1
|
Yang Y, Bai D, Jiang L, Chen Y, Wang M, Wang W, Wang H, He Q, Bu G, Long J, Yuan D. Stilbene glycosides alleviate atherosclerosis partly by promoting lipophagy of dendritic cells. Int Immunopharmacol 2024; 143:113223. [PMID: 39357204 DOI: 10.1016/j.intimp.2024.113223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease resulting from lipid metabolism disorders and immune imbalances. Dendritic cells (DCs) are key cells that regulate adaptive and adaptive immunity. When DCs engulf excessive amounts lipids, their function is altered, thereby, accelerating the inflammatory process of AS. Cellular lipophagy serves to reduce lipid accumulation and maintain cellular lipid metabolism balance. In this study, we investigated the effectiveness of 2,3,5,4'-tetrahydroxystilbene 2-O-β-D-glucoside (TSG) in intervening in the promotion of DCs lipid accumulation by ox-LDL, as well as its role in downregulating lipophagy. Our findings indicate that TSG reduces the maturity of DCs and promotes the differentiation of T cells towards Treg, thereby correcting the imbalanced Treg/Th17. These effects of TSG are closely associated with its inhibition of the PI3K-AKT-mTOR signaling pathway. After administering TSG to ApoE-/- mice that were fed a high-fat diet, there was a noticeable decrease in harmful blood lipids found in the serum. Additionally, the imbalanced Treg/Th17 levels in the spleen were restored, and the levels of pro-inflammatory factor IL-6 and IL-17A in the serum decreased, while the level of anti-inflammatory factor IL-10 increased. Furthermore, the arterial DCs showed a decrease in P62 content. Ultimately, these changes resulted in a reduction in plaque area. It is worth noting that the autophagy inhibitor chloroquine significantly altered the effects of TSG on ApoE-/- mice. In conclusion, this study reveals that TSG can alleviate AS. This is partly achieved through the activation of autophagy in DCs. By intervening in the lipophagy of DCs, it is possible to regulate the immune function of these cells, which in turn helps control the inflammation associated with AS. This presents a potential method for intervening in AS.
Collapse
Affiliation(s)
- Yunjun Yang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, Jiangsu, PR China
| | - Dandan Bai
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, Jiangsu, PR China
| | - Linhong Jiang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, Jiangsu, PR China
| | - Yanran Chen
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, Jiangsu, PR China
| | - Mengyuan Wang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, Jiangsu, PR China
| | - Wenxin Wang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, Jiangsu, PR China
| | - Haixia Wang
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, Jiangsu, PR China
| | - Qiongshan He
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, Jiangsu, PR China
| | - Guirong Bu
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, Jiangsu, PR China; Department of Pharmacy, Wuxi Huishan Traditional Chinese Medicine Hospital, Huijing Road 188, Wuxi 214100, Jiangsu, PR China
| | - Jun Long
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, Jiangsu, PR China.
| | - Dongping Yuan
- School of Pharmacy, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Xianlin Dadao 138, Nanjing 210023, Jiangsu, PR China.
| |
Collapse
|
2
|
Zhao Z, Qin Y, Wu R, Li W, Dong Y. Single-cell analysis identified key macrophage subpopulations associated with atherosclerosis. Open Med (Wars) 2024; 19:20241088. [PMID: 39726810 PMCID: PMC11669903 DOI: 10.1515/med-2024-1088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/13/2024] [Accepted: 10/18/2024] [Indexed: 12/28/2024] Open
Abstract
Background Atherosclerosis is a lipid-driven inflammatory disease characterized by plaque formation in major arteries. These plaques contain lipid-rich macrophages that accumulate through monocyte recruitment, local macrophage differentiation, and proliferation. Objective We identify the macrophage subsets that are closely related to atherosclerosis and reveal the key pathways in the progression of atherosclerotic disease. Materials and methods In this study, we characterize the single-cell landscape of atherosclerosis, identifying macrophage subsets closely related to the disease and revealing key pathways in its progression. Using analytical methods like CytoTRACE, Monocle2, Slingshot, and CellChat, we study macrophage differentiation and infer cell trajectory. Results The 8,417 macrophages were divided into six subtypes, macrophages: C0 C1QC+ macrophages, C1 SPP1+ macrophages, C2 FCN1+ macrophages, C3 IGKC+ macrophages, C4 FCER1A+ macrophages, C5CALD1+ macrophages. The results of gene set enrichment analysis, Monocle2, and Slingshot suggest that C2 FCN1+ macrophages may play an important role in the progression of atherosclerosis. C2 FCN1+ macrophages interact with endothelial cells via CCL, CXCL, APP, and other pathways to regulate the progression of atherosclerosis. Conclusion We identify a key macrophage subgroup (C2 FCN1+ macrophages) associated with atherosclerosis, which interacts with endothelial cells via CCL, CXCL, APP, and other pathways to regulate disease progression.
Collapse
Affiliation(s)
- Zhenzhen Zhao
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
- Department of Cardiovascular Disease, The Second Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, 250001, China
| | - Yuelong Qin
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Rui Wu
- Pingyi County Hospital of Traditional Chinese Medicine Cardiology Department, Linyi, 273300, China
| | - Wenwu Li
- Department of Burn Plastic and Wound Repair Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
- Laboratory of the Atherosclerosis and Ischemic Cardiovascular Diseases, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Yujiang Dong
- Department of Cardiovascular Disease, The Second Affiliated Hospital of Shandong University of Chinese Medicine, Jinan, 250001, China
- Shandong University of Traditional Chinese Medicine, Jinan, 250014, China
| |
Collapse
|
3
|
Liu Y, Lu K, Zhang R, Hu D, Yang Z, Zeng J, Cai W. Advancements in the Treatment of Atherosclerosis: From Conventional Therapies to Cutting-Edge Innovations. ACS Pharmacol Transl Sci 2024; 7:3804-3826. [PMID: 39698263 PMCID: PMC11651175 DOI: 10.1021/acsptsci.4c00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024]
Abstract
Atherosclerosis is a leading cause of morbidity and mortality worldwide, driven by a complex interplay of lipid dysregulation, inflammation, and vascular pathology. Despite advancements in understanding the multifactorial nature of atherosclerosis and improvements in clinical management, existing therapies often fall short in reversing the disease, focusing instead on symptom alleviation and risk reduction. This review highlights recent strides in identifying genetic markers, elucidating inflammatory pathways, and understanding environmental contributors to atherosclerosis. It also evaluates the efficacy and limitations of current pharmacological treatments, revascularization techniques, and the impact of these interventions on patient outcomes. Furthermore, we explore innovative therapeutic strategies, including the promising fields of nanomedicine, nucleic acid-based therapies, and immunomodulation, which offer potential for targeted and effective treatment modalities. However, integrating these advances into clinical practice is challenged by regulatory, economic, and logistical barriers. This review synthesizes the latest research and clinical advancements to provide a comprehensive roadmap for future therapeutic strategies and emphasize the critical need for innovative approaches to fundamentally change the course of atherosclerosis management.
Collapse
Affiliation(s)
- Yan Liu
- The
Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Center
for Molecular Imaging and Nuclear Medicine, State Key Laboratory of
Radiation Medicine and Protection, School for Radiological and Interdisciplinary
Sciences (RAD-X), Collaborative Innovation Center of Radiological
Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Kuan Lu
- The
Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Ruru Zhang
- Center
for Molecular Imaging and Nuclear Medicine, State Key Laboratory of
Radiation Medicine and Protection, School for Radiological and Interdisciplinary
Sciences (RAD-X), Collaborative Innovation Center of Radiological
Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Dongliang Hu
- The
Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
- Center
for Molecular Imaging and Nuclear Medicine, State Key Laboratory of
Radiation Medicine and Protection, School for Radiological and Interdisciplinary
Sciences (RAD-X), Collaborative Innovation Center of Radiological
Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Zhe Yang
- The
Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Jianfeng Zeng
- Center
for Molecular Imaging and Nuclear Medicine, State Key Laboratory of
Radiation Medicine and Protection, School for Radiological and Interdisciplinary
Sciences (RAD-X), Collaborative Innovation Center of Radiological
Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Wu Cai
- The
Second Affiliated Hospital of Soochow University, Suzhou, 215000, China
| |
Collapse
|
4
|
Chen H, Wu H, Wang Q, Zhang H. IFIT2 mediates iron retention and cholesterol efflux in atherosclerosis. Int Immunopharmacol 2024; 142:113131. [PMID: 39276454 DOI: 10.1016/j.intimp.2024.113131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Abnormalities in iron and lipid metabolism are recognized as key contributors to atherosclerosis (AS). Therefore, this study proposes to characterize the biomarker related to iron and lipid metabolism in AS using bioinformatics, animal, and cell experiments. METHODS The limma package was utilized to identify differentially expressed genes (DEGs) in GSE70126 and GSE70619 datasets, and biomarkers were screened using enrichment analysis and PPI networks. IFIT2 was knocked down using shRNA lentivirus in a high fat diet (HFD)-induced APOE-/- AS model to investigate its effects of IFIT2 on the pathology, iron retention, and lipid accumulation. Iron storage-related and cholesterol efflux-related proteins were evaluated following exogenous modulation of IFIT2 expression in ox-LDL-induced foamy macrophages. RESULTS Compared to non-foamy macrophages from the aorta, 189 and 4152 DEGs were identified in foamy macrophages within the GSE70126 and GSE70619 datasets, respectively. Moreover, intersecting DEGs may modulate immune responses, cell adhesion, vascular permeability, and oxidative stress through NF-kappa B, Wnt, TNF and HIF-1 signaling pathways. Notably, IFIT2 was significantly upregulated in foamy macrophages and AS models. In vivo, IFIT2 co-localized with foamy macrophages, and its knockdown led to reductions in plasma lipid levels, plaque area, immune infiltration, iron retention, and lipid accumulation. In vitro, IFIT2 knockdown alleviated the ox-LDL-induced increase in iron storage-related proteins (Ferritin-L and Ferritin-H) and iron (Fe2+ and Fe3+) in foamy macrophages. Furthermore, IFIT2 knockdown reduced lipid accumulation and upregulated cholesterol efflux-related proteins (PPARγ, LXRα, ABCA1, and ABCG1) in foamy macrophages. CONCLUSION IFIT2 knockdown attenuates iron retention and lipid accumulation in AS plaques, and facilitated cholesterol efflux from foamy macrophages via the PPARγ/LXRα/ABCA1-ABCG1 pathway.
Collapse
Affiliation(s)
- Haoqiang Chen
- Department of Cardiovascular Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157 Jinbi Road, Kunming, Yunnan 650032, P.R.China
| | - Haiyan Wu
- Department of Cardiovascular Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157 Jinbi Road, Kunming, Yunnan 650032, P.R.China; Faculty of Life Science and Technology, Kunming University of Science and Technology, No.727 Jingming South Road, Kunming 650500, P.R.China
| | - Qian Wang
- Department of Cardiovascular Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157 Jinbi Road, Kunming, Yunnan 650032, P.R.China.
| | - Hong Zhang
- Department of Cardiovascular Medicine, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, No. 157 Jinbi Road, Kunming, Yunnan 650032, P.R.China.
| |
Collapse
|
5
|
Kiriyama Y, Tokumaru H, Sadamoto H, Kobayashi S, Nochi H. Effects of Phenolic Acids Produced from Food-Derived Flavonoids and Amino Acids by the Gut Microbiota on Health and Disease. Molecules 2024; 29:5102. [PMID: 39519743 PMCID: PMC11548037 DOI: 10.3390/molecules29215102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The gut microbiota metabolizes flavonoids, amino acids, dietary fiber, and other components of foods to produce a variety of gut microbiota-derived metabolites. Flavonoids are the largest group of polyphenols, and approximately 7000 flavonoids have been identified. A variety of phenolic acids are produced from flavonoids and amino acids through metabolic processes by the gut microbiota. Furthermore, these phenolic acids are easily absorbed. Phenolic acids generally represent phenolic compounds with one carboxylic acid group. Gut microbiota-derived phenolic acids have antiviral effects against several viruses, such as SARS-CoV-2 and influenza. Furthermore, phenolic acids influence the immune system by inhibiting the secretion of proinflammatory cytokines, such as interleukin-1β and tumor necrosis factor-α. In the nervous systems, phenolic acids may have protective effects against neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. Moreover, phenolic acids can improve levels of blood glucose, cholesterols, and triglycerides. Phenolic acids also improve cardiovascular functions, such as blood pressure and atherosclerotic lesions. This review focuses on the current knowledge of the effects of phenolic acids produced from food-derived flavonoids and amino acids by the gut microbiota on health and disease.
Collapse
Affiliation(s)
- Yoshimitsu Kiriyama
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan (H.S.); (S.K.); (H.N.)
- Institute of Neuroscience, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan
| | - Hiroshi Tokumaru
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan (H.S.); (S.K.); (H.N.)
| | - Hisayo Sadamoto
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan (H.S.); (S.K.); (H.N.)
| | - Suguru Kobayashi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan (H.S.); (S.K.); (H.N.)
- Institute of Neuroscience, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan
| | - Hiromi Nochi
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Shido 1314-1, Sanuki 769-2193, Kagawa, Japan (H.S.); (S.K.); (H.N.)
| |
Collapse
|
6
|
Luwen H, Lei X, Qing-Rong O, Linlin L, Ming Y. Association between hs-CRP/HDL-C ratio and three-month unfavorable outcomes in patients with acute ischemic stroke: a second analysis based on a prospective cohort study. BMC Neurol 2024; 24:418. [PMID: 39468509 PMCID: PMC11514845 DOI: 10.1186/s12883-024-03929-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024] Open
Abstract
OBJECTIVE The associations between the ratio of blood high-sensitivity C-reactive protein (hs-CRP) to high-density lipoprotein cholesterol (HDL-C) (hs-CRP/HDL-C ratio) and outcomes in patients with acute ischemic stroke (AIS) have yet to be established. This study is the first to examine the relationship between the hs-CRP/HDL-C ratio and three-month unfavorable outcomes in patients with AIS. METHODS This secondary analysis utilized data from a prospective cohort study involving 1559 AIS patients recruited at a South Korean hospital between January 2010 and December 2016. We constructed a binary logistic regression model to explore the association between the hs-CRP/HDL-C ratio and unfavorable outcomes in patients with AIS. An attempt was made to use a generalized additive model (GAM) with smooth curve fitting to elucidate potential nonlinear interactions. Furthermore, inflection points were identified via a recursive method, and binary logistic regression models were developed for each side of these inflection points. Ultimately, a log-likelihood ratio test was used to identify the most appropriate model for explaining the connection between the hs-CRP/HDL-C ratio and unfavorable outcomes in patients with AIS. RESULTS The incidence of unfavorable outcomes was 24.5%, with a median hs-CRP/HDL-C ratio of 3.64. After accounting for other factors, the binary logistic regression model revealed a statistically significant positive association between the hs-CRP/HDL-C ratio and the likelihood of poor outcomes in AIS patients (OR = 1.013, 95% CI: 1.005-1.022; P = 0.002). A nonlinear relationship was observed, with the first inflection point of the hs-CRP/HDL-C ratio at 42.74. Each 1-unit increase in the hs-CRP/HDL-C ratio was associated with a 2.4% greater risk of unfavorable outcomes (OR = 1.024, 95% CI: 1.011-1.038, P < 0.001). CONCLUSION This study provides evidence of a positive and nonlinear correlation between the hs-CRP/HDL-C ratio and poor three-month functional outcomes in AIS patients. When the hs-CRP/HDL-C ratio was less than 42.74, a positive association was observed with the risk of unfavorable outcomes. This finding offers a reference for optimizing early individualized therapy and aids in clinical counseling for patients with AIS.
Collapse
Affiliation(s)
- Huang Luwen
- Department of Neurology, Suining Central Hospital, Suining, Sichuan Province, 629000, China
| | - Xu Lei
- Department of Neurology, Suining Central Hospital, Suining, Sichuan Province, 629000, China
| | - Ouyang Qing-Rong
- Department of Neurology, Suining Central Hospital, Suining, Sichuan Province, 629000, China
| | - Li Linlin
- Department of Neurology, Suining Central Hospital, Suining, Sichuan Province, 629000, China
| | - Yu Ming
- Department of Neurology, Suining Central Hospital, Suining, Sichuan Province, 629000, China.
| |
Collapse
|
7
|
Mosalmanzadeh N, Pence BD. Oxidized Low-Density Lipoprotein and Its Role in Immunometabolism. Int J Mol Sci 2024; 25:11386. [PMID: 39518939 PMCID: PMC11545486 DOI: 10.3390/ijms252111386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Modified cholesterols such as oxidized low-density lipoprotein (OxLDL) contribute to atherosclerosis and other disorders through the promotion of foam cell formation and inflammation. In recent years, it has become evident that immune cell responses to inflammatory molecules such as OxLDLs depend on cellular metabolic functions. This review examines the known effects of OxLDL on immunometabolism and immune cell responses in atherosclerosis and several other diseases. We additionally provide context on the relationship between OxLDL and aging/senescence and identify gaps in the literature and our current understanding in these areas.
Collapse
Affiliation(s)
| | - Brandt D. Pence
- College of Health Sciences and Center for Nutraceutical and Dietary Supplement Research, University of Memphis, Memphis, TN 38111, USA
| |
Collapse
|
8
|
Lv F, Fang H, Huang L, Wang Q, Cao S, Zhao W, Zhou Z, Zhou W, Wang X. Curcumin Equipped Nanozyme-Like Metal-Organic Framework Platform for the Targeted Atherosclerosis Treatment with Lipid Regulation and Enhanced Magnetic Resonance Imaging Capability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309062. [PMID: 38696653 PMCID: PMC11234396 DOI: 10.1002/advs.202309062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/21/2024] [Indexed: 05/04/2024]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) has become the leading cause of death worldwide, and early diagnosis and treatment of atherosclerosis (AS) are crucial for reducing the occurrence of acute cardiovascular events. However, early diagnosis of AS is challenging, and oral anti-AS drugs suffer from limitations like imprecise targeting and low bioavailability. To overcome the aforementioned shortcomings, Cur/MOF@DS is developed, a nanoplatform integrating diagnosis and treatment by loading curcumin (Cur) into metal-organic frameworks with nanozymes and magnetic resonance imaging (MRI) properties. In addition, the surface-modification of dextran sulfate (DS) enables PCN-222(Mn) effectively target scavenger receptor class A in macrophages or foam cells within the plaque region. This nanoplatform employs mechanisms that effectively scavenge excessive reactive oxygen species in the plaque microenvironment, promote macrophage autophagy and regulate macrophage polarization to realize lipid regulation. In vivo and in vitro experiments confirm that this nanoplatform has outstanding MRI performance and anti-AS effects, which may provide a new option for early diagnosis and treatment of AS.
Collapse
Affiliation(s)
- Fanzhen Lv
- Department of Vascular Surgerythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangJiangxi330006China
| | - Huaqiang Fang
- Department of Vascular Surgerythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangJiangxi330006China
| | - Li Huang
- Department of Vascular Surgerythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangJiangxi330006China
| | - Qingqing Wang
- School of PharmacyNanchang UniversityNanchangJiangxi330006China
| | - Shuangyuan Cao
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchangJiangxi330006China
| | - Wenpeng Zhao
- Department of Vascular Surgerythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangJiangxi330006China
| | - Zhibin Zhou
- Department of Vascular Surgerythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangJiangxi330006China
| | - Weimin Zhou
- Department of Vascular Surgerythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangJiangxi330006China
| | - Xiaolei Wang
- School of PharmacyNanchang UniversityNanchangJiangxi330006China
- The National Engineering Research Center for Bioengineering Drugs and the TechnologiesInstitute of Translational MedicineNanchang UniversityNanchangJiangxi330006China
| |
Collapse
|
9
|
Xing Y, Lin X. Challenges and advances in the management of inflammation in atherosclerosis. J Adv Res 2024:S2090-1232(24)00253-4. [PMID: 38909884 DOI: 10.1016/j.jare.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024] Open
Abstract
INTRODUCTION Atherosclerosis, traditionally considered a lipid-related disease, is now understood as a chronic inflammatory condition with significant global health implications. OBJECTIVES This review aims to delve into the complex interactions among immune cells, cytokines, and the inflammatory cascade in atherosclerosis, shedding light on how these elements influence both the initiation and progression of the disease. METHODS This review draws on recent clinical research to elucidate the roles of key immune cells, macrophages, T cells, endothelial cells, and clonal hematopoiesis in atherosclerosis development. It focuses on how these cells and process contribute to disease initiation and progression, particularly through inflammation-driven processes that lead to plaque formation and stabilization. Macrophages ingest oxidized low-density lipoprotein (oxLDL), which partially converts to high-density lipoprotein (HDL) or accumulates as lipid droplets, forming foam cells crucial for plaque stability. Additionally, macrophages exhibit diverse phenotypes within plaques, with pro-inflammatory types predominating and others specializing in debris clearance at rupture sites. The involvement of CD4+ T and CD8+ T cells in these processes promotes inflammatory macrophage states, suppresses vascular smooth muscle cell proliferation, and enhances plaque instability. RESULTS The nuanced roles of macrophages, T cells, and the related immune cells within the atherosclerotic microenvironment are explored, revealing insights into the cellular and molecular pathways that fuel inflammation. This review also addresses recent advancements in imaging and biomarker technology that enhance our understanding of disease progression. Moreover, it points out the limitations of current treatment and highlights the potential of emerging anti-inflammatory strategies, including clinical trials for agents such as p38MAPK, tumor necrosis factor α (TNF-α), and IL-1β, their preliminary outcomes, and the promising effects of canakinumab, colchicine, and IL-6R antagonists. CONCLUSION This review explores cutting-edge anti-inflammatory interventions, their potential efficacy in preventing and alleviating atherosclerosis, and the role of nanotechnology in delivering drugs more effectively and safely.
Collapse
Affiliation(s)
- Yiming Xing
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230022, China
| | - Xianhe Lin
- Cardiology Department, The First Affiliated Hospital of Anhui Medical University, Hefei City, Anhui Province, 230022, China.
| |
Collapse
|
10
|
Liu C, Guo X, Zhang X. Modulation of atherosclerosis-related signaling pathways by Chinese herbal extracts: Recent evidence and perspectives. Phytother Res 2024; 38:2892-2930. [PMID: 38577989 DOI: 10.1002/ptr.8203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/06/2024]
Abstract
Atherosclerotic cardiovascular disease remains a preeminent cause of morbidity and mortality globally. The onset of atherosclerosis underpins the emergence of ischemic cardiovascular diseases, including coronary heart disease (CHD). Its pathogenesis entails multiple factors such as inflammation, oxidative stress, apoptosis, vascular endothelial damage, foam cell formation, and platelet activation. Furthermore, it triggers the activation of diverse signaling pathways including Phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt), NF-E2-related factor 2/antioxidant response element (Nrf2/ARE), the Notch signaling pathway, peroxisome proliferator-activated receptor (PPAR), nucleotide oligo-structural domain-like receptor thermoprotein structural domain-associated protein 3 (NLRP3), silencing information regulator 2-associated enzyme 1 (Sirt1), nuclear transcription factor-κB (NF-κB), Circular RNA (Circ RNA), MicroRNA (mi RNA), Transforming growth factor-β (TGF-β), and Janus kinase-signal transducer and activator of transcription (JAK/STAT). Over recent decades, therapeutic approaches for atherosclerosis have been dominated by the utilization of high-intensity statins to reduce lipid levels, despite significant adverse effects. Consequently, there is a growing interest in the development of safer and more efficacious drugs and therapeutic modalities. Traditional Chinese medicine (TCM) offers a vital strategy for the prevention and treatment of cardiovascular diseases. Numerous studies have detailed the mechanisms through which TCM active ingredients modulate signaling molecules and influence the atherosclerotic process. This article reviews the signaling pathways implicated in the pathogenesis of atherosclerosis and the advancements in research on TCM extracts for prevention and treatment, drawing on original articles from various databases including Google Scholar, Medline, CNKI, Scopus, and Pubmed. The objective is to furnish a reference for the clinical management of cardiovascular diseases.
Collapse
Affiliation(s)
- Changxing Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinyi Guo
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xulong Zhang
- Shaanxi Provincial Rehabilitation Hospital, Xi'an, China
| |
Collapse
|
11
|
Pan Q, Chen C, Yang YJ. Top Five Stories of the Cellular Landscape and Therapies of Atherosclerosis: Current Knowledge and Future Perspectives. Curr Med Sci 2024; 44:1-27. [PMID: 38057537 DOI: 10.1007/s11596-023-2818-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/22/2023] [Indexed: 12/08/2023]
Abstract
Atherosclerosis (AS) is characterized by impairment and apoptosis of endothelial cells, continuous systemic and focal inflammation and dysfunction of vascular smooth muscle cells, which is documented as the traditional cellular paradigm. However, the mechanisms appear much more complicated than we thought since a bulk of studies on efferocytosis, transdifferentiation and novel cell death forms such as ferroptosis, pyroptosis, and extracellular trap were reported. Discovery of novel pathological cellular landscapes provides a large number of therapeutic targets. On the other side, the unsatisfactory therapeutic effects of current treatment with lipid-lowering drugs as the cornerstone also restricts the efforts to reduce global AS burden. Stem cell- or nanoparticle-based strategies spurred a lot of attention due to the attractive therapeutic effects and minimized adverse effects. Given the complexity of pathological changes of AS, attempts to develop an almighty medicine based on single mechanisms could be theoretically challenging. In this review, the top stories in the cellular landscapes during the initiation and progression of AS and the therapies were summarized in an integrated perspective to facilitate efforts to develop a multi-targets strategy and fill the gap between mechanism research and clinical translation. The future challenges and improvements were also discussed.
Collapse
Affiliation(s)
- Qi Pan
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Cheng Chen
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
12
|
Jing J, Guo J, Dai R, Zhu C, Zhang Z. Targeting gut microbiota and immune crosstalk: potential mechanisms of natural products in the treatment of atherosclerosis. Front Pharmacol 2023; 14:1252907. [PMID: 37719851 PMCID: PMC10504665 DOI: 10.3389/fphar.2023.1252907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory reaction that primarily affects large and medium-sized arteries. It is a major cause of cardiovascular disease and peripheral arterial occlusive disease. The pathogenesis of AS involves specific structural and functional alterations in various populations of vascular cells at different stages of the disease. The immune response is involved throughout the entire developmental stage of AS, and targeting immune cells presents a promising avenue for its treatment. Over the past 2 decades, studies have shown that gut microbiota (GM) and its metabolites, such as trimethylamine-N-oxide, have a significant impact on the progression of AS. Interestingly, it has also been reported that there are complex mechanisms of action between GM and their metabolites, immune responses, and natural products that can have an impact on AS. GM and its metabolites regulate the functional expression of immune cells and have potential impacts on AS. Natural products have a wide range of health properties, and researchers are increasingly focusing on their role in AS. Now, there is compelling evidence that natural products provide an alternative approach to improving immune function in the AS microenvironment by modulating the GM. Natural product metabolites such as resveratrol, berberine, curcumin, and quercetin may improve the intestinal microenvironment by modulating the relative abundance of GM, which in turn influences the accumulation of GM metabolites. Natural products can delay the progression of AS by regulating the metabolism of GM, inhibiting the migration of monocytes and macrophages, promoting the polarization of the M2 phenotype of macrophages, down-regulating the level of inflammatory factors, regulating the balance of Treg/Th17, and inhibiting the formation of foam cells. Based on the above, we describe recent advances in the use of natural products that target GM and immune cells crosstalk to treat AS, which may bring some insights to guide the treatment of AS.
Collapse
Affiliation(s)
- Jinpeng Jing
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Guo
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Dai
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chaojun Zhu
- Institute of TCM Ulcers, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Surgical Department of Traditional Chinese Medicine, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhaohui Zhang
- Institute of TCM Ulcers, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Surgical Department of Traditional Chinese Medicine, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
13
|
He T, Muhetaer M, Wu J, Wan J, Hu Y, Zhang T, Wang Y, Wang Q, Cai H, Lu Z. Immune Cell Infiltration Analysis Based on Bioinformatics Reveals Novel Biomarkers of Coronary Artery Disease. J Inflamm Res 2023; 16:3169-3184. [PMID: 37525634 PMCID: PMC10387251 DOI: 10.2147/jir.s416329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/08/2023] [Indexed: 08/02/2023] Open
Abstract
Background Coronary artery disease (CAD) is a multifactorial immune disease, but research into the specific immune mechanism is still needed. The present study aimed to identify novel immune-related markers of CAD. Methods Three CAD-related datasets (GSE12288, GSE98583, GSE113079) were downloaded from the Gene Expression Integrated Database. Gene ontology annotation, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis and weighted gene co-expression network analysis were performed on the common significantly differentially expressed genes (DEGs) of these three data sets, and the most relevant module genes for CAD obtained. The immune cell infiltration of module genes was evaluated with the CIBERSORT algorithm, and characteristic genes accompanied by their diagnostic effectiveness were screened by the machine-learning algorithm least absolute shrinkage and selection operator (LASSO) regression analysis. The expression levels of characteristic genes were evaluated in the peripheral blood mononuclear cells of CAD patients and healthy controls for verification. Results A total of 204 upregulated and 339 downregulated DEGs were identified, which were mainly enriched in the following pathways: "Apoptosis", "Th17 cell differentiation", "Th1 and Th2 cell differentiation", "Glycerolipid metabolism", and "Fat digestion and absorption". Five characteristic genes, LMAN1L, DOK4, CHFR, CEL and CCDC28A, were identified by LASSO analysis, and the results of the immune cell infiltration analysis indicated that the proportion of immune infiltrating cells (activated CD8 T cells and CD56 DIM natural killer cells) in the CAD group was lower than that in the control group. The expressions of CHFR, CEL and CCDC28A in the peripheral blood of the healthy controls and CAD patients were significantly different. Conclusion We identified CHFR, CEL and CCDC28A as potential biomarkers related to immune infiltration in CAD based on public data sets and clinical samples. This finding will contribute to providing a potential target for early noninvasive diagnosis and immunotherapy of CAD.
Collapse
Affiliation(s)
- Tianwen He
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, People’s Republic of China
| | - Muheremu Muhetaer
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, People’s Republic of China
| | - Jiahe Wu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, People’s Republic of China
| | - Jingjing Wan
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, People’s Republic of China
| | - Yushuang Hu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, People’s Republic of China
| | - Tong Zhang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, People’s Republic of China
| | - Yunxiang Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, People’s Republic of China
| | - Qiongxin Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, People’s Republic of China
| | - Huanhuan Cai
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, People’s Republic of China
| | - Zhibing Lu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, People’s Republic of China
- Institute of Myocardial Injury and Repair, Wuhan University, Wuhan, People’s Republic of China
| |
Collapse
|