decreased in preeclampsia placenta as compared with that in normotension control. Mitophagy marker LC3BII/I and P62 expression were increased and TOM20 and FUNDC1 expression was decreased in CdCl2-treated JEG3 cells. Meanwhile, mitochondrial biogenesis regulator, PGC1α expression was decreased in preeclampsia and CdCl2-treated JEG3 cells. The expressions of LC3B and P62 were increased and the expressions of TOM20, FUNDC1 and PGC1α were decreased in IOP-treated cell. PGC1α SiRNA transfection led to increased expression of LC3BII/I and P62 and decreased expression of TOM20 and FUNDC1. The expression of sFlt1 was increased in preeclampsia placenta, CdCl2-treated cells, in IOP-treated cells and in PGC1α SiRNA transfected cells. 3-methyladenine treatment protected the increased expression of sFlt1 in CdCl2-treated cells, in IOP-treated cells and in PGC1α SiRNA transfected cells. Meanwhile, co-treatment of cadmium and IOP or PGC1αSiRNA led to a reduce expressions of OPA1, MFN1, MFN2 and FUNDC1 as compared to cadmium-treated, IOP-treated and PGC1α SiRNA-treated cells. These results elucidated that maternal cadmium exposure activated placenta mitophagy through downregulation of thyroid hormone receptor signal mediated decreased expression of PGC1α and was associated with the occurrence of preeclampsia.
Collapse
Affiliation(s)
- Zhen Yu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Tao Yu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xuan Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Weilong Lin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xuemeng Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Muxin Zhai
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Jiancai Yin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Li Zhao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xiaoyu Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Baojing Zhao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Cancan Duan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Huiru Cheng
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China
| | - Fen Wang
- Department of Geriatric Endocrinology, The First Affiliated Hospital of Anhui25 Medical University, Hefei 230032, China
| | - Zhaolian Wei
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Yuanyuan Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, Anhui 230022, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Key Laboratory of Population Health Across Life Cycle, Anhui Province Key Laboratory of Reproductive Health and Genetics, Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Provincial Institute of Translational Medicin (Anhui Medical University), No. 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
22
|
Xie D, Yan J, Zhang H, Zhang H, Nie G, Zhu X, Li X. Cadmium exacerbates liver injury by remodeling ceramide metabolism: Multiomics and laboratory evidence. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171405. [PMID: 38432385 DOI: 10.1016/j.scitotenv.2024.171405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/15/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Cadmium (Cd) is a toxic heavy metal that primarily targets the liver. Cd exposure disrupts specific lipid metabolic pathways; however, the underlying mechanisms remain unclear. This study aimed to investigate the lipidomic characteristics of rat livers after Cd exposure as well as the potential mechanisms of Cd-induced liver injury. Our analysis of established Cd-exposed rat and cell models showed that Cd exposure resulted in liver lipid deposition and hepatocyte damage. Lipidomic detection, transcriptome sequencing, and experimental analyses revealed that Cd mainly affects the sphingolipid metabolic pathway and that the changes in ceramide metabolism are the most significant. In vitro experiments revealed that the inhibition of ceramide synthetase activity or activation of ceramide decomposing enzymes ameliorated the proapoptotic and pro-oxidative stress effects of Cd, thereby alleviating liver injury. In contrast, the exogenous addition of ceramide aggravated liver injury. In summary, Cd increased ceramide levels by remodeling ceramide synthesis and catabolism, thereby promoting hepatocyte apoptosis and oxidative stress and ultimately aggravating liver injury. Reducing ceramide levels can serve as a potential protective strategy to mitigate the liver toxicity of Cd. This study provides new evidence for understanding Cd-induced liver injury at the lipidomic level and insights into the health risks and toxicological mechanisms associated with Cd.
Collapse
Affiliation(s)
- Danna Xie
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Jun Yan
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Honglong Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Haijun Zhang
- Department of Anesthesiology, the First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Guole Nie
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Xingwang Zhu
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Xun Li
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China; Department of General Surgery, the First Hospital of Lanzhou University, Lanzhou 730000, China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou 730000, China; Center for Cancer Prevention and Treatment, School of Medicine, Lanzhou University, Lanzhou 730000, China; Gansu Provincial Institute of Hepatobiliary and Pancreatic Surgery, Lanzhou 730000, China.
| |
Collapse
|
23
|
Tyczyńska M, Hunek G, Szczasny M, Brachet A, Januszewski J, Forma A, Portincasa P, Flieger J, Baj J. Supplementation of Micro- and Macronutrients-A Role of Nutritional Status in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2024; 25:4916. [PMID: 38732128 PMCID: PMC11085010 DOI: 10.3390/ijms25094916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a condition in which the pathological cumulation of fat with coexisting inflammation and damage of hepatic cells leads to progressive dysfunctions of the liver. Except for the commonly well-known major causes of NAFLD such as obesity, dyslipidemia, insulin resistance, or diabetes, an unbalanced diet and imbalanced nutritional status should also be taken into consideration. In this narrative review, we summarized the current knowledge regarding the micro- and macronutrient status of patients suffering from NAFLD considering various diets and supplementation of chosen supplements. We aimed to summarize the knowledge indicating which nutritional impairments may be associated with the onset and progression of NAFLD at the same time evaluating the potential therapy targets that could facilitate the healing process. Except for the above-mentioned objectives, one of the most important aspects of this review was to highlight the possible strategies for taking care of NAFLD patients taking into account the challenges and opportunities associated with the micronutrient status of the patients. The current research indicates that a supplementation of chosen vitamins (e.g., vitamin A, B complex, C, or D) as well as chosen elements such as zinc may alleviate the symptoms of NAFLD. However, there is still a lack of sufficient data regarding healthy ranges of dosages; thus, further research is of high importance in this matter.
Collapse
Affiliation(s)
- Magdalena Tyczyńska
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Gabriela Hunek
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.H.); (A.B.)
| | - Martyna Szczasny
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (J.J.)
| | - Adam Brachet
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.H.); (A.B.)
| | - Jacek Januszewski
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (J.J.)
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.H.); (A.B.)
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| | - Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (J.J.)
| |
Collapse
|
24
|
Zhou C, Guo S, Gong P, Ba Q, Yao W. Nano-Selenium Alleviates Cd-Induced Chronic Colitis through Intestinal Flora. Nutrients 2024; 16:1330. [PMID: 38732577 PMCID: PMC11085897 DOI: 10.3390/nu16091330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Cadmium (Cd) is an environmental contaminant that poses risks to human and animal health. Selenium (Se), a beneficial element, alleviates the detrimental consequences of colitis and Cd toxicity. Se is found in food products as both inorganic Se (sodium selenite) and organic Se (typically Se-enriched yeast). Nano-selenium (nano-Se; a novel form of Se produced through the bioreduction of Se species) has recently garnered considerable interest, although its effects against Cd-induced enterotoxicity are poorly understood. The aim of this study was to investigate the impact of nano-selenium on mitigating cadmium toxicity and safeguarding the integrity of the intestinal barrier. METHODS For a total of two cycles, we subjected 6-week-old C57 mice to chronic colitis by exposing them to Cd and nano-selenium for two weeks, followed by DSS water for one week. RESULTS The application of nano-selenium mitigated the intensity of colitis and alleviated inflammation in the colon. Nano-selenium enhanced the diversity of the intestinal flora, elevated the concentration of short-chain fatty acids (SCFAs) in feces, and improved the integrity of the intestinal barrier. CONCLUSIONS In summary, nano-Se may reduce intestinal inflammation by regulating the growth of intestinal microorganisms and protecting the intestinal barrier.
Collapse
Affiliation(s)
- Chengdong Zhou
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (C.Z.); (S.G.); (P.G.)
| | - Shengliang Guo
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (C.Z.); (S.G.); (P.G.)
| | - Pin Gong
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (C.Z.); (S.G.); (P.G.)
| | - Qian Ba
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Shanghai 200071, China
| | - Wenbo Yao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China; (C.Z.); (S.G.); (P.G.)
- Department of Pediatrics, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang Middle Road, Shanghai 200071, China
| |
Collapse
|
25
|
Zhang L, Shi WY, Xu JY, Liu Y, Wang SJ, Zheng JY, Li YH, Yuan LX, Qin LQ. Protective effects and mechanism of chemical- and plant-based selenocystine against cadmium-induced liver damage. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133812. [PMID: 38368684 DOI: 10.1016/j.jhazmat.2024.133812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Although selenium (Se) and cadmium (Cd) often coexist naturally in the soil of China, the health risks to local residents consuming Se-Cd co-enriched foods are unknown. In the present study, we investigated the effects of chemical-based selenocystine (SeCys2) on cadmium chloride-induced human hepatocarcinoma (HepG2) cell injury and plant (Cardamine hupingshanensis)-derived SeCys2 against Cd-induced liver injury in mice. We found that chemical- and plant-based SeCys2 showed protective effects against Cd-induced HepG2 cell injury and liver damage in mice, respectively. Compared with Cd intervention group, co-treatment with chemical- or plant-based SeCys2 both alleviated liver toxicity and ferroptosis by decreasing ferrous iron, acyl-CoA synthetase long-chain (ACSL) family member 4, lysophosphatidylcholine acyltransferase 3, reactive oxygen species and lipid peroxide levels, and increasing ACSL3, peroxisome proliferator-activated receptor α, solute carrier family 7 member 11 (SLC7A11) and glutathione and glutathione peroxidase 4 (GPX4) levels. In conclusion, chemical- and plant-based SeCys2 alleviated Cd-induced hepatotoxicity and ferroptosis by regulating SLC7A11/GPX4 signaling and lipid peroxidation. Our findings indicate that potential Cd toxicity from consuming foods grown in Se- and Cd-rich soils should be re-evaluated. This study offers a new perspective for the development of SeCys2-enriched agricultural products.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Wen-Yao Shi
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Yan Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Shi-Jia Wang
- Department of Clinical Nutrition, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Jia-Yang Zheng
- Department of Nutrition and Food Hygiene, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China; School of the Environment, School of Medicine, Nanjing University, Nanjing 210023, China
| | - Yun-Hong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| | - Lin-Xi Yuan
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
26
|
Wang D, Zhang C, Guo H, Cui T, Pu W, Huang B, Zhu J, Dai X. Co-exposure to Environmentally Relevant Levels of Molybdenum and Cadmium Induces Oxidative Stress and Ferroptosis in the Ovary of Ducks. Biol Trace Elem Res 2024:10.1007/s12011-024-04144-1. [PMID: 38467966 DOI: 10.1007/s12011-024-04144-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Excessive doses of molybdenum (Mo) and cadmium (Cd) have toxic effects on animals. Nevertheless, the reproductive toxicity elicited by Mo and Cd co-exposure remains obscure. To evaluate the co-induce toxic impacts of Mo and Cd on ovaries, 8-day-old 40 healthy ducks were stochastically distributed to four groups and were raised a basal diet supplemented with Cd (4 mg/kg Cd) and/or Mo (100 mg/kg Mo). In the 16th week, ovary tissues were gathered. The data revealed that Mo and/or Cd decreased GSH content, CAT, T-SOD, and GSH-Px activities and increased MDA and H2O2 levels. Moreover, there was a significant decrease in nuclear Nrf2 protein level and its related downstream factors, while cytoplasmic Nrf2 protein level showed a substantial increase. Additionally, a marked elevation was observed in ferrous ion content and TFRC, GCLC, SLC7A11, ACSL4, and PTGS2 expression levels, while FTH1, FTL1, FPN1, and GPX4 expression levels were conversely reduced. These indicators exhibited more marked changes in the joint exposure group. In brief, our results announced that Mo and/or Cd resulted in oxidative stress and ferroptosis in duck ovaries. Synchronously, the Cd and Mo mixture intensified the impacts.
Collapse
Affiliation(s)
- Dianyun Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Huiling Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Ting Cui
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Wenjing Pu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Bingyan Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jiamei Zhu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
27
|
Ren C, Carrillo ND, Cryns VL, Anderson RA, Chen M. Environmental pollutants and phosphoinositide signaling in autoimmunity. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133080. [PMID: 38091799 PMCID: PMC10923067 DOI: 10.1016/j.jhazmat.2023.133080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 02/08/2024]
Abstract
Environmental pollution stands as one of the most critical challenges affecting human health, with an estimated mortality rate linked to pollution-induced non-communicable diseases projected to range from 20% to 25%. These pollutants not only disrupt immune responses but can also trigger immunotoxicity. Phosphoinositide signaling, a pivotal regulator of immune responses, plays a central role in the development of autoimmune diseases and exhibits high sensitivity to environmental stressors. Among these stressors, environmental pollutants have become increasingly prevalent in our society, contributing to the initiation and exacerbation of autoimmune conditions. In this review, we summarize the intricate interplay between phosphoinositide signaling and autoimmune diseases within the context of environmental pollutants and contaminants. We provide an up-to-date overview of stress-induced phosphoinositide signaling, discuss 14 selected examples categorized into three groups of environmental pollutants and their connections to immune diseases, and shed light on the associated phosphoinositide signaling pathways. Through these discussions, this review advances our understanding of how phosphoinositide signaling influences the coordinated immune response to environmental stressors at a biological level. Furthermore, it offers valuable insights into potential research directions and therapeutic targets aimed at mitigating the impact of environmental pollutants on the pathogenesis of autoimmune diseases. SYNOPSIS: Phosphoinositide signaling at the intersection of environmental pollutants and autoimmunity provides novel insights for managing autoimmune diseases aggravated by pollutants.
Collapse
Affiliation(s)
- Chang Ren
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Noah D Carrillo
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Vincent L Cryns
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Richard A Anderson
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mo Chen
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
28
|
Zhang L, Shi WY, Zhang LL, Sha Y, Xu JY, Shen LC, Li YH, Yuan LX, Qin LQ. Effects of selenium-cadmium co-enriched Cardamine hupingshanensis on bone damage in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116101. [PMID: 38359653 DOI: 10.1016/j.ecoenv.2024.116101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Selenium (Se) and cadmium (Cd) usually co-existed in soils, especially in areas with Se-rich soils in China. The potential health consequences for the local populations consuming foods rich in Se and Cd are unknown. Cardamine hupingshanensis (HUP) is Se and Cd hyperaccumulator plant that could be an ideal natural product to assess the protective effects of endogenous Se against endogenous Cd-caused bone damage. Male C57BL/6 mice were fed 5.22 mg/kg cadmium chloride (CdCl2) (Cd 3.2 mg/kg body weight (BW)), or HUP solutions containing Cd 3.2 mg/kg BW and Se 0.15, 0.29 or 0.50 mg/kg BW (corresponding to the HUP0, HUP1 and HUP2 groups) interventions. Se-enriched HUP1 and HUP2 significantly decreased Cd-induced femur microstructure damage and regulated serum bone osteoclastic marker levels and osteogenesis-related genes. In addition, endogenous Se significantly decreased kidney fibroblast growth factor 23 (FGF23) protein expression and serum parathyroid hormone (PTH) levels, and raised serum calcitriol (1,25(OH)2D3). Furthermore, Se also regulated gut microbiota involved in skeletal metabolism disorder. In conclusion, endogenous Se, especially with higher doses (the HUP2 group), positively affects bone formation and resorption by mitigating the damaging effects of endogenous Cd via the modulation of renal FGF23 expression, circulating 1,25(OH)2D3 and PTH and gut microbiota composition.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Wen-Yao Shi
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Li-Li Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Yu Sha
- Department of Medical Technology, Suzhou Vocational Health College, Suzhou, China
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
| | - Le-Cheng Shen
- Jiangxi Center of Quality Supervision and Inspection for Selenium-enriched Products/Ganzhou General Inspection and Testing Institute, Ganzhou 341000, China
| | - Yun-Hong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| | - Lin-Xi Yuan
- Department of Health and Environmental Sciences, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
29
|
Liu H, Wan X, Yao L, Zhao Q, Yang Y, Liu H, Shang J, Zeng F, Wang X, Huang S. Differentially expressed long non-coding RNAs and mRNAs of cadmium exposure on learning disability of offspring rats. Eur J Med Res 2024; 29:82. [PMID: 38287418 PMCID: PMC10823636 DOI: 10.1186/s40001-024-01663-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/11/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Cadmium (Cd) exposure has been found to have detrimental effects on the development of the central nervous system and cognitive ability in children. However, there is ongoing debate regarding the impact of maternal Cd exposure on the cognitive ability of offspring. In this study, we aimed to investigate the mechanisms underlying the influence of maternal Cd exposure on the cognitive ability of offspring rats. METHODS Here, we constructed a model of cadmium poisoning in first-generation rats through gavage. The cognitive and memory abilities of its offspring were evaluated by water maze experiment. Then, we used the gene chip to find out the key genes, and we performed qRT-PCR detection of these genes. Subsequently, enrichment analysis was employed to identify pathways. Finally, we constructed a co-expression network consisting of LncRNAs and mRNAs to elucidate the biological functions and regulatory mechanisms of LncRNAs. RESULTS The results of the water maze trial demonstrated that the offspring of rats exposed to cadmium in the first generation had reduced cognitive and memory abilities. Through an analysis of gene expression in the hippocampus of the cadmium-treated rats' offspring and the control group, we identified a correlation between the islet secretion pathway and the cognitive impairment observed in the offspring. Utilizing various algorithms, we identified Cpa1 and Prss1 as potential key genes associated with the cognitive impairment caused by cadmium. The results of qRT-PCR demonstrated a decrease in the expression levels of these genes in the hippocampus of the cadmium-treated rats' offspring. In addition, in the co-expression network, we observed that Cpa1 was co-expressed with 11 LncRNAs, while Prss1 was associated with 4 unexplored LncRNAs. Furthermore, we conducted an analysis to examine the relationship between Cpa1, Prss1-related transcription factors, and LncRNAs. CONCLUSION Overall, this study provides novel insights into the molecular effects of first generation Cd exposure on the cognitive ability of offspring. The target genes and signaling pathways investigated in this study could serve as potential targets for improving neurodevelopment and cognitive ability in children.
Collapse
Affiliation(s)
- Hui Liu
- School of Nursing, Jiujiang University, Jiujiang, 332000, China
| | - Xichen Wan
- School of Medicine, Jiujiang University, Jiujiang, 332000, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Liyun Yao
- SpecAlly Life Technology Co., Ltd., Wuhan, 430070, China
| | - Qihan Zhao
- School of Medicine, Jiujiang University, Jiujiang, 332000, China
| | - Yong Yang
- SpecAlly Life Technology Co., Ltd., Wuhan, 430070, China
| | - Hongtao Liu
- SpecAlly Life Technology Co., Ltd., Wuhan, 430070, China
| | - Jun Shang
- SpecAlly Life Technology Co., Ltd., Wuhan, 430070, China
- Wuhan Institute of Biotechnology, Wuhan, 430070, China
| | - Fanfan Zeng
- School of Medicine, Jiujiang University, Jiujiang, 332000, China
| | - Xin Wang
- School of Medicine, Jiujiang University, Jiujiang, 332000, China
| | - Shaoxin Huang
- School of Nursing, Jiujiang University, Jiujiang, 332000, China.
- School of Medicine, Jiujiang University, Jiujiang, 332000, China.
- SpecAlly Life Technology Co., Ltd., Wuhan, 430070, China.
| |
Collapse
|
30
|
Bovio F, Perciballi E, Melchioretto P, Ferrari D, Forcella M, Fusi P, Urani C. Morphological and metabolic changes in microglia exposed to cadmium: Cues on neurotoxic mechanisms. ENVIRONMENTAL RESEARCH 2024; 240:117470. [PMID: 37871786 DOI: 10.1016/j.envres.2023.117470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Microglial cells play a key role in protecting the central nervous system from pathogens and toxic compounds and are involved in the pathogenesis of different neurodegenerative diseases. Cadmium is a widespread toxic heavy metal, released into the environment at a rate of 30,000 tons/year by anthropogenic activities; it is easily uptaken by the human body through diet and cigarette smoke, as well as by occupational exposure. Once inside the body, cadmium enters the cells and substitutes to zinc and other divalent cations altering many biological functions. Its extremely long half-life makes it a serious health threat. Recent data suggest a role for heavy metals in many neurodegenerative diseases; however, the role of cadmium is still to be elucidated. In this work we report the investigation of cadmium toxicity towards murine BV2 microglial cells, a widely used model for the study of neurodegeneration. Results show that increasing cadmium concentrations increase oxidative stress, a proposed mechanism of neurodegeneration, but also that BV2 cells can keep oxidative stress under control by increasing glutathione reduction. Moreover, cadmium induces alterations of cell morphology and metabolism leading to mitochondrial impairment, without switching the cells to Warburg effect. Finally cadmium induces the release of proinflammatory cytokines, but does not markedly switch BV2 cells to M1 phenotype.
Collapse
Affiliation(s)
- Federica Bovio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Elisa Perciballi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Pasquale Melchioretto
- Department of Earth and Environmental Sciences, University of Milano- Bicocca, Piazza della Scienza 1, 20126, Milan, Italy
| | - Daniela Ferrari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy
| | - Matilde Forcella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy.
| | - Paola Fusi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milan, Italy; Integrated Models for Prevention and Protection in Environmental and Occupational Health, Interuniversity Research Center, (MISTRAL), Italy.
| | - Chiara Urani
- Department of Earth and Environmental Sciences, University of Milano- Bicocca, Piazza della Scienza 1, 20126, Milan, Italy; Integrated Models for Prevention and Protection in Environmental and Occupational Health, Interuniversity Research Center, (MISTRAL), Italy
| |
Collapse
|
31
|
Deng P, Li J, Lu Y, Hao R, He M, Li M, Tan M, Gao P, Wang L, Hong H, Tao J, Lu M, Chen C, Ma Q, Yue Y, Wang H, Tian L, Xie J, Chen M, Luo Y, Yu Z, Zhou Z, Pi H. Chronic cadmium exposure triggered ferroptosis by perturbing the STEAP3-mediated glutathione redox balance linked to altered metabolomic signatures in humans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167039. [PMID: 37716689 DOI: 10.1016/j.scitotenv.2023.167039] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Cadmium (Cd), a predominant environmental pollutant, is a canonical toxicant that acts on the kidneys. However, the nephrotoxic effect and underlying mechanism activated by chronic exposure to Cd remain unclear. In the present study, male mice (C57BL/6J, 8 weeks) were treated with 0.6 mg/L cadmium chloride (CdCl2) administered orally for 6 months, and tubular epithelial cells (TCMK-1 cells) were treated with low-dose (1, 2, and 3 μM) CdCl2 for 72 h (h). Our study results revealed that environmental Cd exposure triggered ferroptosis and renal dysfunction. Spatially resolved metabolomics enabled delineation of metabolic profiles and visualization of the disruption to glutathione homeostasis related to ferroptosis in mouse kidneys. Multiomics analysis revealed that chronic Cd exposure induced glutathione redox imbalance that depended on STEAP3-driven lysosomal iron overload. In particular, glutathione metabolic reprogramming linked to ferroptosis emerged as a metabolic hallmark in the blood of Cd-exposed workers. In conclusion, this study provides the first evidence indicating that chronic Cd exposure triggers ferroptosis and renal dysfunction that depend on STEAP3-mediated glutathione redox imbalance, greatly increasing our understanding of the metabolic reprogramming induced by Cd exposure in the kidneys and providing novel clues linking chronic Cd exposure to nephrotoxicity.
Collapse
Affiliation(s)
- Ping Deng
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jingdian Li
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yonghui Lu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Rongrong Hao
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Mindi He
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Min Li
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Miduo Tan
- Department of Breast Surgery, Central Hospital of Zhuzhou City, Central South University, Zhuzhou 412000, Hunan, China
| | - Peng Gao
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Liting Wang
- Biomedical Analysis Center, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Huihui Hong
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China; Department of Environmental Medicine, School of Public Health, and Department of Emergency Medicine, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jiawen Tao
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Muxue Lu
- School of Medicine, Guangxi University, Nanning 530004, Guangxi, China
| | - Chunhai Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Qinlong Ma
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yang Yue
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Hui Wang
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Li Tian
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Jia Xie
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Mengyan Chen
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yan Luo
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhengping Yu
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhou Zhou
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing 400030, China.
| | - Huifeng Pi
- Department of Occupational Health (Key Laboratory of Electromagnetic Radiation Protection, Ministry of Education), Army Medical University (Third Military Medical University), Chongqing 400038, China; State key Laboratory Of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
32
|
Liang Y, Wang J, Wang T, Li H, Yin C, Liu J, Wei Y, Fan J, Feng S, Zhai S. Moderate selenium mitigates hand grip strength impairment associated with elevated blood cadmium and lead levels in middle-aged and elderly individuals: insights from NHANES 2011-2014. Front Pharmacol 2023; 14:1324583. [PMID: 38161700 PMCID: PMC10757617 DOI: 10.3389/fphar.2023.1324583] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024] Open
Abstract
Background: Selenium (Se) has been reported to have an antagonistic effect on heavy metals in animals. Nevertheless, there is a lack of epidemiological research examining whether Se can mitigate the adverse effects of cadmium (Cd) and lead (Pb) on hand grip strength (HGS) in middle-aged and elderly individuals. Methods: This study used data from the 2011-2014 National Health and Nutrition Examination Survey (NHANES). HGS measurements were conducted by trained examiners with a dynamometer. Concentrations of Se, Cd, and Pb in blood were determined via inductively coupled plasma mass spectrometry. We employed linear regression, restricted cubic splines, and quantile g-computation (qgcomp) to assess individual and combined associations between heavy metals and HGS. The study also explored the potential influence of Se on these associations. Results: In both individual metal and multi-metal models adjusted for confounders, general linear regression showed Se's positive association with HGS, while Cd and Pb inversely related to it. At varying Se-Cd and Se-Pb concentrations, high Se relative to low Se can attenuate Cd and Pb's HGS impact. An inverted U-shaped correlation exists between Se and both maximum and combined HGS, with Se's benefit plateauing beyond approximately 200 μg/L. Stratified analysis by Se quartiles reveals Cd and Pb's adverse HGS effects diminishing as Se levels increase. Qgcomp regression analysis detected Se alleviating HGS damage from combined Cd and Pb exposure. Subsequent subgroup analyses identified the sensitivity of women, the elderly, and those at risk of diabetes to HGS impairment caused by heavy metals, with moderate Se supplementation beneficial in mitigating this effect. In the population at risk for diabetes, the protective role of Se against heavy metal toxicity-induced HGS reduction is inhibited, suggesting that diabetic individuals should particularly avoid heavy metal-induced handgrip impairment. Conclusion: Blood Cd and Pb levels are negatively correlated with HGS. Se can mitigate this negative impact, but its effectiveness plateaus beyond 200 μg/L. Women, the elderly, and those at risk of diabetes are more vulnerable to HGS damage from heavy metals. While Se supplementation can help, its protective effect is limited in high diabetes risk groups.
Collapse
Affiliation(s)
- Yafeng Liang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Junqi Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tianyi Wang
- School of Management, Beijing University of Chinese Medicine, Beijing, China
| | - Hangyu Li
- School of Life and Science, Beijing University of Chinese Medicine, Beijing, China
| | - Chaohui Yin
- School of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jialin Liu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yulong Wei
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Junxing Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shixing Feng
- School of Life and Science, Beijing University of Chinese Medicine, Beijing, China
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Centre France Chine de la Médecine Chinoise, Selles sur Cher, France
| | - Shuangqing Zhai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
33
|
Wang D, Wu Y, Sun S, Zhao P, Zhou X, Liang C, Ma Y, Li S, Zhu X, Hao X, Shi J, Fan H. NLRP3 inflammasome-mediated pyroptosis involvement in cadmium exposure-induced cognitive deficits via the Sirt3-mtROS axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166478. [PMID: 37625726 DOI: 10.1016/j.scitotenv.2023.166478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/03/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023]
Abstract
Cadmium (Cd), a toxic heavy metal, exerts deleterious effects on neuronal survival and cognitive function. NOD-like receptor 3 (NLRP3) inflammasome-dependent pyroptosis has been linked to Cd-induced cytotoxicity. The current research intended to elucidate the role of NLRP3 inflammasome-mediated pyroptosis in Cd-evoked neuronal death and cognitive impairments and the underlying mechanisms. Exposure to 1 mg/kg Cd for 8 weeks led to hippocampal-dependent cognitive deficits and neural/synaptic damage in mice. NLRP3 inflammasome-related protein expression (NLRP3, ASC, and caspase1 p20) and neuronal pyroptosis were significantly upregulated in Cd-treated hippocampi and SH-SY5Y cells. Moreover, pretreatment with the NLRP3 inhibitor MCC950 mitigated Cd-elicited NLRP3 inflammasome activation and subsequent neuronal pyroptosis in SH-SY5Y cells. Furthermore, exposure to Cd downregulated Sirt3 expression, suppressed SOD2 activity by hyperacetylation, and enhanced mtROS accumulation in vivo and in vitro. Notably, Cd-induced NLRP3 inflammasome-dependent neuronal pyroptosis was attenuated by a mtROS scavenger or Sirt3 overexpression in SH-SY5Y cells. In addition, Cd failed to further suppress SOD activity and activate NLRP3 inflammasome-dependent neuronal pyroptosis in Sirt3 shRNA-treated SH-SY5Y cells. Collectively, our findings indicate that Cd exposure induces neuronal injury and cognitive deficits by activating NLRP3 inflammasome-dependent neuronal pyroptosis and that activation of the NLRP3 inflammasome is partially mediated by the Sirt3-mtROS axis.
Collapse
Affiliation(s)
- Dongmei Wang
- College of Basic Medicine and Forensic Medicine, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China.
| | - Yiran Wu
- College of Basic Medicine and Forensic Medicine, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Shihao Sun
- College of Basic Medicine and Forensic Medicine, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Pu Zhao
- College of Basic Medicine and Forensic Medicine, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xiang Zhou
- College of Basic Medicine and Forensic Medicine, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Chen Liang
- College of Basic Medicine and Forensic Medicine, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yilu Ma
- College of Basic Medicine and Forensic Medicine, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Sanqiang Li
- College of Basic Medicine and Forensic Medicine, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xiaoying Zhu
- College of Basic Medicine and Forensic Medicine, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Xueqin Hao
- College of Basic Medicine and Forensic Medicine, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Jian Shi
- College of Basic Medicine and Forensic Medicine, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China.
| | - Hua Fan
- College of Basic Medicine and Forensic Medicine, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
34
|
Arruebarrena MA, Hawe CT, Lee YM, Branco RC. Mechanisms of Cadmium Neurotoxicity. Int J Mol Sci 2023; 24:16558. [PMID: 38068881 PMCID: PMC10706630 DOI: 10.3390/ijms242316558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
Cadmium is a heavy metal that increasingly contaminates food and drink products. Once ingested, cadmium exerts toxic effects that pose a significant threat to human health. The nervous system is particularly vulnerable to prolonged, low-dose cadmium exposure. This review article provides an overview of cadmium's primary mechanisms of neurotoxicity. Cadmium gains entry into the nervous system via zinc and calcium transporters, altering the homeostasis for these metal ions. Once within the nervous system, cadmium disrupts mitochondrial respiration by decreasing ATP synthesis and increasing the production of reactive oxygen species. Cadmium also impairs normal neurotransmission by increasing neurotransmitter release asynchronicity and disrupting neurotransmitter signaling proteins. Cadmium furthermore impairs the blood-brain barrier and alters the regulation of glycogen metabolism. Together, these mechanisms represent multiple sites of biochemical perturbation that result in cumulative nervous system damage which can increase the risk for neurological and neurodegenerative disorders. Understanding the way by which cadmium exerts its effects is critical for developing effective treatment and prevention strategies against cadmium-induced neurotoxic insult.
Collapse
Affiliation(s)
- Madelyn A. Arruebarrena
- Neuroscience and Behavior Program, University of Notre Dame, Notre Dame, IN 46556, USA; (M.A.A.); (Y.M.L.)
| | - Calvin T. Hawe
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA;
| | - Young Min Lee
- Neuroscience and Behavior Program, University of Notre Dame, Notre Dame, IN 46556, USA; (M.A.A.); (Y.M.L.)
| | - Rachel C. Branco
- Neuroscience and Behavior Program, University of Notre Dame, Notre Dame, IN 46556, USA; (M.A.A.); (Y.M.L.)
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA;
| |
Collapse
|
35
|
Ma Y, Yue C, Sun Q, Wang Y, Gong Z, Zhang K, Da J, Zou H, Zhu J, Zhao H, Song R, Liu Z. Cadmium exposure exacerbates kidney damage by inhibiting autophagy in diabetic rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115674. [PMID: 37952295 DOI: 10.1016/j.ecoenv.2023.115674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
The incidence of diabetes mellitus (DM) is gradually increasing, making it a widespread global health concern. Cadmium (Cd) is a common toxic heavy metal in the environment, and cadmium exposure may be associated with diabetic nephropathy (DN). However, the mechanism of Cd-induced DN remains unclear. In this study, we aimed to determine the effect of cadmium on diabetic kidney injury and the underlying mechanism in diabetic rats and a renal tubular epithelial cell line (NRK-52E cells). Our results could provide novel insights on the nephrotoxic mechanism of cadmium. HE, PAS, and Masson staining were used to observe pathological renal injury. COL-I, COL-IV, CTSB, and CTSD protein levels were detected by immunohistochemistry and western blotting. Immunofluorescence was used to detect the fluorescence intensity of p62 and LC3 proteins in kidney tissue. TEM was used to observe the ultrastructure of mitochondria and number of autophagosomes. After cadmium exposure, DM rats showed a dramatic decrease in body weight compared to the unexposed DM group. Relative kidney weight showed a contrasting trend after cadmium exposure. Urinary microalbumin/creatinine significantly increased in normal and DM rats after cadmium exposure. However, the trend was clearer in the DM groups than in the control groups. Endogenous creatinine clearance exhibited a contrasting trend. After cadmium exposure in DM rats, MDA content significantly increased and GSH, CAT, SOD, and GSH-PX activation reduced compared to normal controls. Pathological damage was more pronounced, and the expression of autophagy related proteins and apoptosis and fibrosis proteins was significantly higher in vivo and vitro in the cadmium-exposed groups than in unexposed controls. Further, lysosomal protein levels were lower, and ROS content and autophagosome count significantly higher in the cadmium exposed groups compared to the unexposed controls. Therefore, Cadmium exposure aggravates diabetic kidney injury via autophagy inhibition.
Collapse
Affiliation(s)
- Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Chenguang Yue
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Qiannan Sun
- Medical Research Center of Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, China
| | - Yangyang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Zhonggui Gong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Kanglei Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jiansen Da
- Animal husbandry and Veterinary and Aquatic Technology Guidance Station of Hanjiang of Yangzhou, Yangzhou 225009, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
36
|
Barathi S, Lee J, Venkatesan R, Vetcher AA. Current Status of Biotechnological Approaches to Enhance the Phytoremediation of Heavy Metals in India-A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:3816. [PMID: 38005713 PMCID: PMC10675783 DOI: 10.3390/plants12223816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023]
Abstract
Rising waste construction, agricultural actions, and manufacturing sewages all contribute to heavy metal accumulation in water resources. Humans consume heavy metals-contaminated substances to make sustenance, which equally ends up in the food circle. Cleaning of these vital properties, along with the prevention of new pollution, has long been required to evade negative strength consequences. Most wastewater treatment techniques are widely acknowledged to be costly and out of the grasp of governments and small pollution mitigation businesses. Utilizing hyper-accumulator plants that are extremely resilient to heavy metals in the environment/soil, phytoremediation is a practical and promising method for eliminating heavy metals from contaminated environments. This method extracts, degrades, or detoxifies harmful metals using green plants. The three phytoremediation techniques of phytostabilization, phytoextraction, and phytovolatilization have been used extensively for soil remediation. Regarding their ability to be used on a wide scale, conventional phytoremediation methods have significant limitations. Hence, biotechnological attempts to change plants for heavy metal phytoremediation methods are extensively investigated in order to increase plant effectiveness and possible use of improved phytoremediation approaches in the country of India. This review focuses on the advances and significance of phytoremediation accompanied by the removal of various harmful heavy metal contaminants. Similarly, sources, heavy metals status in India, impacts on nature and human health, and variables influencing the phytoremediation of heavy metals have all been covered.
Collapse
Affiliation(s)
- Selvaraj Barathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (J.L.); (R.V.)
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (J.L.); (R.V.)
| | - Raja Venkatesan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea; (J.L.); (R.V.)
| | - Alexandre A. Vetcher
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia;
| |
Collapse
|
37
|
Yang Z, He Y, Ma Q, Wang H, Zhang Q. Alleviative effect of melatonin against the nephrotoxicity induced by cadmium exposure through regulating renal oxidative stress, inflammatory reaction, and fibrosis in a mouse model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115536. [PMID: 37797427 DOI: 10.1016/j.ecoenv.2023.115536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Chronic cadmium (Cd) exposure causes severe adverse health effects on the human body, especially the kidney tissue. Studies have demonstrated oxidative stress to be involved in renal pathological variations after exposure to Cd, but few effective treatments are available for the disease yet. Therefore, the present study was carried out to investigate the potential therapeutic intervention and its underlying molecular mechanisms of melatonin (MT), a natural antioxidant with multiple biological activities, against renal injury caused by Cd exposure in mice. C57BL/6 male mice (eight-week-old) were intragastrically administered with CdCl2, MT, or both for 30 days. Biochemical analysis showed that MT intervention significantly improved the SOD, GSH, and CAT activities while markedly decreasing the kidney MDA content of the mice exposed to Cd. Histological examination indicated that Cd exposure resulted in the atrophy of the renal glomerular, the degeneration and dilation of tubules, and the accumulation of fibrocytes. By contrast, MT administration effectively ameliorated the histological outcome of the injured kidney tissue. Moreover, administrating MT significantly inhibited proinflammatory cytokines TNF-α and iNOS expression in Cd-treated mice. Further, MT treatment markedly suppressed the expressions of renal fibrosis-related factors TGF-β1, α-SMA, and collagen Ⅰ in the injured renal tissue and the accumulation and development of renal fibrosis. In addition, the administration of MT significantly reduced the expression of caspase-3 and cell apoptotic death in the kidney tissue of Cd-exposed mice. In all, the data showed that MT has a compelling therapeutic potential in alleviating the pathological variations of renal injury caused by Cd exposure.
Collapse
Affiliation(s)
- Zhijie Yang
- School of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yuqin He
- School of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Qi Ma
- School of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Haifang Wang
- School of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Quanwei Zhang
- School of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
38
|
Wang T, Yan L, Wang L, Sun J, Qu H, Ma Y, Song R, Tong X, Zhu J, Yuan Y, Gu J, Bian J, Liu Z, Zou H. VPS41-mediated incomplete autophagy aggravates cadmium-induced apoptosis in mouse hepatocytes. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132243. [PMID: 37562348 DOI: 10.1016/j.jhazmat.2023.132243] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Exposure to cadmium (Cd), an environmental heavy metal contaminant, is a serious threat to global health that increases the burden of liver diseases. Autophagy and apoptosis are important in Cd-induced liver injury. However, the regulatory mechanisms involved in the progression of Cd-induced liver damage are poorly understood. Herein, we investigated the role of vacuolar protein sorting 41 (VPS41) in Cd-induced autophagy and apoptosis in hepatocytes. We used targeted VPS41 regulation to elucidate the mechanism of Cd-induced hepatotoxicity. Our data showed that Cd triggered incomplete autophagy by downregulating VPS41, aggravating Cd-induced hepatocyte apoptosis. Mechanistically, Cd-induced VPS41 downregulation interfered with the mTORC1-TFEB/TFE3 axis, leading to an imbalance in autophagy initiation and termination and abnormal activation of autophagy. Moreover, Cd-induced downregulation of VPS41 inhibited autophagosome-lysosome fusion, leading to blocked autophagic flux. This triggers incomplete autophagy, which causes excessive P62 accumulation, accelerating Caspase-9 (CASP9) cleavage. Incomplete autophagy blocks clearance of cleaved CASP9 (CL-CASP9) via the autophagic pathway, promoting apoptosis. Notably, VPS41 overexpression alleviated Cd-induced incomplete autophagy and apoptosis, independent of the homotypic fusion and protein sorting complex. This study provides a new mechanistic understanding of the relationship between autophagy and apoptosis, suggesting that VPS41 is a new therapeutic target for Cd-induced liver damage.
Collapse
Affiliation(s)
- Tao Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Lianqi Yan
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha 410000, Hunan, China; Department of Orthopedics, Clinical Medical College of Yangzhou University, Subei People's Hospital, Yangzhou 225009, Jiangsu, China
| | - Li Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Jian Sun
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Huayi Qu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Xishuai Tong
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, China
| | - Jiaqiao Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China.
| |
Collapse
|
39
|
Lu J, Shi Z, Hu H, Shen D, Zhou Y, Feng Y, Tang D, Qin H, Wang J. The relationship between cadmium exposure and hepatitis B susceptibility and the establishment of its prediction model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95801-95809. [PMID: 37558919 DOI: 10.1007/s11356-023-29267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/07/2023] [Indexed: 08/11/2023]
Abstract
Cadmium, a common metal, is an environmental contaminant that is hepatotoxic and immunotoxic. Cadmium exposure may affect hepatitis B immunity. The purpose of this study was to assess the association between cadmium exposure and hepatitis B serology in the US population and to develop a model to predict susceptibility of hepatitis B. The study included 50,588 individuals in the National Health and Nutrition Examination Survey (NHANES) from 2007 to 2016. Univariate and multivariate logistic regression and dose-response curves were used to evaluate the relationship between cadmium exposure and hepatitis B serology. Through multivariate logistic regression results, a predictive model was established, and relevant indicators were used to verify the clinical value of the model and evaluate prognostic value of serum cadmium concentration in patients with hepatitis B. We selected 5989 (≥ 6 years old) participants. Univariate logistic regression analysis showed that gender (aOR = 0.7192, 95% CI = 0.6492-0.7968), age (aOR = 1.030, 95% CI = 1.026-1.033), race (aOR = 0.8974, 95% CI = 0.8591-0.9374), poverty ratio (aOR = 1.042, 95% CI = 0.9872-1.101), body mass index (BMI) (aOR = 1.052, 95% CI = 1.044-1.061), hypertension (aOR = 2.017, 95% CI = 1.763-2.306), diabetes (aOR = 2.673, 95% CI = 2.119-3.370), vigorous recreational activities (aOR = 0.6369, 95% CI = 0.5725-0.7085), moderate recreational activity (aOR = 0.7681, 95% CI = 0.6935-0.8574) and cadmium (aOR = 1.295, 95% CI = 1.168-1.436) were closely related to hepatitis B virus (HBV) susceptibility. After adjusting for these confounding factors, multivariate logistic regression analysis showed that the odds ratio of HBV susceptibility was positively correlated with the level of cadmium in serum. The effectiveness of the model was then evaluated by establishing a nomogram, and by calibration curves, ROC curves, and clinical decision curves. Our study shows that cadmium exposure is positively associated with HBV susceptibility risk in the US population, and the constructed model has clinical significance.
Collapse
Affiliation(s)
- Jiahao Lu
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China
- The Fifth School of Clinical Medicine, Anhui Medical University, Anhui, 230022, China
| | - Zhangpeng Shi
- The Fifth School of Clinical Medicine, Anhui Medical University, Anhui, 230022, China
- Shanghai Clinical College, Anhui Medical University, Shanghai, 200072, China
| | - Huiqing Hu
- Fuyang Hospital, Anhui Medical University, Anhui, 236112, China
| | - Dongxiao Shen
- Department Surgery, Putuo Hospital, University of Traditional Chinese Medicine in Shanghai, Shanghai, 200062, China
| | - Yiting Zhou
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Jiangsu, 214011, China
| | - Yuejiao Feng
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China
- The Fifth School of Clinical Medicine, Anhui Medical University, Anhui, 230022, China
| | - Donghao Tang
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China
- The Fifth School of Clinical Medicine, Anhui Medical University, Anhui, 230022, China
| | - Huanlong Qin
- The Fifth School of Clinical Medicine, Anhui Medical University, Anhui, 230022, China
- Shanghai Clinical College, Anhui Medical University, Shanghai, 200072, China
- Department of General Surgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Jie Wang
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China.
- The Fifth School of Clinical Medicine, Anhui Medical University, Anhui, 230022, China.
- Department Surgery, Putuo Hospital, University of Traditional Chinese Medicine in Shanghai, Shanghai, 200062, China.
| |
Collapse
|
40
|
Zhaohui C, Cifei T, Di H, Weijia Z, Cairui H, Zecong L, Xiaobo H. ROS-mediated PERK-CHOP pathway plays an important role in cadmium-induced HepG2 cells apoptosis. ENVIRONMENTAL TOXICOLOGY 2023; 38:2271-2280. [PMID: 37300854 DOI: 10.1002/tox.23866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/10/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is a common heavy metal that is highly toxic to the liver, however, the exact mechanism underlying this damage accompanied by apoptosis has not been thoroughly demonstrated. In this study, we found that Cd exposure significantly reduced cell viability, including the increased populations of apoptotic cells and caspase-3/-7/-12 activation in HepG2 cells. Mechanistically, Cd initiated oxidative stress via elevating reactive oxygen species (ROS) levels, leading to oxidative damage in HepG2 cells. Simultaneously, Cd exposure induced endoplasmic reticulum (ER) stress via activating the protein kinase RNA-like ER kinase (PERK)-C/EBP homologous protein (CHOP) axis in HepG2 cells, and subsequently disturbed ER function as increased Ca2+ releasing from ER lumen. Intriguingly, further study revealed that oxidative stress is closely related with ER stress, as pretreatment with ROS scavenger, N-acetyl-l-cysteine (NAC) markedly reduced ER stress as well as protected ER function in Cd treated HepG2 cell. Collectively, these findings first revealed Cd exposure induced HepG2 cells death via a ROS-mediated PERK-CHOP-related apoptotic signaling pathway, which provides a novel insight into the mechanisms of Cd-induced hepatotoxicity. Furthermore, inhibitors for oxidative stress and ER stress might be considered as a new strategy to prevent or treat this disorder.
Collapse
Affiliation(s)
- Cao Zhaohui
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, China
| | - Tang Cifei
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, China
| | - Huang Di
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, China
| | - Zeng Weijia
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Han Cairui
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Li Zecong
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Hu Xiaobo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
- The Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, China
| |
Collapse
|
41
|
Ali W, Deng K, Sun J, Ma Y, Liu Z, Zou H. A new insight of cadmium-induced cellular evidence of autophagic-associated spermiophagy during spermatogenesis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101064-101074. [PMID: 37646926 DOI: 10.1007/s11356-023-29548-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
Autophagy plays a dynamic role in spermatozoa development during spermatogenesis. However, the disruption of autophagic flux induces cell death under metal toxicity and severe oxidative stress. Therefore, we hypothesized that cadmium-induced autophagy might be involved in this mechanism. To verify this hypothesis, we studied cadmium-induced cellular evidence of autophagic-associated spermiophagy within the testis. In the present study, treatment with cadmium caused nuclear depressive disorders and vacuolated mitochondrial damage of Sertoli cells. In addition, spermiophagy through the cellular evidence of spermatozoa phagocytosis, the high lysosomal activity (lysosome engulfment and phagolysosome), and autophagy activity (autolysosome and autophagosome) were observed in the Sertoli cells. The immunohistochemistry of lysosomal membrane protein (LAMP2) to target the phagocytosis of spermatozoa revealed that the immunoreactivity of LAMP2 was overstimulated in the luminal compartment of testis's seminiferous tubules. In addition, the immunohistochemistry and immunofluorescence of autophagy-related protein and microtubule-associated light chain (LC3) results showed the strong immunoreactivity and immunosignaling of LC3 in the Sertoli cells of the testis. Moreover, cadmium caused the overactivation of the expression level of autophagy-related proteins, autophagy-related gene (ATG7), (ATG5), beclin1, LC3, sequestosome 1 (P62), and LAMP2 which were confirmed by western blotting. In summary, this study demonstrated that hazards related to cadmium-induced autophagic-associated spermiophagy with the disruption of autophagic flux, providing new insights into the toxicity of cadmium in mammals and representing a high risk to male fertility.
Collapse
Affiliation(s)
- Waseem Ali
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Kai Deng
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Jian Sun
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China.
| |
Collapse
|
42
|
He Y, Fang H, Pan X, Zhu B, Chen J, Wang J, Zhang R, Chen L, Qi X, Zhang H. Cadmium Exposure in Aquatic Products and Health Risk Classification Assessment in Residents of Zhejiang, China. Foods 2023; 12:3094. [PMID: 37628093 PMCID: PMC10453627 DOI: 10.3390/foods12163094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Cadmium (Cd) pollution of food safety is a prominent food safety concern worldwide. The concentration of Cd in six aquatic food categories collected from 2018 to 2022 was analyzed using inductively coupled plasma mass spectrometry, and the Cd exposure levels were calculated by combining the Cd concentration and food consumption data of 18913 urban and rural residents in Zhejiang Province in 2015-2016. The mean Cd concentration was 0.699 mg/kg and the mean Cd exposure of aquatic foods was 0.00951 mg/kg BW/month for the general population. Marine crustaceans were the largest Cd contributor, corresponding to 82.7%. The regional distribution results showed that the average Cd exposure levels of 11 cities did not exceed the provisional tolerable monthly intake (PTMI). According to the subgroups, the Cd mean exposure level of 2-3-year-old children was significantly higher than that of the other age groups but did not exceed the PTMI. Health risk classification assessment demonstrated that the final risk score was six, and the health risk level of Cd exposure in aquatic products in the Zhejiang population was medium. These results demonstrated that the risk of Cd exposure in certain food types or age groups should be given more concern.
Collapse
Affiliation(s)
- Yue He
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (Y.H.); (B.Z.); (J.C.); (J.W.); (R.Z.); (L.C.); (H.Z.)
| | - Hangyan Fang
- Hangzhou Linping District Center for Disease Control and Prevention, Hangzhou 311100, China;
| | - Xiaodong Pan
- Department of Physical-Chemistry, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China;
| | - Bing Zhu
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (Y.H.); (B.Z.); (J.C.); (J.W.); (R.Z.); (L.C.); (H.Z.)
| | - Jiang Chen
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (Y.H.); (B.Z.); (J.C.); (J.W.); (R.Z.); (L.C.); (H.Z.)
| | - Jikai Wang
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (Y.H.); (B.Z.); (J.C.); (J.W.); (R.Z.); (L.C.); (H.Z.)
| | - Ronghua Zhang
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (Y.H.); (B.Z.); (J.C.); (J.W.); (R.Z.); (L.C.); (H.Z.)
| | - Lili Chen
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (Y.H.); (B.Z.); (J.C.); (J.W.); (R.Z.); (L.C.); (H.Z.)
| | - Xiaojuan Qi
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (Y.H.); (B.Z.); (J.C.); (J.W.); (R.Z.); (L.C.); (H.Z.)
| | - Hexiang Zhang
- Department of Nutrition and Food Safety, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China; (Y.H.); (B.Z.); (J.C.); (J.W.); (R.Z.); (L.C.); (H.Z.)
| |
Collapse
|
43
|
Górska A, Markiewicz-Gospodarek A, Markiewicz R, Chilimoniuk Z, Borowski B, Trubalski M, Czarnek K. Distribution of Iron, Copper, Zinc and Cadmium in Glia, Their Influence on Glial Cells and Relationship with Neurodegenerative Diseases. Brain Sci 2023; 13:911. [PMID: 37371389 DOI: 10.3390/brainsci13060911] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/30/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Recent data on the distribution and influence of copper, zinc and cadmium in glial cells are summarized. This review also examines the relationship between those metals and their role in neurodegenerative diseases like Alzheimer disease, multiple sclerosis, Parkinson disease and Amyotrophic lateral sclerosis, which have become a great challenge for today's physicians. The studies suggest that among glial cells, iron has the highest concentration in oligodendrocytes, copper in astrocytes and zinc in the glia of hippocampus and cortex. Previous studies have shown neurotoxic effects of copper, iron and manganese, while zinc can have a bidirectional effect, i.e., neurotoxic but also neuroprotective effects depending on the dose and disease state. Recent data point to the association of metals with neurodegeneration through their role in the modulation of protein aggregation. Metals can accumulate in the brain with aging and may be associated with age-related diseases.
Collapse
Affiliation(s)
- Aleksandra Górska
- Department of Human Anatomy, Medical University of Lublin, 4 Jaczewskiego St., 20-090 Lublin, Poland
| | | | - Renata Markiewicz
- Department of Psychiatric Nursing, Medical University of Lublin, 18 Szkolna St., 20-124 Lublin, Poland
| | - Zuzanna Chilimoniuk
- Student Scientific Group at the Department of Family Medicine, 6a (SPSK1) Langiewicza St., 20-032 Lublin, Poland
| | - Bartosz Borowski
- Students Scientific Association at the Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Mateusz Trubalski
- Students Scientific Association at the Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland
| | - Katarzyna Czarnek
- Institute of Health Sciences, The John Paul II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland
| |
Collapse
|
44
|
Miyazaki I, Asanuma M. Multifunctional Metallothioneins as a Target for Neuroprotection in Parkinson's Disease. Antioxidants (Basel) 2023; 12:antiox12040894. [PMID: 37107269 PMCID: PMC10135286 DOI: 10.3390/antiox12040894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Parkinson's disease (PD) is characterized by motor symptoms based on a loss of nigrostriatal dopaminergic neurons and by non-motor symptoms which precede motor symptoms. Neurodegeneration accompanied by an accumulation of α-synuclein is thought to propagate from the enteric nervous system to the central nervous system. The pathogenesis in sporadic PD remains unknown. However, many reports indicate various etiological factors, such as oxidative stress, inflammation, α-synuclein toxicity and mitochondrial impairment, drive neurodegeneration. Exposure to heavy metals contributes to these etiopathogenesis and increases the risk of developing PD. Metallothioneins (MTs) are cysteine-rich metal-binding proteins; MTs chelate metals and inhibit metal-induced oxidative stress, inflammation and mitochondrial dysfunction. In addition, MTs possess antioxidative properties by scavenging free radicals and exert anti-inflammatory effects by suppression of microglial activation. Furthermore, MTs recently received attention as a potential target for attenuating metal-induced α-synuclein aggregation. In this article, we summarize MTs expression in the central and enteric nervous system, and review protective functions of MTs against etiopathogenesis in PD. We also discuss neuroprotective strategies for the prevention of central dopaminergic and enteric neurodegeneration by targeting MTs. This review highlights multifunctional MTs as a target for the development of disease-modifying drugs for PD.
Collapse
Affiliation(s)
- Ikuko Miyazaki
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Masato Asanuma
- Department of Medical Neurobiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
45
|
Li T, Yao L, Hua Y, Wu Q. Comprehensive analysis of prognosis of cuproptosis-related oxidative stress genes in multiple myeloma. Front Genet 2023; 14:1100170. [PMID: 37065484 PMCID: PMC10102368 DOI: 10.3389/fgene.2023.1100170] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Introduction: Multiple myeloma (MM) is a highly heterogeneous hematologic malignancy. The patients’ survival outcomes vary widely. Establishing a more accurate prognostic model is necessary to improve prognostic precision and guide clinical therapy.Methods: We developed an eight-gene model to assess the prognostic outcome of MM patients. Univariate Cox analysis, Least absolute shrinkage and selection operator (LASSO) regression, and multivariate Cox regression analyses were used to identify the significant genes and construct the model. Other independent databases were used to validate the model.Results: The results showed that the overall survival of patients in the high-risk group was signifificantly shorter compared with that of those in the low-risk group. The eight-gene model demonstrated high accuracy and reliability in predicting the prognosis of MM patients.Discussion: Our study provides a novel prognostic model for MM patients based on cuproptosis and oxidative stress. The eight-gene model can provide valid predictions for prognosis and guide personalized clinical treatment. Further studies are needed to validate the clinical utility of the model and explore potential therapeutic targets.
Collapse
|