1
|
Andrian T, Siriteanu L, Voroneanu L, Nicolescu A, Deleanu C, Covic A, Covic A. Associations between Kidney Disease Progression and Metabolomic Profiling in Stable Kidney Transplant Recipients-A 3 Year Follow-Up Prospective Study. J Clin Med 2024; 13:5983. [PMID: 39408043 PMCID: PMC11478134 DOI: 10.3390/jcm13195983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 10/20/2024] Open
Abstract
Background: kidney transplant recipients are exposed to multiple pathogenic pathways that may alter short and long-term allograft survival. Metabolomic profiling is useful for detecting potential biomarkers of kidney disease with a predictive capacity. This field is still under development in kidney transplantation and metabolome analysis is faced with analytical challenges. We performed a cross-sectional study including stable kidney transplant patients and aimed to search for relevant associations between baseline plasmatic and urinary metabolites and relevant outcomes over a follow-up period of 3 years. Methods: we performed a cross-sectional study including 72 stable kidney transplant patients with stored plasmatic and urinary samples at the baseline evaluation which were there analyzed by nuclear magnetic resonance in order to quantify and describe metabolites. We performed a 3-year follow-up and searched for relevant associations between renal failure outcomes and baseline metabolites. Between-group comparisons were made after classification by observed estimated glomerular filtration rate slope during the follow-up: positive slope and negative slope. Results: The mean estimated GFR (glomerular filtration rate) was higher at baseline in the patients who exhibited a negative slope during the follow-up (63.4 mL/min/1.73 m2 vs. 55.8 mL/min/1.73 m2, p = 0,019). After log transformation and division by urinary creatinine, urinary dimethylamine (3.63 vs. 3.16, p = 0.027), hippuric acid (7.33 vs. 6.29, p = 0.041), and acetone (1.88 vs. 1, p = 0.023) exhibited higher concentrations in patients with a negative GFR slope when compared to patients with a positive GFR slope. By computing a linear regression, a significant low-strength regression equation between the log 2 transformed plasmatic level of glycine and the estimated glomerular filtration rate was found (F (1,70) = 5.15, p = 0.026), with an R2 of 0.069. Several metabolites were correlated positively with hand grip strength (plasmatic tyrosine with r = 0.336 and p = 0.005 and plasmatic leucine with r = 0.371 and p = 0.002). Other urinary metabolites were found to be correlated negatively with hand grip strength (dimethylamine with r = -0.250 and p = 0.04, citric acid with r = -0.296 and p = 0.014, formic acid with r = -0.349 and p = 0.004, and glycine with r = -0.306 and p = 0.01). Conclusions: some metabolites had different concentrations compared to kidney transplant patients with negative and positive slopes, and significant correlations were found between hand grip strength and urinary and plasmatic metabolites.
Collapse
Affiliation(s)
- Titus Andrian
- Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania; (T.A.); (L.V.); (A.C.); (A.C.)
- Nephrology, Dialysis and Transplantation Clinic, Clinical Hospital “Dr. C. I. Parhon”, 700503 Iași, Romania
| | - Lucian Siriteanu
- Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania; (T.A.); (L.V.); (A.C.); (A.C.)
- Nephrology, Dialysis and Transplantation Clinic, Clinical Hospital “Dr. C. I. Parhon”, 700503 Iași, Romania
| | - Luminița Voroneanu
- Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania; (T.A.); (L.V.); (A.C.); (A.C.)
- Nephrology, Dialysis and Transplantation Clinic, Clinical Hospital “Dr. C. I. Parhon”, 700503 Iași, Romania
| | - Alina Nicolescu
- “Costin D. Nenitescu” Institute of Organic and Supramolecular Chemistry, 060023 Bucharest, Romania; (A.N.); (C.D.)
- “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iași, Romania
| | - Calin Deleanu
- “Costin D. Nenitescu” Institute of Organic and Supramolecular Chemistry, 060023 Bucharest, Romania; (A.N.); (C.D.)
- “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iași, Romania
| | - Andreea Covic
- Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania; (T.A.); (L.V.); (A.C.); (A.C.)
- Nephrology, Dialysis and Transplantation Clinic, Clinical Hospital “Dr. C. I. Parhon”, 700503 Iași, Romania
| | - Adrian Covic
- Department of Internal Medicine, University of Medicine and Pharmacy “Grigore T. Popa”, 700115 Iași, Romania; (T.A.); (L.V.); (A.C.); (A.C.)
- Nephrology, Dialysis and Transplantation Clinic, Clinical Hospital “Dr. C. I. Parhon”, 700503 Iași, Romania
| |
Collapse
|
2
|
Ohta T, Sugimoto M, Ito Y, Horikawa S, Okui Y, Sakaki H, Seino M, Sunamura M, Nagase S. Profiling of metabolic dysregulation in ovarian cancer tissues and biofluids. Sci Rep 2024; 14:21555. [PMID: 39285238 PMCID: PMC11405878 DOI: 10.1038/s41598-024-72938-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecologic cancer, mainly due to late diagnosis with widespread peritoneal spread at first presentation. We performed metabolomic analyses of ovarian and paired control tissues using capillary electrophoresis-mass spectrometry and liquid chromatography-mass spectrometry to understand its metabolomic dysregulation. Of the 130 quantified metabolites, 96 metabolites of glycometabolism, including glycolysis, tricarboxylic acid cycles, urea cycles, and one-carbon metabolites, showed significant differences between the samples. To evaluate the local and systemic metabolomic differences in OC, we also analyzed low or non-invasively available biofluids, including plasma, urine, and saliva collected from patients with OC and benign gynecological diseases. All biofluids and tissue samples showed consistently elevated concentrations of N1,N12-diacetylspermine compared to controls. Four metabolites, polyamines, and betaine, were significantly and consistently elevated in both plasma and tissue samples. These data indicate that plasma metabolic dysregulation, which the most reflected by those of OC tissues. Our metabolomic profiles contribute to our understanding of metabolomic abnormalities in OC and their effects on biofluids.
Collapse
Affiliation(s)
- Tsuyoshi Ohta
- Department of Obstetrics and Gynecology, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan.
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
| | - Yasufumi Ito
- Department of Obstetrics and Gynecology, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan
| | - Shota Horikawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan
| | - Yosuke Okui
- Department of Obstetrics and Gynecology, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan
| | - Hirotsugu Sakaki
- Department of Obstetrics and Gynecology, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan
| | - Manabu Seino
- Department of Obstetrics and Gynecology, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan
| | - Makoto Sunamura
- Department of Intestinal Surgery Medical Center, Tokyo Medical University, Hachioji, Tokyo, 193-0998, Japan
| | - Satoru Nagase
- Department of Obstetrics and Gynecology, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan
| |
Collapse
|
3
|
Ishizaki T, Sugimoto M, Kuboyama Y, Mazaki J, Kasahara K, Tago T, Udo R, Iwasaki K, Hayashi Y, Nagakawa Y. Stage-Specific Plasma Metabolomic Profiles in Colorectal Cancer. J Clin Med 2024; 13:5202. [PMID: 39274416 PMCID: PMC11396754 DOI: 10.3390/jcm13175202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Background/Objectives: The objective of this study was to investigate the metabolomic profiles of patients with colorectal cancer (CRC) across various stages of the disease. Methods: The plasma samples were obtained from 255 subjects, including patients with CRC in stages I-IV, polyps, and controls. We employed capillary electrophoresis time-of-flight mass spectrometry and liquid chromatography triple quadrupole mass spectrometry to analyze hydrophilic metabolites comprehensively. The data were randomly divided into two groups, and consistent differences observed in both groups were analyzed. Results: Acetylated polyamines, such as N1-acetylspermine and N1, N12-diacetylspermine, consistently showed elevated concentrations in stage IV compared to stages I-III. Non-acetylated polyamines, including spermine and spermidine, exhibited increasing trends from polyp to stage IV. Other metabolites, such as histidine and o-acetylcarnitine, showed decreasing trends across stages. While acetylated polyamines have been reported as CRC detection markers, our findings suggest that they also possess diagnostic potential for distinguishing stage IV from other stages. Conclusions: This study showed stage-specific changes in metabolic profiles, including polyamines, of colorectal cancer.
Collapse
Affiliation(s)
- Tetsuo Ishizaki
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku 160-0023, Tokyo, Japan
| | - Masahiro Sugimoto
- Institute of Medical Science, Tokyo Medical University, Shinjuku 160-8402, Tokyo, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Yamagata, Japan
| | - Yu Kuboyama
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku 160-0023, Tokyo, Japan
| | - Junichi Mazaki
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku 160-0023, Tokyo, Japan
| | - Kenta Kasahara
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku 160-0023, Tokyo, Japan
| | - Tomoya Tago
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku 160-0023, Tokyo, Japan
| | - Ryutaro Udo
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku 160-0023, Tokyo, Japan
| | - Kenichi Iwasaki
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku 160-0023, Tokyo, Japan
| | - Yutaka Hayashi
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku 160-0023, Tokyo, Japan
| | - Yuichi Nagakawa
- Department of Gastrointestinal and Pediatric Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku 160-0023, Tokyo, Japan
| |
Collapse
|
4
|
Yamada M, Jinno H, Naruse S, Isono Y, Maeda Y, Sato A, Matsumoto A, Ikeda T, Sugimoto M. Predictive analysis of breast cancer response to neoadjuvant chemotherapy through plasma metabolomics. Breast Cancer Res Treat 2024; 207:393-404. [PMID: 38740665 DOI: 10.1007/s10549-024-07370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE Preoperative chemotherapy is a critical component of breast cancer management, yet its effectiveness is not uniform. Moreover, the adverse effects associated with chemotherapy necessitate the identification of a patient subgroup that would derive the maximum benefit from this treatment. This study aimed to establish a method for predicting the response to neoadjuvant chemotherapy in breast cancer patients utilizing a metabolomic approach. METHODS Plasma samples were obtained from 87 breast cancer patients undergoing neoadjuvant chemotherapy at our facility, collected both before the commencement of the treatment and before the second treatment cycle. Metabolite analysis was conducted using capillary electrophoresis-mass spectrometry (CE-MS) and liquid chromatography-mass spectrometry (LC-MS). We performed comparative profiling of metabolite concentrations by assessing the metabolite profiles of patients who achieved a pathological complete response (pCR) against those who did not, both in initial and subsequent treatment cycles. RESULTS Significant variances were observed in the metabolite profiles between pCR and non-pCR cases, both at the onset of preoperative chemotherapy and before the second cycle. Noteworthy distinctions were also evident between the metabolite profiles from the initial and the second neoadjuvant chemotherapy courses. Furthermore, metabolite profiles exhibited variations associated with intrinsic subtypes at all assessed time points. CONCLUSION The application of plasma metabolomics, utilizing CE-MS and LC-MS, may serve as a tool for predicting the efficacy of neoadjuvant chemotherapy in breast cancer in the future after all necessary validations have been completed.
Collapse
Affiliation(s)
- Miki Yamada
- Department of Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Hiromitsu Jinno
- Department of Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan.
| | - Saki Naruse
- Department of Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Yuka Isono
- Department of Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Yuka Maeda
- Department of Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Ayana Sato
- Department of Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Akiko Matsumoto
- Department of Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Tatsuhiko Ikeda
- Department of Surgery, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo, 173-8606, Japan
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata, 997-0052, Japan
- Institute of Medical Science, Tokyo Medical University, Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| |
Collapse
|
5
|
Kajiwara N, Kakihana M, Maeda J, Kaneko M, Ota S, Enomoto A, Ikeda N, Sugimoto M. Salivary metabolomic biomarkers for non-invasive lung cancer detection. Cancer Sci 2024; 115:1695-1705. [PMID: 38417449 DOI: 10.1111/cas.16112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 03/01/2024] Open
Abstract
Identifying novel biomarkers for early detection of lung cancer is crucial. Non-invasively available saliva is an ideal biofluid for biomarker exploration; however, the rationale underlying biomarker detection from organs distal to the oral cavity in saliva requires clarification. Therefore, we analyzed metabolomic profiles of cancer tissues compared with those of adjacent non-cancerous tissues, as well as plasma and saliva samples collected from patients with lung cancer (n = 109 pairs). Additionally, we analyzed plasma and saliva samples collected from control participants (n = 83 and 71, respectively). Capillary electrophoresis-mass spectrometry and liquid chromatography-mass spectrometry were performed to comprehensively quantify hydrophilic metabolites. Paired tissues were compared, revealing 53 significantly different metabolites. Plasma and saliva showed 44 and 40 significantly different metabolites, respectively, between patients and controls. Of these, 12 metabolites exhibited significant differences in all three comparisons and primarily belonged to the polyamine and amino acid pathways; N1-acetylspermidine exhibited the highest discrimination ability. A combination of 12 salivary metabolites was evaluated using a machine learning method to differentiate patients with lung cancer from controls. Salivary data were randomly split into training and validation datasets. Areas under the receiver operating characteristic curve were 0.744 for cross-validation using training data and 0.792 for validation data. This model exhibited a higher discrimination ability for N1-acetylspermidine than that for other metabolites. The probability of lung cancer calculated using this model was independent of most patient characteristics. These results suggest that consistently different salivary biomarkers in both plasma and lung tissues might facilitate non-invasive lung cancer screening.
Collapse
Affiliation(s)
- Naohiro Kajiwara
- Department of Thoracic Surgery, Hachioji Medical Center of Tokyo Medical College Hospital, Hachioji, Tokyo, Japan
- Department of Surgery, Tokyo Medical University, Tokyo, Japan
| | | | - Junichi Maeda
- Department of Surgery, Tokyo Medical University, Tokyo, Japan
- Division of Thoracic Surgery, Mitsui Memorial Hospital, Tokyo, Japan
| | - Miku Kaneko
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Sana Ota
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Ayame Enomoto
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Norihiko Ikeda
- Department of Surgery, Tokyo Medical University, Tokyo, Japan
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
6
|
Yu C, Zhang J, Pei J, Luo J, Hong Y, Tian X, Liu Z, Zhu C, Long C, Shen L, He X, Wen S, Liu X, Wu S, Hua Y, Wei G. IL-13 alleviates acute kidney injury and promotes regeneration via activating the JAK-STAT signaling pathway in a rat kidney transplantation model. Life Sci 2024; 341:122476. [PMID: 38296190 DOI: 10.1016/j.lfs.2024.122476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
AIMS To identify whether and how a younger systemic internal milieu alleviates acute kidney injury (AKI) in grafts after kidney transplantation. MATERIALS AND METHODS We conducted an allogenic heterotopic rat kidney transplantation model with young and adult recipients receiving similar donor kidneys. We evaluated the renal function, histological damage, apoptosis, dedifferentiation, proliferation, hub regulating cytokines, and signaling pathways involved in young and adult recipients based on transcriptomics, proteomics, and experimental validation. We also validated the protective effect and mechanism of interleukin-13 (IL-13) on tubular epithelial cell injury induced by transplantation in vivo and by cisplatin in vitro. KEY FINDINGS Compared with adult recipients, the young recipients had lower levels of renal histological damage and apoptosis, while had higher levels of dedifferentiation and proliferation. Serum IL-13 levels were higher in young recipients both before and after surgery. Pretreating with IL-13 decreased apoptosis and promoted regeneration in injured rat tubular epithelial cells induced by cisplatin, while this effect can be counteracted by a JAK2 and STAT3 specific inhibitor, AG490. Recipients pretreated with IL-13 also had lower levels of histological damage and improved renal function. SIGNIFICANCE Higher levels of IL-13 in young recipients ameliorates tubular epithelial cell apoptosis and promotes regeneration via activating the JAK-STAT signaling pathway both in vivo and in vitro. Our results suggest that IL-13 is a promising therapeutic strategy for alleviating AKI. The therapeutic potential of IL-13 in injury repair and immune regulation deserves further evaluation and clinical consideration.
Collapse
Affiliation(s)
- Chengjun Yu
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Jie Zhang
- National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Jun Pei
- National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Jin Luo
- National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Yifan Hong
- National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China.
| | - Xiaomao Tian
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Zhiyuan Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China
| | - Chumeng Zhu
- National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Chunlan Long
- National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China.
| | - Lianju Shen
- National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China.
| | - Xingyue He
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Sheng Wen
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Xing Liu
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China
| | - Shengde Wu
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China.
| | - Yi Hua
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China.
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Zhongshan 2nd Road, Yuzhong District, Chongqing 400014, China; National Clinical Research Center for Child Health and Disorders, Chongqing, China; Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China; Chongqing Key Laboratory of Pediatrics Chongqing, Chongqing, China.
| |
Collapse
|
7
|
Cirillo A, Vandermeulen M, Erpicum P, Pinto Coelho T, Meurisse N, Detry O, Jouret F, de Tullio P. Untargeted NMR-based metabolomics analysis of kidney allograft perfusates identifies a signature of delayed graft function. Metabolomics 2024; 20:39. [PMID: 38460018 DOI: 10.1007/s11306-024-02106-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/19/2024] [Indexed: 03/11/2024]
Abstract
INTRODUCTION Kidney transplantation (KTx) necessarily conveys an ischemia/reperfusion (I/R) process, which impacts on allograft outcomes. Delayed graft function (DGF) is defined as a non-decrease of serum creatinine by at least 10% daily on 3 consecutive days during the first 7 days post-KTx. DGF significantly conditions both short- and long-term graft outcomes. Still there is a lack of DGF predictive biomarkers. OBJECTIVES This study aimed to explore the potential of kidney graft perfusate metabolomics to predict DGF occurrence. METHODS 49 human perfusates from grafts categorized upon donor type [donation after brain death (DBD)/donation after circulatory death (DCD)] and DGF occurrence and 19 perfusates from a murine model classified upon death type (DBD/DCD) were collected and analyzed by NMR-based metabolomics. RESULTS The multivariate analysis of the murine data highlighted significant differences between perfusate metabolomes of DBD versus DCD. These differences were similarly observed in the human perfusates. After correcting for the type of donor, multivariate analysis of human data demonstrated a metabolomics signature that could be correlated with DGF occurrence. CONCLUSIONS The metabolome of kidney grafts is influenced by the donor's type in both human and pre-clinical studies and could be correlated with DGF in the human DBD cohort. Thus, metabolomic analysis of perfusate applied prior to KTx may represent a new predictive tool for clinicians in a more personalized management of DGF. Moreover, our data paves the way to better understand the impact of donor's types on the biochemical events occurring between death and the hypothermic storage.
Collapse
Affiliation(s)
- A Cirillo
- Clinical Metabolomics Group, Center for Interdisciplinary Research On Medicines (CIRM), University of Liege, Liege, Belgium.
| | - M Vandermeulen
- Department of Abdominal Surgery and Transplantation, CHU de Liege, University of Liege, Liege, Belgium
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Metabolism and Cardiovascular Sciences, University of Liege, Liege, Belgium
| | - P Erpicum
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Metabolism and Cardiovascular Sciences, University of Liege, Liege, Belgium
- Division of Nephrology, CHU de Liège, University of Liege, Liege, Belgium
| | - T Pinto Coelho
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Metabolism and Cardiovascular Sciences, University of Liege, Liege, Belgium
| | - N Meurisse
- Department of Abdominal Surgery and Transplantation, CHU de Liege, University of Liege, Liege, Belgium
| | - O Detry
- Department of Abdominal Surgery and Transplantation, CHU de Liege, University of Liege, Liege, Belgium
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Metabolism and Cardiovascular Sciences, University of Liege, Liege, Belgium
| | - F Jouret
- Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Metabolism and Cardiovascular Sciences, University of Liege, Liege, Belgium
- Division of Nephrology, CHU de Liège, University of Liege, Liege, Belgium
| | - P de Tullio
- Clinical Metabolomics Group, Center for Interdisciplinary Research On Medicines (CIRM), University of Liege, Liege, Belgium
| |
Collapse
|
8
|
Mizuno H, Murakami N. Multi-omics Approach in Kidney Transplant: Lessons Learned from COVID-19 Pandemic. CURRENT TRANSPLANTATION REPORTS 2023; 10:173-187. [PMID: 38152593 PMCID: PMC10751044 DOI: 10.1007/s40472-023-00410-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 12/29/2023]
Abstract
Purpose of Review Multi-omics approach has advanced our knowledge on transplantation-associated clinical outcomes, such as acute rejection and infection, and emerging omics data are becoming available in kidney transplant and COVID-19. Herein, we discuss updated findings of multi-omics data on kidney transplant outcomes, as well as COVID-19 and kidney transplant. Recent Findings Transcriptomics, proteomics, and metabolomics revealed various inflammation pathways associated with kidney transplantation-related outcomes and COVID-19. Although multi-omics data on kidney transplant and COVID-19 is limited, activation of innate immune pathways and suppression of adaptive immune pathways were observed in the active phase of COVID-19 in kidney transplant recipients. Summary Multi-omics analysis has led us to a deeper exploration and a more comprehensive understanding of key biological pathways in complex clinical settings, such as kidney transplantation and COVID-19. Future multi-omics analysis leveraging multi-center biobank collaborative will further advance our knowledge on the precise immunological responses to allograft and emerging pathogens.
Collapse
Affiliation(s)
- Hiroki Mizuno
- Transplant Research Center, Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave. EBRC 305, Boston, MA 02115, USA
- Dvision of Nephrology and Rheumatology, Toranomon Hospital, Tokyo, Japan
| | - Naoka Murakami
- Transplant Research Center, Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, 221 Longwood Ave. EBRC 305, Boston, MA 02115, USA
| |
Collapse
|