1
|
Mohanty A, Vekariya V, Yadav S, Agrawal-Rajput R. Natural phytochemicals reverting M2 to M1 macrophages: A novel alternative leishmaniasis therapy. Microb Pathog 2025; 200:107311. [PMID: 39863089 DOI: 10.1016/j.micpath.2025.107311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/29/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
INTRODUCTION Leishmaniasis is a tropical parasitic disease caused by the protozoan Leishmania which remains a significant global health concern with diverse clinical manifestations. Transmitted through the bite of an infected sandfly, its progression depends on the interplay between the host immune response and the parasite. The disease outcome is linked to macrophage polarisation into M1 and M2 phenotypes. M1 macrophages are pro-inflammatory and promote parasite clearance, while M2 macrophages support tissue repair and parasite survival by facilitating promastigote entry and intracellular amastigote proliferation. PURPOSE The review focuses on discovering novel phytochemicals that exploit the immunomodulatory properties of macrophages, which can serve as an alternative antileishmanial treatments due to their diverse chemical structures and ability to modulate immune responses. It examines the immunomodulatory effects of phytochemicals that directly or indirectly promote antileishmanial activity by influencing macrophage polarisation and cytokine secretion. They can induce M1 macrophage polarisation to directly combat leishmaniasis or suppress M2 macrophages, thereby exerting indirect antileishmanial activity by influencing the release of M1-and M2-related cytokines. RESULTS & DISCUSSION Phytochemicals demonstrate antileishmanial effects through ROS production, M1 activation, and cytokine modulation. They regulate M1/M2-related cytokines and macrophage activity, influencing immune responses. Although their effects may be non-specific, targeted delivery strategies could overcome current therapeutic limitations, positioning phytochemicals as promising candidates for leishmaniasis treatment to counter the limitations of current medications.
Collapse
Affiliation(s)
- Aditya Mohanty
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Vasu Vekariya
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Shivani Yadav
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India.
| |
Collapse
|
2
|
Doghish AS, Mageed SSA, Zaki MB, Abd-Elmawla MA, Sayed GA, Hatawsh A, Aborehab NM, Moussa R, Mohammed OA, Abdel-Reheim MA, Elimam H. Role of long non-coding RNAs and natural products in prostate cancer: insights into key signaling pathways. Funct Integr Genomics 2025; 25:16. [PMID: 39821470 DOI: 10.1007/s10142-025-01526-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/18/2024] [Accepted: 01/01/2025] [Indexed: 01/19/2025]
Abstract
Prostate cancer (PC) ranks among the most prevalent cancers in males. Recent studies have highlighted intricate connections between long non-coding RNAs (lncRNAs), natural products, and cellular signaling in PC development. LncRNAs, which are RNA transcripts without protein-coding function, influence cell growth, programmed cell death, metastasis, and resistance to treatments through pathways like PI3K/AKT, WNT/β-catenin, and androgen receptor signaling. Certain lncRNAs, including HOTAIR and PCA3, are associated with PC progression, with potential as diagnostic markers. Natural compounds, such as curcumin and resveratrol, demonstrate anticancer effects by targeting these pathways, reducing tumor growth, and modulating lncRNA expression. For instance, curcumin suppresses HOTAIR levels, hindering PC cell proliferation and invasion. The interaction between lncRNAs and natural compounds may open new avenues for therapy, as these substances can simultaneously impact multiple signaling pathways. These complex interactions offer promising directions for developing innovative PC treatments, enhancing diagnostics, and identifying new biomarkers for improved prevention and targeted therapy. This review aims to map the multifaceted relationship among natural products, lncRNAs, and signaling pathways in PC pathogenesis, focusing on key pathways such as AR, PI3K/AKT/mTOR, WNT/β-catenin, and MAPK, which are crucial in PC progression and therapy resistance. Regulation of these pathways by natural products and lncRNAs could lead to new insights into biomarker identification, preventive measures, and targeted PC therapies.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, 11829, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, CairoE, 11829, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ghadir A Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, 11829, Egypt
| | - Abdulrahman Hatawsh
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City, Giza, 12588, Egypt
| | - Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Rewan Moussa
- School Faculty of Medicine, Helwan University, Cairo, 11795, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | | | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, 32897, Egypt
| |
Collapse
|
3
|
Alum EU, Tufail T, Uti DE, Aja PM, Offor CE, Ibiam UA, Ukaidi CUA, Alum BN. Utilizing Indigenous Flora in East Africa for Breast Cancer Treatment: An Overview. Anticancer Agents Med Chem 2025; 25:99-113. [PMID: 39297456 DOI: 10.2174/0118715206338557240909081833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 02/18/2025]
Abstract
BACKGROUND Breast cancer is a significant global health challenge, contributing substantially to cancer- related deaths. Conventional treatment methods, including hormone therapy, chemotherapy, surgical interventions, and radiation, have long been utilized. However, these traditional treatments are often associated with serious side effects and drug resistance, limiting their efficacy. AIM This review aims to explore the potential of medicinal plants used in breast cancer management in East Africa, focusing on their bioactive compounds and anticancer properties. METHODS A comprehensive literature search was conducted to examine the effectiveness of medicinal plants in treating breast cancer across Kenya, Ethiopia, Uganda, Tanzania, and Rwanda. Relevant studies published between 2003 and 2023 were identified using keywords related to breast cancer and medicinal plants. The search was performed across multiple databases, including Google Scholar, PubMed, Scopus, Web of Science Core Collection, and Science Direct. RESULTS Numerous natural compounds found in East African medicinal plants including Cymbopogon citratus (Lemongrass,) Tabebuia avellanedae, Prunus africana (African Cherry), Euclea divinorum, Berberis holstii, Withania somnifera (Ashwagandha, Curcuma longa (Turmeric), Garcinia mangostana (Mangosteen, Vitis vinifera (Grapevine), Eugenia jambolana (Java Plum), Moringa oleifera (Drumstick Tree), Camellia sinensis (Tea), Glycine max (Soybean), Catharanthus roseus, Madagascar Periwinkle), Rhus vulgaris (Wild Currant) exhibit significant anticancer properties. These compounds have demonstrated the ability to reduce breast cancer aggressiveness, inhibit cancer cell proliferation, and modulate cancer-related pathways. Current research focuses on these natural and dietary compounds to develop more effective strategies for treating breast cancer. CONCLUSION The findings suggested that East African medicinal plants hold promise as complementary treatments for breast cancer, offering potential benefits such as affordability, cultural appropriateness, and sustainability. Further research into these plants and their bioactive compounds could revolutionize breast cancer treatment, improving survival rates and addressing the rising incidence of breast cancer-related fatalities. Other: The review underscores the importance of continued research, conservation, and the integration of ancient healing methods to fully harness the potential of East African flora in breast cancer management.
Collapse
Affiliation(s)
- Esther Ugo Alum
- Department of Research and Publications, Kampala International University, Kampala, P. O. Box 20000, Uganda
- Department of Biochemistry, Faculty of Science, Ebonyi State University, P.M.B. 053 Abakaliki, Ebonyi State, Nigeria
| | - Tabussam Tufail
- School of Food and Biological, Engineering Jiangsu, University Zhenjiang Kampala, China
- University Institute of Diet and Nutritional Sciences, The University of Lahore, Lahore, Pakistan
| | - Daniel Ejim Uti
- Department of Research and Publications, Kampala International University, Kampala, P. O. Box 20000, Uganda
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Federal University of Health Sciences, Otukpo, Benue State, Nigeria
| | - Patrick Maduabuchi Aja
- Department of Biochemistry, Faculty of Science, Ebonyi State University, P.M.B. 053 Abakaliki, Ebonyi State, Nigeria
- Department of Biochemistry, Kampala International University, Western Campus, Kampala, Uganda
| | - Christian Emeka Offor
- Department of Biochemistry, Faculty of Science, Ebonyi State University, P.M.B. 053 Abakaliki, Ebonyi State, Nigeria
| | - Udu Ama Ibiam
- Department of Biochemistry, Faculty of Science, Ebonyi State University, P.M.B. 053 Abakaliki, Ebonyi State, Nigeria
- Department of Biochemistry, College of Science, Evangel University Akaeze, Abakaliki, Ebonyi State, Nigeria
| | - Chris U A Ukaidi
- College of Economics and Management, Kampala International University, Kampala, Uganda
| | - Benedict Nnachi Alum
- Department of Research and Publications, Kampala International University, Kampala, P. O. Box 20000, Uganda
| |
Collapse
|
4
|
Mosadegh M, Noori Goodarzi N, Erfani Y. A Comprehensive Insight into Apoptosis: Molecular Mechanisms, Signaling Pathways, and Modulating Therapeutics. Cancer Invest 2025; 43:33-58. [PMID: 39760426 DOI: 10.1080/07357907.2024.2445528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 11/15/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
Apoptosis, or programmed cell death, is a fundamental biological process essential for maintaining tissue homeostasis. Dysregulation of apoptosis is implicated in a variety of diseases, including cancer, neurodegenerative disorders, and autoimmune conditions. This review provides an in-depth insight into the molecular mechanisms and signaling pathways that regulate apoptosis, highlighting both intrinsic and extrinsic pathways. Additionally, the review explains the tumor microenvironment's influence on apoptosis and its implications for cancer therapy resistance. Understanding the complex interplay between apoptotic signaling and cellular responses is crucial for developing targeted therapies that can effectively manage diseases associated with apoptosis dysregulation. The effects of conventional therapeutics and alternative substances with natural sources such as herbal compounds, alongside vitamins, minerals, and trace elements on cellular homeostasis and disease pathogenesis have been thoroughly investigated. Moreover, recent advances in therapeutic strategies aimed at modulating apoptosis are discussed, with a focus on novel interventions such as nutrition bio shield dietary supplement. These emerging approaches offer potential benefits beyond conventional treatments by selectively targeting apoptotic pathways to inhibit cancer progression and metastasis. By integrating insights from recent studies, this review aims to enhance our understanding of apoptosis and guide future research in developing innovative therapeutic approaches.
Collapse
Affiliation(s)
- Mehrdad Mosadegh
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Narjes Noori Goodarzi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Erfani
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Palani S, Joseph J, Sridhar P, Bupesh G, Saravanan KM, Chandrasekaran R. Apoptotic and Molecular Mechanisms of Carthamidin in Breast Cancer Therapy: An Integrated In Vitro and In Silico Study. Mol Biotechnol 2024:10.1007/s12033-024-01331-2. [PMID: 39704751 DOI: 10.1007/s12033-024-01331-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024]
Abstract
The current study examines the anticancer properties of the chemical carthamidin in breast cancer through in-vitro and in silico analysis. This study's results demonstrated that carthamidin strongly inhibited the proliferation of MCF 7 cells in vitro, as evidenced by an IC50 value of 128.65 µg/mL at 24 h, determined using the MTT test. Laser confocal microscopy utilizing AO/EB labeling validated apoptotic effects through upregulating pro-apoptotic cell markers. At the same time, the ROS assay demonstrated elevated ROS production in the treated cells. LDH leakage was corroborated by leakage analysis, revealing high LDH levels at 100 µg/mL. The cellular growth parameters were subsequently examined via flow cytometry, showing that the cell cycle was halted in the G0/G1 phase, with 82.9% of the cells residing there. The molecular docking research demonstrated that carthamidin displayed a significant binding affinity with Notch receptors - NOTCH 1-4 and p53, with binding scores ranging from - 5.027 to - 7.402 kcal/mol. The results suggest that carthamidin has therapeutic potential in inducing apoptosis and impairing cancer cells, warranting further investigation in breast cancer treatments.
Collapse
Affiliation(s)
- Selvakumari Palani
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - John Joseph
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Priyadharshan Sridhar
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Giridharan Bupesh
- Department of Forestry, Nagaland University, Lumami, Nagaland, 798627, India.
| | | | - Rajkuberan Chandrasekaran
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India.
| |
Collapse
|
6
|
Taheri D, Ghajar HA, Mirzaei A, Mashhadi R, Dougaheh SNH, Bahri RA, Khoshchehreh M, Tavoosian A, Aghamir SMK. Resveratrol enhances sensitivity of renal cell carcinoma to tivozanib: An in-vitro study. Tissue Cell 2024; 91:102584. [PMID: 39423697 DOI: 10.1016/j.tice.2024.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/01/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Since tivozanib has many side effects in the treatment of kidney cancer, we decided to use resveratrol as a bioactive molecule with anticancer and antioxidant properties to make tivozanib more effective and also reduce its side effects in kidney cancer cell line. METHOD In this in vitro study, we evaluated the effect of tivozanib, resveratrol and tivozanib- resveratrol combination therapy in ACHN cell line as representatives of human kidney cancer. The assessment includes Hoechst dye staining, scratch-wound assay, 3D spheroid, 2D colony formation assay, flow cytometric analysis of apoptosis and DNA cell cycle, real-time PCR (BAX/BCL2, E-cadherin, Snail, HIF1α, VEGFC and KLK3 genes). RESULT To determine IC50 levels, ACHN cells was exposed to different concentration of tivozanib and resveratrol. Our data indicated that IC50 values for tivozanib (0.5 μM) and resveratrol (30 μM) with MTT in a dose and time-dependent manner. Due to the efficacy of resveratrol in combination with tivozanib, we used 20 μM resveratrol, and 0.25 μM tivozanib instead of 30 μM and 0.25 μM respectively. This data was approved by flow cytometry for ACHN cell line with 38.39, 14.74 and 66.06 percent apoptosis and 8.25, 5.12 and 15.6 percent subG1 for tivozanib, resveratrol and tivozanib-resveratrol combination respectively which was as a consequence of cell cycle arrest at G1/S phase. The treatment also reduced cells' migration, fragmented nuclei, 3D spheroid and colony formation potentials in analyses. Evaluation of gene expression presented that the effect of the tivozanib and resveratrol combination in ACHN cell lines is completely different during the evaluation of apoptosis genes, BAX, P53 genes and E-Cadherin had significantly increased expression compared to single treatment groups (P < 0.01). Meanwhile, a significant decrease was observed in the expression of VEGFC and HIF1α genes in the combination group compared to the monotherapy groups (P < 0.001). CONCLUSION Considering that resveratrol can increase the apoptosis of cancer cells alone and in combination with tivozanib and prevent the proliferation of cancer cells and also reduce the side effects of tivozanib, we suggest that resveratrol as a potential bioactive molecule can be used in treatment of kidney cancer should be used in combination with tivozanib.
Collapse
Affiliation(s)
- Diana Taheri
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pathology, Isfahan Kidney Disease Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Akram Mirzaei
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rahil Mashhadi
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | - Ali Tavoosian
- Urology Department, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
7
|
Kadry MO. Resveratrol-based nano-formulations as an emerging therapeutic strategy for ovarian carcinoma: autophagy stimulation and SIRT-1/Beclin/MMP-9/P53/AKT signaling. Cancer Nanotechnol 2024; 15:36. [DOI: 10.1186/s12645-024-00274-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 06/25/2024] [Indexed: 01/05/2025] Open
Abstract
Abstract
Background
Resveratrol (RVS) is a stilbene derivative polyphenolic compound extensively recognized for its anti-inflammatory, antioxidant and anti-aging properties, along with its enormous promise in carcinoma treatment. Unfortunately, the oral supplementation of RVS possesses physicochemical and pharmacokinetic constraints that hinder its effects, necessitating the development of suitable administration strategies to improve its effectiveness. As a result, the current study evaluates the use of resveratrol nano-formulations in ovarian cancer therapy. Ovarian cancer was induced in rats using (35 mg/kg BW) 20-Methyl cholanthrene (20-MC) followed by resveratrol and resveratrol nano-formulations therapy for one month.
Results
20-MC highlighted a noticeable alleviation in autophagy (ATF) biomarkers SIRT-1 and Beclin, inflammatory and apoptotic biomarkers MMP-9, P53 and AKT in addition to oxidative and nitrosative stress biomarkers TAC and NOX and ovarian cancer tumor biomarker CA-125.
Conclusions
Resveratrol and resveratrol nano-formulations modulated autophagy, inflammatory and oxidative stress biomarkers with the upper effect for resveratrol nano-formulations in competing 20-MC-induced ovarian cancer.
Collapse
|
8
|
Kubota Y, Kimura S. Current Understanding of the Role of Autophagy in the Treatment of Myeloid Leukemia. Int J Mol Sci 2024; 25:12219. [PMID: 39596291 PMCID: PMC11594995 DOI: 10.3390/ijms252212219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The most important issues in acute myeloid leukemia are preventing relapse and treating relapse. Although the remission rate has improved to approximately 80%, the 5-year survival rate is only around 30%. The main reasons for this are the high relapse rate and the limited treatment options. In chronic myeloid leukemia patients, when a deep molecular response is achieved for a certain period of time through tyrosine kinase inhibitor treatment, about half of them will reach treatment-free remission, but relapse is still a problem. Therefore, potential therapeutic targets for myeloid leukemias are eagerly awaited. Autophagy suppresses the development of cancer by maintaining cellular homeostasis; however, it also promotes cancer progression by helping cancer cells survive under various metabolic stresses. In addition, autophagy is promoted or suppressed in cancer cells by various genetic mutations. Therefore, the development of therapies that target autophagy is also being actively researched in the field of leukemia. In this review, studies of the role of autophagy in hematopoiesis, leukemogenesis, and myeloid leukemias are presented, and the impact of autophagy regulation on leukemia treatment and the clinical trials of autophagy-related drugs to date is discussed.
Collapse
MESH Headings
- Humans
- Autophagy
- Animals
- Leukemia, Myeloid/pathology
- Leukemia, Myeloid/genetics
- Leukemia, Myeloid/therapy
- Leukemia, Myeloid/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/drug therapy
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/pharmacology
- Hematopoiesis
Collapse
Affiliation(s)
- Yasushi Kubota
- Department of Clinical Laboratory Medicine, Saga-Ken Medical Centre Koseikan, Saga 840-8571, Japan
| | - Shinya Kimura
- Division of Hematology, Respiratory Medicine and Oncology, Department of Internal Medicine, Faculty of Medicine, Saga University, Saga 849-8501, Japan;
| |
Collapse
|
9
|
Dey S, Dinakar YH, R S, Jain V, Jain R. Navigating the therapeutic landscape for breast cancer: targeting breast cancer stem cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03542-5. [PMID: 39441235 DOI: 10.1007/s00210-024-03542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Breast cancer is a common and deadly malignancy that affects women globally, and breast cancer stem cells (BCSCs) play an important role in tumorigenesis, development, metastasis, and recurrence. Traditional therapies often fail to eliminate BCSCs, leading to treatment resistance and relapse. This review explores the therapeutic strategies which are designed to target BCSCs, including inhibition of key signaling pathway and targeting receptor. This paper also explores the approaches to targeting BCSCs including chemotherapy, phytomedicines, and nanotechnology. Nanotechnology has gained a lot of importance in cancer therapy because of its ability to deliver therapeutic agents with more precision and minimal side effects. Various chemotherapeutic drugs, siRNAs, or gene editing tools are delivered efficiently with the use of nanocarriers which target pathways, receptors, and proteins associated with BCSCs. Over the past few years, stimuli-responsive and receptor-targeted nanocarriers have been explored for better therapeutic effects. In recent times, strategies such as chimeric antigen receptor (CAR) T-cell therapy, ablation therapy, and cell-free therapies are explored for targeting these stem cells. This review provides a recent developmental overview of strategies to attack BCSCs from conventional chemotherapeutic agents to nanotechnological platforms such as polymeric, lipidic, and metal-based nanoparticles and advanced technologies like CAR T cell therapies.
Collapse
Affiliation(s)
- Soudeep Dey
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Yirivinti Hayagreeva Dinakar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Soundarya R
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India
| | - Vikas Jain
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India.
| | - Rupshee Jain
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, 570015, India.
| |
Collapse
|
10
|
Neagu AN, Josan CL, Jayaweera TM, Weraduwage K, Nuru N, Darie CC. Double-Edged Sword Effect of Diet and Nutrition on Carcinogenic Molecular Pathways in Breast Cancer. Int J Mol Sci 2024; 25:11078. [PMID: 39456858 PMCID: PMC11508170 DOI: 10.3390/ijms252011078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Environmental exposure to a mixture of chemical xenobiotics acts as a double-edged sword, promoting or suppressing tumorigenesis and the development of breast cancer (BC). Before anything else, we are what we eat. In this review, we highlight both "the good" and "the bad" sides of the daily human diet and dietary patterns that could influence BC risk (BCR) and incidence. Thus, regularly eating new, diversified, colorful, clean, nutrient-rich, energy-boosting, and raw food, increases apoptosis and autophagy, antioxidation, cell cycle arrest, anti-inflammation, and the immune response against BC cells. Moreover, a healthy diet could lead to a reduction in or the inhibition of genomic instability, BC cell stemness, growth, proliferation, invasion, migration, and distant metastasis. We also emphasize that, in addition to beneficial compounds, our food is more and more contaminated by chemicals with harmful effects, which interact with each other and with endogenous proteins and lipids, resulting in synergistic or antagonistic effects. Thus, a healthy and diverse diet, combined with appropriate nutritional behaviors, can exert anti-carcinogenic effects and improve treatment efficacy, BC patient outcomes, and the overall quality of life of BC patients.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Claudiu-Laurentiu Josan
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Taniya M. Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| | - Krishan Weraduwage
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| | - Niyogushima Nuru
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| |
Collapse
|
11
|
Lv Q, Xu W, Yang F, Li J, Wei W, Chen X, Liu Y, Zhang Z. Protective and Detoxifying Effects of Resveratrol on Zearalenone-Mediated Toxicity: A Review. Int J Mol Sci 2024; 25:11003. [PMID: 39456789 PMCID: PMC11507252 DOI: 10.3390/ijms252011003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Zearalenone (ZEA) is a mycotoxin produced by Fusarium spp. fungi and is widely found in moldy corn, wheat, barley, and other grains. ZEA is distributed to the whole body via blood circulation after metabolic transformation in animals. Through oxidative stress, immunosuppression, apoptosis, autophagy, and mitochondrial dysfunction, ZEA leads to hepatitis, neurodegenerative diseases, cancer, abortion, and stillbirth in female animals, and decreased sperm motility in male animals. In recent years, due to the influence of climate, storage facilities, and other factors, the problem of ZEA pollution in global food crops has become particularly prominent, resulting in serious problems for the animal husbandry and feed industries, and threatening human health. Resveratrol (RSV) is a natural product with therapeutic activities such as anti-inflammatory, antioxidant, and anticancer properties. RSV can alleviate ZEA-induced toxic effects by targeting signaling pathways such as NF-κB, Nrf2/Keap1, and PI3K/AKT/mTOR via attenuating oxidative damage, inflammatory response, and apoptosis, and regulating cellular autophagy. Therefore, this paper provides a review of the protective effect of RSV against ZEA-induced toxicity and its molecular mechanism, and discusses the safety and potential clinical applications of RSV in the search for natural mycotoxin detoxification agents.
Collapse
|
12
|
Rocca R, Ascrizzi S, Citriniti EL, Scionti F, Juli G, Di Martino MT, Caracciolo D, Artese A, Tagliaferri P, Tassone P, Grillone K, Alcaro S. TERRA G-quadruplex stabilization behind the anti-multiple myeloma activity: Novel insights about resveratrol pleiotropic effects. Arch Pharm (Weinheim) 2024; 357:e2400269. [PMID: 39365272 DOI: 10.1002/ardp.202400269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 10/05/2024]
Abstract
Resveratrol (RSV) is a nutraceutical compound belonging to the nonflavonoid polyphenol family, whose antioxidants, anti-inflammatory, and antitumoral properties have been widely investigated. The ability of RSV to provide beneficial effects for neurological, cardiovascular, and cancer disorders rekindled the interest to explore the molecular mechanisms behind its pleiotropic effects, which are due to the modulation of coding and noncoding genes involved in many key biological pathways. With a computational approach, including docking studies and thermodynamics calculations followed by 200-ns-long molecular dynamics and a clustering analysis, we hypothesized the stabilizing binding between RSV and G4 structures of telomeric repeat-containing RNA (TERRA), which is a tumor-suppressive long noncoding RNAs (lncRNA) involved in the regulation of telomere maintenance. In vitro studies performed on cellular models of multiple myeloma (MM) strengthened our hypothesis by highlighting that the antiproliferative and apoptotic effect induced by the treatment with RSV is associated with an increase of TERRA transcript and with upregulation of telomeric heterochromatin markers, such as H3K27Me3 and H4K20Me3, and of the hallmark of apoptosis, cleaved-poly(ADP-ribose) polymerase-1. Our results propose innovative insights underlying the multifaceted role of RSV in MM, by pointing out the role of this natural compound in an lncRNA-mediated regulation to counteract cellular immortality.
Collapse
Affiliation(s)
- Roberta Rocca
- Net4Science srl, University Magna Græcia, Catanzaro, Italy
- Associazione CRISEA-Centro di Ricerca e Servizi Avanzati per l'Innovazione Rurale, Località Condoleo di Belcastro, Catanzaro, Italy
- Department of Health Sciences, University Magna Græcia, Catanzaro, Italy
| | - Serena Ascrizzi
- Department of Experimental and Clinical Medicine, University Magna Græcia, Catanzaro, Italy
| | | | - Francesca Scionti
- Department of Medical and Surgery Sciences, University Magna Græcia of Catanzaro, Catanzaro, Italy
| | - Giada Juli
- Department of Experimental and Clinical Medicine, University Magna Græcia, Catanzaro, Italy
| | | | - Daniele Caracciolo
- Department of Experimental and Clinical Medicine, University Magna Græcia, Catanzaro, Italy
| | - Anna Artese
- Net4Science srl, University Magna Græcia, Catanzaro, Italy
- Department of Health Sciences, University Magna Græcia, Catanzaro, Italy
| | | | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, University Magna Græcia, Catanzaro, Italy
| | - Katia Grillone
- Department of Experimental and Clinical Medicine, University Magna Græcia, Catanzaro, Italy
| | - Stefano Alcaro
- Net4Science srl, University Magna Græcia, Catanzaro, Italy
- Associazione CRISEA-Centro di Ricerca e Servizi Avanzati per l'Innovazione Rurale, Località Condoleo di Belcastro, Catanzaro, Italy
- Department of Health Sciences, University Magna Græcia, Catanzaro, Italy
| |
Collapse
|
13
|
Mukherjee S, Chopra H, Goyal R, Jin S, Dong Z, Das T, Bhattacharya T. Therapeutic effect of targeted antioxidant natural products. DISCOVER NANO 2024; 19:144. [PMID: 39251461 PMCID: PMC11383917 DOI: 10.1186/s11671-024-04100-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
The exploration of targeted therapy has proven to be a highly promising avenue in the realm of drug development research. The human body generates a substantial amount of free radicals during metabolic processes, and if not promptly eliminated, these free radicals can lead to oxidative stress, disrupting homeostasis and potentially contributing to chronic diseases and cancers. Before the development of contemporary medicine with synthetic pharmaceuticals and antioxidants, there was a long-standing practice of employing raw, natural ingredients to cure a variety of illnesses. This practice persisted even after the active antioxidant molecules were known. The ability of natural antioxidants to neutralise excess free radicals in the human body and so prevent and cure a wide range of illnesses. The term "natural antioxidant" refers to compounds derived from plants or other living organisms that have the ability to control the production of free radicals, scavenge them, stop free radical-mediated chain reactions, and prevent lipid peroxidation. These compounds have a strong potential to inhibit oxidative stress. Phytochemicals (antioxidants) derived from plants, such as polyphenols, carotenoids, vitamins, and others, are central to the discussion of natural antioxidants. Not only may these chemicals increase endogenous antioxidant defenses, affect communication cascades, and control gene expression, but they have also shown strong free radical scavenging properties. This study comprehensively summarizes the primary classes of natural antioxidants found in different plant and animal source that contribute to the prevention and treatment of diseases. Additionally, it outlines the research progress and outlines future development prospects. These discoveries not only establish a theoretical groundwork for pharmacological development but also present inventive ideas for addressing challenges in medical treatment.
Collapse
Affiliation(s)
- Sohini Mukherjee
- Department of Environmental Science, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
| | - Rajat Goyal
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Sihao Jin
- Department of Nursing, School of Medicine, Shaoxing Vocational and Technical College, Shaoxing, 312000, China
| | - Zhenzhen Dong
- Department of Nursing, School of Medicine, Shaoxing Vocational and Technical College, Shaoxing, 312000, China
| | - Tanmoy Das
- Faculty of Engineering, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Tanima Bhattacharya
- Faculty of Applied Science, Lincoln University College, 47301, Petaling Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
14
|
Chang WL, Yang KC, Peng JY, Hong CL, Li PC, Chye SM, Lu FJ, Shih CW, Chen CH. Parecoxib Enhances Resveratrol against Human Colorectal Cancer Cells through Akt and TXNDC5 Inhibition and MAPK Regulation. Nutrients 2024; 16:3020. [PMID: 39275334 PMCID: PMC11397307 DOI: 10.3390/nu16173020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
In this study, we discovered the mechanisms underlying parecoxib and resveratrol combination's anti-cancer characteristics against human colorectal cancer DLD-1 cells. We studied its anti-proliferation and apoptosis-provoking effect by utilizing cell viability 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, fluorescence microscope, gene overexpression, Western blot, and flow cytometry analyses. Parecoxib enhanced the ability of resveratrol to inhibit cell viability and increase apoptosis. Parecoxib in combination with resveratrol strongly enhanced apoptosis by inhibiting the expression of thioredoxin domain containing 5 (TXNDC5) and Akt phosphorylation. Parecoxib enhanced resveratrol-provoked c-Jun N-terminal kinase (JNK) and p38 phosphorylation. Overexpression of TXNDC5 and repression of JNK and p38 pathways significantly reversed the inhibition of cell viability and stimulation of apoptosis by the parecoxib/resveratrol combination. This study presents evidence that parecoxib enhances the anti-cancer power of resveratrol in DLD-1 colorectal cancer cells via the inhibition of TXNDC5 and Akt signaling and enhancement of JNK/p38 MAPK pathways. Parecoxib may be provided as an efficient drug to sensitize colorectal cancer by resveratrol.
Collapse
Affiliation(s)
- Wan-Ling Chang
- Department of Anesthesiology, Chang Gung Memorial Hospital at Chiayi, No. 8, West Section of Jiapu Road, Chiayi County, Puzi City 613016, Taiwan; (W.-L.C.); (J.-Y.P.); (C.-L.H.); (P.-C.L.)
| | - Kai-Chien Yang
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen Ai Road Section 1, Taipei 100233, Taiwan;
| | - Jyun-Yu Peng
- Department of Anesthesiology, Chang Gung Memorial Hospital at Chiayi, No. 8, West Section of Jiapu Road, Chiayi County, Puzi City 613016, Taiwan; (W.-L.C.); (J.-Y.P.); (C.-L.H.); (P.-C.L.)
| | - Chain-Lang Hong
- Department of Anesthesiology, Chang Gung Memorial Hospital at Chiayi, No. 8, West Section of Jiapu Road, Chiayi County, Puzi City 613016, Taiwan; (W.-L.C.); (J.-Y.P.); (C.-L.H.); (P.-C.L.)
| | - Pei-Ching Li
- Department of Anesthesiology, Chang Gung Memorial Hospital at Chiayi, No. 8, West Section of Jiapu Road, Chiayi County, Puzi City 613016, Taiwan; (W.-L.C.); (J.-Y.P.); (C.-L.H.); (P.-C.L.)
| | - Soi Moi Chye
- School of Health Science, Division of Applied Biomedical Science and Biotechnology, IMU University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Fung-Jou Lu
- Institute of Medicine, Chung Shan Medical University, No. 110, Section 1, Jianguo North Road, Taichung City 402306, Taiwan;
| | - Ching-Wei Shih
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, A25-303 Room, Life Sciences Hall, No. 300, Syuefu Road, Chiayi City 600355, Taiwan;
| | - Ching-Hsein Chen
- Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, A25-303 Room, Life Sciences Hall, No. 300, Syuefu Road, Chiayi City 600355, Taiwan;
| |
Collapse
|
15
|
Ouyang C, Xu G, Xie J, Xie Y, Zhou Y. Silencing of KIAA1429, a N6-methyladenine methyltransferase, inhibits the progression of colon adenocarcinoma via blocking the hypoxia-inducible factor 1 signalling pathway. J Biochem Mol Toxicol 2024; 38:e23829. [PMID: 39215765 DOI: 10.1002/jbt.23829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/09/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
KIAA1429 is an important 'writer' of the N6-methyladenine (m6A) modification, which is involved in tumour progression. This study was conducted to explore the mechanism of action of KIAA1429 in colon adenocarcinoma (COAD). KIAA1429-silenced COAD cell and xenograft tumour models were constructed, and the function of KIAA1429 was explored through a series of in vivo and in vitro assays. The downstream mechanisms of KIAA1429 were explored using transcriptome sequencing. Dimethyloxalylglycine (DMOG), an activator of HIF-1α, was used for feedback verification. The expression of KIAA1429 in COAD tumour tissues and cells was elevated, and KIAA1429 exhibited differential expression at different stages of the tumour. Silencing of KIAA1429 inhibited the proliferation, migration, and invasion of HT29 and HCT116 cells. The expression levels of NLRP3, GSDMD and Caspase-1 were decreased in KIAA1429-silenced HT29 cells, indicating the pyroptotic activity was inhibited. Additionally, KIAA1429 silencing inhibited the growth of tumour xenograft. Transcriptome sequencing and reverse transcription quantitative polymerase chain reaction revealed that after KIAA1429 silencing, the expression of AKR1C1, AKR1C2, AKR1C3 and RDH8 was elevated, and the expression of VIRMA, GINS1, VBP1 and ARF3 was decreased. In HT29 cells, KIAA1429 silencing blocked the HIF-1 signalling pathway, accompanied by the decrease in AKT1 and HIF-1α protein levels. The activation of HIF-1 signalling pathway, mediated by DMOG, reversed the antitumour role of KIAA1429 silencing. KIAA1429 silencing inhibits COAD development by blocking the HIF-1 signalling pathway.
Collapse
Affiliation(s)
- Canhui Ouyang
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Guofeng Xu
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Jun Xie
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yun Xie
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yun Zhou
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| |
Collapse
|
16
|
Wang X, Liu C, Wang J, Tian Z. Resveratrol suppresses NSCLC cell growth, invasion and migration by mediating Wnt/β-catenin pathway via downregulating SIX4 and SPHK2. J Chemother 2024; 36:411-421. [PMID: 37968995 DOI: 10.1080/1120009x.2023.2281759] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/19/2023] [Accepted: 11/06/2023] [Indexed: 11/17/2023]
Abstract
Resveratrol (RSV) has been found to have a cancer-suppressing effect in a variety of cancers, including non-small cell lung cancer (NSCLC). Studies have shown that sine oculis homeobox 4 (SIX4) and sphingosine kinase 2 (SPHK2) are tumour promoters of NSCLC. However, whether RSV regulates SIX4 and SPHK2 to mediate NSCLC cell functions remains unclear. NSCLC cell functions were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, 5-ethynyl-2'-deoxyuridine (EdU) assay, flow cytometry, transwell assay and wound healing assay. Protein expression levels were detected by western blot. SIX4 and SPHK2 mRNA levels in NSCLC tumour tissues were examined using quantitative real-time PCR. In addition, mice xenograft models were built to explore the impact of RSV on NSCLC tumour growth. RSV inhibited NSCLC cell proliferation, invasion and migration, while facilitated apoptosis. SIX4 and SPHK2 were up-regulated in NSCLC tissues and cells, and their expression was reduced by RSV. Knockdown of SIX4 and SPHK2 suppressed NSCLC cell growth, invasion and migration, and the regulation of RSV on NSCLC cell functions could be reversed by SIX4 and SPHK2 overexpression. RSV inactivated Wnt/β-catenin pathway via decreasing SIX4 and SPHK2 levels. In animal experiments, RSV reduced NSCLC tumour growth in vivo. RSV repressed NSCLC malignant process by decreasing SIX4 and SPHK2 levels to restrain the activity of Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Xiaolan Wang
- Department of Medical Oncology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, Inner Mongolia, China
| | - Caixia Liu
- Department of Medical Oncology, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, Inner Mongolia, China
| | - Jian Wang
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, Inner Mongolia, China
| | - Zexiang Tian
- Department of Cardiothoracic Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot City, Inner Mongolia, China
| |
Collapse
|
17
|
Situmorang PC, Ilyas S, Nugraha SE, Syahputra RA, Nik Abd Rahman NMA. Prospects of compounds of herbal plants as anticancer agents: a comprehensive review from molecular pathways. Front Pharmacol 2024; 15:1387866. [PMID: 39104398 PMCID: PMC11298448 DOI: 10.3389/fphar.2024.1387866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/17/2024] [Indexed: 08/07/2024] Open
Abstract
Cancer refers to the proliferation and multiplication of aberrant cells inside the human body, characterized by their capacity to proliferate and infiltrate various anatomical regions. Numerous biochemical pathways and signaling molecules have an impact on the cancer auto biogenesis process. The regulation of crucial cellular processes necessary for cell survival and proliferation, which are triggered by phytochemicals, is significantly influenced by signaling pathways. These pathways or components are regulated by phytochemicals. Medicinal plants are a significant reservoir of diverse anticancer medications employed in chemotherapy. The anticancer effects of phytochemicals are mediated by several methods, including induction of apoptosis, cessation of the cell cycle, inhibition of kinases, and prevention of carcinogenic substances. This paper analyzes the phytochemistry of seven prominent plant constituents, namely, alkaloids, tannins, flavonoids, phenols, steroids, terpenoids, and saponins, focusing on the involvement of the MAPK/ERK pathway, TNF signaling, death receptors, p53, p38, and actin dynamics. Hence, this review has examined a range of phytochemicals, encompassing their structural characteristics and potential anticancer mechanisms. It has underscored the significance of plant-derived bioactive compounds in the prevention of cancer, utilizing diverse molecular pathways. In addition, this endeavor also seeks to incentivize scientists to carry out clinical trials on anticancer medications derived from plants.
Collapse
Affiliation(s)
- Putri Cahaya Situmorang
- Study Program of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Syafruddin Ilyas
- Study Program of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Sony Eka Nugraha
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Nik Mohd Afizan Nik Abd Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
18
|
Stone J, Mason R, Mitrofanis J, Johnstone DM. Trace Toxins: The Key Component of a Healthful Diet. Dose Response 2024; 22:15593258241271692. [PMID: 39114768 PMCID: PMC11301730 DOI: 10.1177/15593258241271692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/26/2024] [Indexed: 08/10/2024] Open
Abstract
Although it is well established that a vegetable-rich (Mediterranean) diet is associated with health benefits in later life, the mechanisms and biological origins of this benefit are not well established. This review seeks to identify the components a healthful diet that reduce the individual's suffering from non-communicable disease and extend longevity. We note the difference between the claims made for an essential diet (that prevents deficiency syndromes) and those argued for a diet that also prevents or delays non-communicable diseases and ask: what chemicals in our food induce this added resilience, which is effective against cardiovascular and neurodegenerative diseases, diabetes and even cancer? Working in the framework of acquired resilience (tissue resilience induced by a range of stresses), we arguethat the toxins evolved by plants as part of allelopathy (the competition between plant species) are key in making the 'healthful difference'. We further suggest the recognition of a category of micronutrients additional to the established 'micro' categories of vitamins and trace elements and suggest also that the new category be called 'trace toxins'. Implications of these suggestions are discussed.
Collapse
Affiliation(s)
| | - Rebecca Mason
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - John Mitrofanis
- Université Grenoble Alpes, Fonds de Dotation, Clinatec, Grenoble and Institute of Ophthalmology, University College London, London, UK
| | - Daniel M. Johnstone
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
19
|
Godoy MCXD, Monteiro GA, Moraes BHD, Macedo JA, Gonçalves GMS, Gambero A. Addition of Polyphenols to Drugs: The Potential of Controlling "Inflammaging" and Fibrosis in Human Senescent Lung Fibroblasts In Vitro. Int J Mol Sci 2024; 25:7163. [PMID: 39000270 PMCID: PMC11241747 DOI: 10.3390/ijms25137163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The combination of a polyphenol, quercetin, with dasatinib initiated clinical trials to evaluate the safety and efficacy of senolytics in idiopathic pulmonary fibrosis, a lung disease associated with the presence of senescent cells. Another approach to senotherapeutics consists of controlling inflammation related to cellular senescence or "inflammaging", which participates, among other processes, in establishing pulmonary fibrosis. We evaluate whether polyphenols such as caffeic acid, chlorogenic acid, epicatechin, gallic acid, quercetin, or resveratrol combined with different senotherapeutics such as metformin or rapamycin, and antifibrotic drugs such as nintedanib or pirfenidone, could present beneficial actions in an in vitro model of senescent MRC-5 lung fibroblasts. A senescent-associated secretory phenotype (SASP) was evaluated by the measurement of interleukin (IL)-6, IL-8, and IL-1β. The senescent-associated β-galactosidase (SA-β-gal) activity and cellular proliferation were assessed. Fibrosis was evaluated using a Picrosirius red assay and the gene expression of fibrosis-related genes. Epithelial-mesenchymal transition (EMT) was assayed in the A549 cell line exposed to Transforming Growth Factor (TGF)-β in vitro. The combination that demonstrated the best results was metformin and caffeic acid, by inhibiting IL-6 and IL-8 in senescent MRC-5 cells. Metformin and caffeic acid also restore cellular proliferation and reduce SA-β-gal activity during senescence induction. The collagen production by senescent MRC-5 cells was inhibited by epicatechin alone or combined with drugs. Epicatechin and nintedanib were able to control EMT in A549 cells. In conclusion, caffeic acid and epicatechin can potentially increase the effectiveness of senotherapeutic drugs in controlling lung diseases whose pathophysiological component is the presence of senescent cells and fibrosis.
Collapse
Affiliation(s)
- Maria Carolina Ximenes de Godoy
- School for Life Sciences, Pontifical Catholic University of Campinas (PUC-Campinas), Av. John Boyd Dunlop, Campinas 13034-685, SP, Brazil
| | - Gabriela Arruda Monteiro
- School for Life Sciences, Pontifical Catholic University of Campinas (PUC-Campinas), Av. John Boyd Dunlop, Campinas 13034-685, SP, Brazil
| | - Bárbara Hakim de Moraes
- School for Life Sciences, Pontifical Catholic University of Campinas (PUC-Campinas), Av. John Boyd Dunlop, Campinas 13034-685, SP, Brazil
| | - Juliana Alves Macedo
- Department of Food and Nutrition, School of Food Engineering, State University of Campinas, Campinas 13083-862, SP, Brazil
| | - Gisele Mara Silva Gonçalves
- School for Life Sciences, Pontifical Catholic University of Campinas (PUC-Campinas), Av. John Boyd Dunlop, Campinas 13034-685, SP, Brazil
| | - Alessandra Gambero
- School for Life Sciences, Pontifical Catholic University of Campinas (PUC-Campinas), Av. John Boyd Dunlop, Campinas 13034-685, SP, Brazil
| |
Collapse
|
20
|
Fedele P, Santoro AN, Pini F, Pellegrino M, Polito G, De Luca MC, Pignatelli A, Tancredi M, Lagattolla V, Anglani A, Guarini C, Pinto A, Bracciale P. Immunonutrition, Metabolism, and Programmed Cell Death in Lung Cancer: Translating Bench to Bedside. BIOLOGY 2024; 13:409. [PMID: 38927289 PMCID: PMC11201027 DOI: 10.3390/biology13060409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Lung cancer presents significant therapeutic challenges, motivating the exploration of novel treatment strategies. Programmed cell death (PCD) mechanisms, encompassing apoptosis, autophagy, and programmed necrosis, are pivotal in lung cancer pathogenesis and the treatment response. Dysregulation of these pathways contributes to tumor progression and therapy resistance. Immunonutrition, employing specific nutrients to modulate immune function, and metabolic reprogramming, a hallmark of cancer cells, offer promising avenues for intervention. Nutritional interventions, such as omega-3 fatty acids, exert modulatory effects on PCD pathways in cancer cells, while targeting metabolic pathways implicated in apoptosis regulation represents a compelling therapeutic approach. Clinical evidence supports the role of immunonutritional interventions, including omega-3 fatty acids, in augmenting PCD and enhancing treatment outcomes in patients with lung cancer. Furthermore, synthetic analogs of natural compounds, such as resveratrol, demonstrate promising anticancer properties by modulating apoptotic signaling pathways. This review underscores the convergence of immunonutrition, metabolism, and PCD pathways in lung cancer biology, emphasizing the potential for therapeutic exploration in this complex disease. Further elucidation of the specific molecular mechanisms governing these interactions is imperative for translating these findings into clinical practice and improving lung cancer management.
Collapse
Affiliation(s)
- Palma Fedele
- Oncology Unit, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy; (A.N.S.); (F.P.); (A.P.)
| | - Anna Natalizia Santoro
- Oncology Unit, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy; (A.N.S.); (F.P.); (A.P.)
| | - Francesca Pini
- Oncology Unit, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy; (A.N.S.); (F.P.); (A.P.)
| | | | - Giuseppe Polito
- Nuclear Medicine Unit, Antonio Perrino Hospital, 72100 Brindisi, Italy;
| | | | | | - Michele Tancredi
- Radiology Unit, Antonio Perrino Hospital, 72100 Brindisi, Italy;
| | | | - Alessandro Anglani
- Radiology Unit, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy;
| | - Chiara Guarini
- Oncology Unit, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy; (A.N.S.); (F.P.); (A.P.)
| | - Antonello Pinto
- Oncology Unit, Dario Camberlingo Hospital, 72021 Francavilla Fontana, Italy; (A.N.S.); (F.P.); (A.P.)
- Course in Development and Production of Biotechnological Drugs, Faculty of Pharmaceutical Science, University of Milan, 20122 Milano, Italy
| | | |
Collapse
|
21
|
Liu H, Zhang L, Hao L, Fan D. Resveratrol Inhibits Colorectal Cancer Cell Tumor Property by Activating the miR-769-5p/MSI1 Pathway. Mol Biotechnol 2024:10.1007/s12033-024-01167-w. [PMID: 38771419 DOI: 10.1007/s12033-024-01167-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/02/2024] [Indexed: 05/22/2024]
Abstract
Resveratrol exhibits inhibitory effects on the progression of various cancers including colorectal cancer (CRC), however, the underlying mechanism in regulating CRC development remains elusive. The present study aims to uncover the role and molecular mechanism of resveratrol in modulating CRC cell tumor properties. NCM460 cells, LoVo cells, SW480 cells, and BALB/c nude mice were utilized in this study. RNA levels of miR-769-5p and musashi RNA-binding protein 1 (MSI1) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein expression was assessed by western blotting or immunohistochemistry assay. Cell viability was analyzed by CCK-8 assay, while cell proliferation and apoptosis were evaluated by 5-Ethynyl-2'-deoxyuridine assay and flow cytometry analysis. Cell migration was investigated by transwell and wound-healing assays. The association between miR-769-5p and MSI1 was identified by a dual-luciferase reporter assay. Tumor formation was analyzed using a xenograft mouse model assay. Compared to control groups, miR-769-5p expression was downregulated, while MSI1 expression was upregulated in CRC tissues and cells. Resveratrol treatment led to increased miR-769-5p expression and decreased MSI1 expression in CRC cells. Resveratrol treatment or miR-769-5p upregulation inhibited CRC cell proliferation and migration, and induced apoptosis. These effects were enhanced after combined treatment with resveratrol and miR-769-5p mimics. MSI1 was identified as a target of miR-769-5p, and its overexpression attenuated the effects of miR-769-5p mimics on cell proliferation, migration, and apoptosis. Moreover, miR-769-5p overexpression enhanced the inhibitory effects of resveratrol on tumor growth in vivo. Resveratrol inhibited colorectal cancer cell tumor properties by activating the miR-769-5p/MSI1 pathway.
Collapse
Affiliation(s)
- Hongchang Liu
- Department of Colorectal Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No.41 Twelve Bridges Road, Jinniu, Chengdu, 610000, Sichuan, China
| | - Liangliang Zhang
- Department of Colorectal Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No.41 Twelve Bridges Road, Jinniu, Chengdu, 610000, Sichuan, China
| | - Liangliang Hao
- Department of Colorectal Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No.41 Twelve Bridges Road, Jinniu, Chengdu, 610000, Sichuan, China
| | - Dingwen Fan
- Department of Colorectal Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No.41 Twelve Bridges Road, Jinniu, Chengdu, 610000, Sichuan, China.
| |
Collapse
|
22
|
Gao X, Zhu Y, Lv T, Luo M, Jiang Y, Sun L, Zheng S, Jiang D, Ruan S. Resveratrol restrains colorectal cancer metastasis by regulating miR-125b-5p/TRAF6 signaling axis. Am J Cancer Res 2024; 14:2390-2407. [PMID: 38859844 PMCID: PMC11162648 DOI: 10.62347/zbvg9125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/27/2024] [Indexed: 06/12/2024] Open
Abstract
Colorectal cancer is one of the most common malignancies with a high incidence, metastatic tendency and low 5-year survival rate. Resveratrol, a polyphenolic compound has been shown to inhibit colorectal cancer metastasis in recent studies. Its underlying molecular mechanism remains to be elucidated. Our findings demonstrated that miR-125b-5p, acting as a tumor suppressor, was conspicuously down-regulated in both colorectal cancer tissues and cell lines. The expression of miR-125b-5p negatively correlated with the expression of its direct target TNF receptor associated factor 6 (TRAF6). Both miR-125b-5p overexpression and TRAF6 knockdown inhibited metastasis of colorectal cancer cells. In addition, we uncovered that resveratrol up-regulated miR-125b-5p by increasing its stability and suppressed TRAF6-induced signal pathway in a dose/time-dependent manner. Resveratrol could significantly curtail the migration and invasion of colorectal cancer cells, which was counteracted by miR-125b-5p knockdown or TRAF6 overexpression. These results indicated that resveratrol could restrain colorectal cancer metastasis by promoting miR-125b-5p/TRAF6 signaling axis. Furthermore, lung metastasis models of colorectal cancer were constructed by tail vein injection. Down-regulation of miR-125b-5p could facilitate colorectal cancer metastasis in vivo, which could be impeded by resveratrol. In conclusion, our findings delineated the miR-125b-5p/TRAF6 signaling axis as a novel molecular mechanism underlying the metastatic process in colorectal cancer, as well as a prospective therapeutic target. Resveratrol disrupts colorectal cancer metastasis by activating miR-125b-5p/TRAF6 signal pathway and might improve the clinical outcome of colorectal cancer patients with low expression of miR-125b-5p.
Collapse
Affiliation(s)
- Xin Gao
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)Hangzhou 310006, Zhejiang, China
- NHC Key Laboratory of Combined Multi-Organ TransplantationHangzhou 310003, Zhejiang, China
| | - Ying Zhu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)Hangzhou 310006, Zhejiang, China
| | - Tongdan Lv
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)Hangzhou 310006, Zhejiang, China
| | - Mingpeng Luo
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)Hangzhou 310006, Zhejiang, China
| | - Yu Jiang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)Hangzhou 310006, Zhejiang, China
| | - Leitao Sun
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)Hangzhou 310006, Zhejiang, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical UniversityHangzhou 310053, Zhejiang, China
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi-Organ TransplantationHangzhou 310003, Zhejiang, China
- Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019)Hangzhou 310003, Zhejiang, China
| | - Donghai Jiang
- NHC Key Laboratory of Combined Multi-Organ TransplantationHangzhou 310003, Zhejiang, China
- Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019)Hangzhou 310003, Zhejiang, China
| | - Shanming Ruan
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)Hangzhou 310006, Zhejiang, China
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)Hangzhou 310006, Zhejiang, China
| |
Collapse
|
23
|
Khazaei MR, Bozorgi M, Khazaei M, Aftabi M, Bozorgi A. Resveratrol Nanoformulation Inhibits Invasive Breast Cancer Cell Growth through Autophagy Induction: An In Vitro Study. CELL JOURNAL 2024; 26:112-120. [PMID: 38459728 PMCID: PMC10924839 DOI: 10.22074/cellj.2024.2016930.1458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/28/2024] [Accepted: 02/05/2024] [Indexed: 03/10/2024]
Abstract
OBJECTIVE The aim of this study was to synthesize chitosan nanoparticles (Cs NPs) for resveratrol (RSV) delivery and assess their effectiveness in inducing autophagy in MDA-MB 231 cells. MATERIALS AND METHODS In this experimental study, Pure and RSV-loaded Cs NPs (RSV. Cs NPs) were prepared via the ionic gelation method, and their physicochemical properties were characterized using standard techniques, and RSV release was measured in vitro. MDA-MB 231 cells were incubated with RSV, Cs NPs, and RSV. Cs NPs and Half-maximal inhibitory concentration (IC50) values were calculated following the MTT test. Cell viability was assessed by lactate dehydrogenase (LDH) assay, and autophagy was evaluated using the real-time polymerase chain reaction (PCR). RESULTS NP formation was confirmed with the analysis of FTIR spectra. Pure and RSV. Cs NPs had 36.7 and 94.07 nm sizes with 18.3 and 27 mV zeta potentials, respectively. Above 60% of RSV entrapped within NPs was released in an initial burst manner followed by a gradual release till 72 hours. Cs and RSV. Cs NPs restrained cell proliferation at lower concentrations. RSV. Cs NPs showed the highest anticancer effect and stimulated autophagy, indicated by increased Beclin-1 ATG5, ATG7, LC3A, and P62 expression. CONCLUSION RSV. Cs NPs show promising effects in inhibiting invasive breast cancer (BC) cells in vitro by inducing autophagy.
Collapse
Affiliation(s)
- Mohammad Rasool Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Bozorgi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Aftabi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Azam Bozorgi
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
24
|
Brown K, Theofanous D, Britton RG, Aburido G, Pepper C, Sri Undru S, Howells L. Resveratrol for the Management of Human Health: How Far Have We Come? A Systematic Review of Resveratrol Clinical Trials to Highlight Gaps and Opportunities. Int J Mol Sci 2024; 25:747. [PMID: 38255828 PMCID: PMC10815776 DOI: 10.3390/ijms25020747] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Resveratrol has long been proposed as being beneficial to human health across multiple morbidities, yet there is currently no conclusive clinical evidence to advocate its recommendation in any healthcare setting. A large cohort with high-quality clinical data and clearly defined biomarkers or endpoints are required to draw meaningful conclusions. This systematic review compiles every clinical trial conducted using a defined dose of resveratrol in a purified form across multiple morbidities to highlight the current 'state-of-play' and knowledge gaps, informing future trial designs to facilitate the realisation of resveratrol's potential benefits to human health. Over the last 20 years, there have been almost 200 studies evaluating resveratrol across at least 24 indications, including cancer, menopause symptoms, diabetes, metabolic syndrome, and cardiovascular disease. There are currently no consensus treatment regimens for any given condition or endpoint, beyond the fact that resveratrol is generally well-tolerated at a dose of up to 1 g/day. Additionally, resveratrol consistently reduces inflammatory markers and improves aspects of a dysregulated metabolism. In conclusion, over the last 20 years, the increasing weight of clinical evidence suggests resveratrol can benefit human health, but more large, high-quality clinical trials are required to transition this intriguing compound from health food shops to the clinic.
Collapse
Affiliation(s)
- Karen Brown
- Leicester Cancer Research Centre, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK; (D.T.); (R.G.B.); (G.A.); (S.S.U.); (L.H.)
| | - Despoina Theofanous
- Leicester Cancer Research Centre, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK; (D.T.); (R.G.B.); (G.A.); (S.S.U.); (L.H.)
| | - Robert G. Britton
- Leicester Cancer Research Centre, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK; (D.T.); (R.G.B.); (G.A.); (S.S.U.); (L.H.)
| | - Grandezza Aburido
- Leicester Cancer Research Centre, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK; (D.T.); (R.G.B.); (G.A.); (S.S.U.); (L.H.)
| | - Coral Pepper
- Odames Library, Victoria Building, Leicester Royal Infirmary, Leicester LE1 5WW, UK
| | - Shanthi Sri Undru
- Leicester Cancer Research Centre, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK; (D.T.); (R.G.B.); (G.A.); (S.S.U.); (L.H.)
| | - Lynne Howells
- Leicester Cancer Research Centre, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX, UK; (D.T.); (R.G.B.); (G.A.); (S.S.U.); (L.H.)
| |
Collapse
|
25
|
Wani AK, Singh R, Akhtar N, Prakash A, Nepovimova E, Oleksak P, Chrienova Z, Alomar S, Chopra C, Kuca K. Targeted Inhibition of the PI3K/Akt/mTOR Signaling Axis: Potential for Sarcoma Therapy. Mini Rev Med Chem 2024; 24:1496-1520. [PMID: 38265369 DOI: 10.2174/0113895575270904231129062137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 01/25/2024]
Abstract
Sarcoma is a heterogeneous group of malignancies often resistant to conventional chemotherapy and radiation therapy. The phosphatidylinositol-3-kinase/ protein kinase B /mammalian target of rapamycin (PI3K/Akt/mTOR) signaling pathway has emerged as a critical cancer target due to its central role in regulating key cellular processes such as cell growth, proliferation, survival, and metabolism. Dysregulation of this pathway has been implicated in the development and progression of bone sarcomas (BS) and soft tissue sarcomas (STS). PI3K/Akt/mTOR inhibitors have shown promising preclinical and clinical activity in various cancers. These agents can inhibit the activation of PI3K, Akt, and mTOR, thereby reducing the downstream signaling events that promote tumor growth and survival. In addition, PI3K/Akt/mTOR inhibitors have been shown to enhance the efficacy of other anticancer therapies, such as chemotherapy and radiation therapy. The different types of PI3K/Akt/mTOR inhibitors vary in their specificity, potency, and side effect profiles and may be effective depending on the specific sarcoma type and stage. The molecular targeting of PI3K/Akt/mToR pathway using drugs, phytochemicals, nanomaterials (NMs), and microbe-derived molecules as Pan-PI3K inhibitors, selective PI3K inhibitors, and dual PI3K/mTOR inhibitors have been delineated. While there are still challenges to be addressed, the preclinical and clinical evidence suggests that these inhibitors may significantly improve patient outcomes. Further research is needed to understand the potential of these inhibitors as sarcoma therapeutics and to continue developing more selective and effective agents to meet the clinical needs of sarcoma patients.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar (144411), Punjab, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar (144411), Punjab, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar (144411), Punjab, India
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Patrik Oleksak
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Zofia Chrienova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
| | - Suliman Alomar
- King Saud University, Zoology Department, College of Science, Riyadh, 11451, Saudi Arabia
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar (144411), Punjab, India
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Králové, Czechia
| |
Collapse
|
26
|
Wahnou H, Liagre B, Sol V, El Attar H, Attar R, Oudghiri M, Duval RE, Limami Y. Polyphenol-Based Nanoparticles: A Promising Frontier for Enhanced Colorectal Cancer Treatment. Cancers (Basel) 2023; 15:3826. [PMID: 37568642 PMCID: PMC10416951 DOI: 10.3390/cancers15153826] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Colorectal cancer (CRC) poses a significant challenge in healthcare, necessitating the exploration of novel therapeutic strategies. Natural compounds such as polyphenols with inherent anticancer properties have gained attention as potential therapeutic agents. This review highlights the need for novel therapeutic approaches in CRC, followed by a discussion on the synthesis of polyphenols-based nanoparticles. Various synthesis techniques, including dynamic covalent bonding, non-covalent bonding, polymerization, chemical conjugation, reduction, and metal-polyphenol networks, are explored. The mechanisms of action of these nanoparticles, encompassing passive and active targeting mechanisms, are also discussed. The review further examines the intrinsic anticancer activity of polyphenols and their enhancement through nano-based delivery systems. This section explores the natural anticancer properties of polyphenols and investigates different nano-based delivery systems, such as micelles, nanogels, liposomes, nanoemulsions, gold nanoparticles, mesoporous silica nanoparticles, and metal-organic frameworks. The review concludes by emphasizing the potential of nanoparticle-based strategies utilizing polyphenols for CRC treatment and highlights the need for future research to optimize their efficacy and safety. Overall, this review provides valuable insights into the synthesis, mechanisms of action, intrinsic anticancer activity, and enhancement of polyphenols-based nanoparticles for CRC treatment.
Collapse
Affiliation(s)
- Hicham Wahnou
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P. 2693, Maarif, Casablanca 20100, Morocco; (H.W.); (M.O.)
| | - Bertrand Liagre
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (B.L.); (V.S.)
| | - Vincent Sol
- Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France; (B.L.); (V.S.)
| | | | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University, Istanbul 34280, Turkey;
| | - Mounia Oudghiri
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P. 2693, Maarif, Casablanca 20100, Morocco; (H.W.); (M.O.)
| | | | - Youness Limami
- Laboratory of Immunology and Biodiversity, Faculty of Sciences Ain Chock, Hassan II University, B.P. 2693, Maarif, Casablanca 20100, Morocco; (H.W.); (M.O.)
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco
| |
Collapse
|
27
|
Aatif M. Current Understanding of Polyphenols to Enhance Bioavailability for Better Therapies. Biomedicines 2023; 11:2078. [PMID: 37509717 PMCID: PMC10377558 DOI: 10.3390/biomedicines11072078] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/25/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, plant polyphenols have become a popular focus for the development of novel functional foods. Polyphenols, a class of bioactive compounds, including flavonoids, phenolic acids, and lignans, are commonly found in plant-based diets with a variety of biological actions, including antioxidant, anti-inflammatory, and anticancer effects. Unfortunately, polyphenols are not widely used in nutraceuticals since many of the chemicals in polyphenols possess poor oral bioavailability. Thankfully, polyphenols can be encapsulated and transported using bio-based nanocarriers, thereby increasing their bioavailability. Polyphenols' limited water solubility and low bioavailability are limiting factors for their practical usage, but this issue can be resolved if suitable delivery vehicles are developed for encapsulating and delivering polyphenolic compounds. This paper provides an overview of the study of nanocarriers for the enhancement of polyphenol oral bioavailability, as well as a summary of the health advantages of polyphenols in the prevention and treatment of several diseases.
Collapse
Affiliation(s)
- Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia
| |
Collapse
|
28
|
Alzate-Yepes T, Pérez-Palacio L, Martínez E, Osorio M. Mechanisms of Action of Fruit and Vegetable Phytochemicals in Colorectal Cancer Prevention. Molecules 2023; 28:molecules28114322. [PMID: 37298797 DOI: 10.3390/molecules28114322] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide and its incidence is expected to increase by almost 80% by 2030. CRC apparition is related to poor diet, mainly due to low consumption of phytochemicals present in fruits and vegetables. Hence, this paper reviews the most promising phytochemicals in the literature, presenting scientific evidence regarding potential CRC chemopreventive effects. Moreover, this paper reveals the structure and action of CRC mechanisms that these phytochemicals are involved in. The review reveals that vegetables rich in phytochemicals such as carrots and green leafy vegetables, as well as some fruits such as pineapple, citrus fruits, papaya, mango, and Cape gooseberry, that have antioxidant, anti-inflammatory, and chemopreventive properties can promote a healthy colonic environment. Fruits and vegetables in the daily diet promote antitumor mechanisms by regulating cell signaling and/or proliferation pathways. Hence, daily consumption of these plant products is recommended to reduce the risk of CRC.
Collapse
Affiliation(s)
- Teresita Alzate-Yepes
- School of Nutrition and Dietetics, University of Antioquia, Carrera 75 # 65-87, Medellín 050010, Antioquia, Colombia
| | - Lorena Pérez-Palacio
- School of Nutrition and Dietetics, University of Antioquia, Carrera 75 # 65-87, Medellín 050010, Antioquia, Colombia
| | - Estefanía Martínez
- School of Engineering, Pontifical Bolivarian University, Circular 1 No. 70-01, Medellín 050031, Antioquia, Colombia
| | - Marlon Osorio
- School of Engineering, Pontifical Bolivarian University, Circular 1 No. 70-01, Medellín 050031, Antioquia, Colombia
- Systems Biology Group, School of Health Sciences, Pontifical Bolivarian University, Calle 78 B # 72 A 10, Medellín 050034, Antioquia, Colombia
| |
Collapse
|
29
|
Hankittichai P, Thaklaewphan P, Wikan N, Ruttanapattanakul J, Potikanond S, Smith DR, Nimlamool W. Resveratrol Enhances Cytotoxic Effects of Cisplatin by Inducing Cell Cycle Arrest and Apoptosis in Ovarian Adenocarcinoma SKOV-3 Cells through Activating the p38 MAPK and Suppressing AKT. Pharmaceuticals (Basel) 2023; 16:ph16050755. [PMID: 37242538 DOI: 10.3390/ph16050755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
In the current study, we identified a mechanism of resveratrol (RES) underlying its anti-cancer properties against human ovarian adenocarcinoma SKOV-3 cells. We investigated its anti-proliferative and apoptosis-inducing effects in combination with cisplatin, using cell viability assay, flow cytometry, immunofluorescence study and Western blot analysis. We discovered that RES suppressed cancer cell proliferation and stimulated apoptosis, especially when combined with cisplatin. This compound also inhibited SKOV-3 cell survival, which may partly be due to its potential to inhibit protein kinase B (AKT) phosphorylation and induce the S-phase cell cycle arrest. RES in combination with cisplatin strongly induced cancer cell apoptosis through activating the caspase-dependent cascade, which was associated with its ability to stimulate nuclear phosphorylation of p38 mitogen-activated protein kinase (MAPK), well recognized to be involved in transducing environmental stress signals. RES-induced p38 phosphorylation was very specific, and the activation status of extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) was not mainly affected. Taken together, our study provides accumulated evidence that RES represses proliferation and promotes apoptosis in SKOV-3 ovarian cancer cells through activating the p38 MAPK pathway. It is interesting that this active compound may be used as an effective agent to sensitize ovarian cancer to apoptosis induced by standard chemotherapies.
Collapse
Affiliation(s)
- Phateep Hankittichai
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Phatarawat Thaklaewphan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nitwara Wikan
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Duncan R Smith
- Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Wutigri Nimlamool
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
30
|
Bai X, Song L. Editorial: Phytochemicals targeting autophagy in treatment of bacterial infection and malignancies. Front Pharmacol 2023; 14:1205764. [PMID: 37256228 PMCID: PMC10225651 DOI: 10.3389/fphar.2023.1205764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/09/2023] [Indexed: 06/01/2023] Open
Affiliation(s)
- Xiaoxue Bai
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Department of General Practice, The First Hospital of Jilin University, Changchun, China
| | - Lei Song
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Center for Pathogen Biology and Infectious Diseases, Department of Respiratory Medicine, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
31
|
Tossetta G, Fantone S, Goteri G, Giannubilo SR, Ciavattini A, Marzioni D. The Role of NQO1 in Ovarian Cancer. Int J Mol Sci 2023; 24:ijms24097839. [PMID: 37175546 PMCID: PMC10178676 DOI: 10.3390/ijms24097839] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Ovarian cancer is one of the most dangerous gynecologic malignancies showing a high fatality rate because of late diagnosis and relapse occurrence due to chemoresistance onset. Several researchers reported that oxidative stress plays a key role in ovarian cancer occurrence, growth and development. The NAD(P)H:quinone oxidoreductase 1 (NQO1) is an antioxidant enzyme that, using NADH or NADPH as substrates to reduce quinones to hydroquinones, avoids the formation of the highly reactive semiquinones, then protecting cells against oxidative stress. In this review, we report evidence from the literature describing the effect of NQO1 on ovarian cancer onset and progression.
Collapse
Affiliation(s)
- Giovanni Tossetta
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Sonia Fantone
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Gaia Goteri
- Department of Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60126 Ancona, Italy
| | | | - Andrea Ciavattini
- Department of Clinical Sciences, Università Politecnica delle Marche, Salesi Hospital, 60123 Ancona, Italy
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy
| |
Collapse
|
32
|
Hassani S, Maghsoudi H, Fattahi F, Malekinejad F, Hajmalek N, Sheikhnia F, Kheradmand F, Fahimirad S, Ghorbanpour M. Flavonoids nanostructures promising therapeutic efficiencies in colorectal cancer. Int J Biol Macromol 2023; 241:124508. [PMID: 37085076 DOI: 10.1016/j.ijbiomac.2023.124508] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 04/23/2023]
Abstract
Colorectal cancer is among the frequently diagnosed cancers with high mortality rates around the world. Polyphenolic compounds such as flavonoids are secondary plant metabolites which exhibit anti-cancer activities along with anti-inflammatory effects. However, due to their hydrophobicity, sensitivity to degradation and low bioavailability, therapeutic effects have shown poor therapeutic effect. Nano delivery systems such as nanoliposomes, nanomicelles, silica nanoparticles have been investigated to overcome these difficulties. This review provides a summary of the efficiency of certain flavonoids and polyphenols (apigenin, genistein, resveratrol, quercetin, silymarin, catechins, luteolin, fisetin, gallic acid, rutin, and curcumin) on colorectal cancer models. It comprehensively discusses the influence of nano-formulation of flavonoids on their biological functions, including cellular uptake rate, bioavailability, solubility, and cytotoxicity, as well as their potential for reducing colorectal cancer tumor size under in vivo situations.
Collapse
Affiliation(s)
- Sepideh Hassani
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Hossein Maghsoudi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Fahimeh Fattahi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran; Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Faezeh Malekinejad
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Nooshin Hajmalek
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Farhad Sheikhnia
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran; Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Fatemeh Kheradmand
- Department of Clinical Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Shohreh Fahimirad
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran.
| |
Collapse
|
33
|
Borys F, Tobiasz P, Poterała M, Fabczak H, Krawczyk H, Joachimiak E. Systematic Studies on Anti-Cancer Evaluation of Stilbene and Dibenzo[ b,f]oxepine Derivatives. Molecules 2023; 28:molecules28083558. [PMID: 37110792 PMCID: PMC10146957 DOI: 10.3390/molecules28083558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Cancer is one of the most common causes of human death worldwide; thus, numerous therapies, including chemotherapy, have been and are being continuously developed. In cancer cells, an aberrant mitotic spindle-a microtubule-based structure necessary for the equal splitting of genetic material between daughter cells-leads to genetic instability, one of the hallmarks of cancer. Thus, the building block of microtubules, tubulin, which is a heterodimer formed from α- and β-tubulin proteins, is a useful target in anti-cancer research. The surface of tubulin forms several pockets, i.e., sites that can bind factors that affect microtubules' stability. Colchicine pockets accommodate agents that induce microtubule depolymerization and, in contrast to factors that bind to other tubulin pockets, overcome multi-drug resistance. Therefore, colchicine-pocket-binding agents are of interest as anti-cancer drugs. Among the various colchicine-site-binding compounds, stilbenoids and their derivatives have been extensively studied. Herein, we report systematic studies on the antiproliferative activity of selected stilbenes and oxepine derivatives against two cancer cell lines-HCT116 and MCF-7-and two normal cell lines-HEK293 and HDF-A. The results of molecular modeling, antiproliferative activity, and immunofluorescence analyses revealed that compounds 1a, 1c, 1d, 1i, 2i, 2j, and 3h were the most cytotoxic and acted by interacting with tubulin heterodimers, leading to the disruption of the microtubular cytoskeleton.
Collapse
Affiliation(s)
- Filip Borys
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Piotr Tobiasz
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Marcin Poterała
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Hanna Fabczak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Hanna Krawczyk
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Ewa Joachimiak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| |
Collapse
|
34
|
Ksila M, Ghzaiel I, Pires V, Ghrairi T, Masmoudi-Kouki O, Latruffe N, Vervandier-Fasseur D, Vejux A, Lizard G. Characterization of Cell Death Induced by Imine Analogs of Trans-Resveratrol: Induction of Mitochondrial Dysfunction and Overproduction of Reactive Oxygen Species Leading to, or Not, Apoptosis without the Increase in the S-Phase of the Cell Cycle. Molecules 2023; 28:molecules28073178. [PMID: 37049947 PMCID: PMC10096382 DOI: 10.3390/molecules28073178] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Trans-resveratrol (RSV) is a non-flavonoid polyphenol (stilbene) with numerous biological activities, such as anti-tumor activities. However, RSV is rapidly metabolized, which limits its therapeutic use. The availability of RSV analogues with similar activities for use in vivo is therefore a major challenge. For this purpose, several isomeric analogues of RSV, aza-stilbenes (AZA-ST 1a–g), were synthesized, and their toxicities were characterized and compared to those of RSV on murine N2a neuronal cells using especially flow cytometric methods. All AZA-ST 1a–g have an inhibitory concentration 50 (IC50) between 11.3 and 25 µM when determined by the crystal violet assay, while that of RSV is 14.5 µM. This led to the characterization of AZA-ST 1a–g—induced cell death, compared to RSV, using three concentrations encompassing the IC50s (6.25, 12.5 and 25 µM). For AZA-ST 1a–g and RSV, an increase in plasma membrane permeability to propidium iodide was observed, and the proportion of cells with depolarized mitochondria measured with DiOC6(3) was increased. An overproduction of reactive oxygen species (ROS) was also observed on whole cells and at the mitochondrial level using dihydroethidium and MitoSox Red, respectively. However, only RSV induced a mode of cell death by apoptosis associated with a marked increase in the proportion of cells with condensed and/or fragmented nuclei (12.5 µM: 22 ± 9%; 25 µM: 80 ± 10%) identified after staining with Hoechst 33342 and which are characteristic of apoptotic cells. With AZA-ST, a slight but significant increase in the percentage of apoptotic cells was only detected with AZA-ST 1b (25 µM: 17 ± 1%) and AZA-ST 1d (25 µM: 26 ± 4%). Furthermore, only RSV induced significant cell cycle modifications associated with an increase in the percentage of cells in the S phase. Thus, AZA-ST 1a–g—induced cell death is characterized by an alteration of the plasma membrane, an induction of mitochondrial depolarization (loss of ΔΨm), and an overproduction of ROS, which may or may not result in a weak induction of apoptosis without modification of the distribution of the cells in the different phases of the cell cycle.
Collapse
Affiliation(s)
- Mohamed Ksila
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University of Bourgogne, 21000 Dijon, France
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia
| | - Imen Ghzaiel
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University of Bourgogne, 21000 Dijon, France
| | - Vivien Pires
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University of Bourgogne, 21000 Dijon, France
| | - Taoufik Ghrairi
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia
| | - Olfa Masmoudi-Kouki
- Laboratory of Neurophysiology, Cellular Physiopathology and Valorisation of Biomolecules, (LR18ES03), Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2092, Tunisia
| | - Norbert Latruffe
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University of Bourgogne, 21000 Dijon, France
| | | | - Anne Vejux
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University of Bourgogne, 21000 Dijon, France
| | - Gérard Lizard
- Team ‘Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism’ EA7270/Inserm, University of Bourgogne, 21000 Dijon, France
| |
Collapse
|
35
|
Jang JY, Im E, Kim ND. Therapeutic Potential of Bioactive Components from Scutellaria baicalensis Georgi in Inflammatory Bowel Disease and Colorectal Cancer: A Review. Int J Mol Sci 2023; 24:1954. [PMID: 36768278 PMCID: PMC9916177 DOI: 10.3390/ijms24031954] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/16/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Scutellaria baicalensis Georgi (SBG), an herbal medicine with various biological activities, including anti-inflammatory, anticancer, antiviral, antibacterial, and antioxidant activities, is effective in treatment of colitis, hepatitis, pneumonia, respiratory infections, and allergic diseases. This herbal medicine consists of major active substances, such as baicalin, baicalein, wogonoside, and wogonin. Inflammatory bowel disease (IBD) comprises a group of inflammatory conditions of the colon and small intestine, with Crohn's disease and ulcerative colitis being the main types. IBD can lead to serious complications, such as increased risk of colorectal cancer (CRC), one of the most common cancers worldwide. Currently, there is no cure for IBD, and its incidence has been increasing over the past few decades. This review comprehensively summarizes the efficacy of SBG in IBD and CRC and may serve as a reference for future research and development of drugs for IBD and cancer treatment.
Collapse
Affiliation(s)
| | - Eunok Im
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Nam Deuk Kim
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|