1
|
Mohamed ZA, Li J, Wen J, Jia F, Banerjee S. The KCNB2 gene and its role in neurodevelopmental disorders: Implications for genetics and therapeutic advances. Clin Chim Acta 2025; 566:120056. [PMID: 39577484 DOI: 10.1016/j.cca.2024.120056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Neurodevelopmental disorders (NDDs) are increasingly linked to genetic mutations that disrupt key neuronal processes. The KCNB2 gene encodes a crucial component of voltage-gated potassium channels, essential for regulating neuronal excitability and synaptic transmission. Mutations in KCNB2 typically alter potassium channel inactivation, leading to various NDDs, including autism spectrum disorders (ASD), intellectual disabilities (ID), and epilepsy. This narrative review synthesizes findings from genetic, molecular, and clinical studies on the KCNB2 gene and its role in NDDs. Relevant literature was identified through database searches in PubMed, Embase, PsycINFO, Scopus, and Web of Science, focusing on studies that examine KCNB2's molecular mechanisms, pathogenic mutations, and clinical implications in NDDs. In addition to its role in excitability, KCNB2's impact on cognitive processes, such as memory and attention, is considered, highlighting the need for further research. Potential interventions, including pharmacological modulation and gene therapy, are also discussed. Future research should focus on characterizing KCNB2 variants, expanding genetic screening, and advancing targeted therapies to improve outcomes for individuals affected by KCNB2-related disorders.
Collapse
Affiliation(s)
- Zakaria Ahmed Mohamed
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jinghua Li
- Department of Pathogenobiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Jianping Wen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Feiyong Jia
- Department of Developmental and Behavioral Pediatrics, The First Hospital of Jilin University, Jilin University, Changchun, China.
| | - Santasree Banerjee
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
2
|
Kazemeini S, Nadeem-Tariq A, Shih R, Rafanan J, Ghani N, Vida TA. From Plaques to Pathways in Alzheimer's Disease: The Mitochondrial-Neurovascular-Metabolic Hypothesis. Int J Mol Sci 2024; 25:11720. [PMID: 39519272 PMCID: PMC11546801 DOI: 10.3390/ijms252111720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/01/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) presents a public health challenge due to its progressive neurodegeneration, cognitive decline, and memory loss. The amyloid cascade hypothesis, which postulates that the accumulation of amyloid-beta (Aβ) peptides initiates a cascade leading to AD, has dominated research and therapeutic strategies. The failure of recent Aβ-targeted therapies to yield conclusive benefits necessitates further exploration of AD pathology. This review proposes the Mitochondrial-Neurovascular-Metabolic (MNM) hypothesis, which integrates mitochondrial dysfunction, impaired neurovascular regulation, and systemic metabolic disturbances as interrelated contributors to AD pathogenesis. Mitochondrial dysfunction, a hallmark of AD, leads to oxidative stress and bioenergetic failure. Concurrently, the breakdown of the blood-brain barrier (BBB) and impaired cerebral blood flow, which characterize neurovascular dysregulation, accelerate neurodegeneration. Metabolic disturbances such as glucose hypometabolism and insulin resistance further impair neuronal function and survival. This hypothesis highlights the interconnectedness of these pathways and suggests that therapeutic strategies targeting mitochondrial health, neurovascular integrity, and metabolic regulation may offer more effective interventions. The MNM hypothesis addresses these multifaceted aspects of AD, providing a comprehensive framework for understanding disease progression and developing novel therapeutic approaches. This approach paves the way for developing innovative therapeutic strategies that could significantly improve outcomes for millions affected worldwide.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas A. Vida
- Kirk Kerkorian School of Medicine at UNLV, 625 Shadow Lane, Las Vegas, NV 89106, USA; (S.K.); (A.N.-T.); (R.S.); (J.R.); (N.G.)
| |
Collapse
|
3
|
Do Nascimento Amorim MS, Rates ERD, Isabela Vitoria DAC, Silva Diniz Filho JF, dos Santos CC, Santos-Oliveira R, Simões Gaspar R, Rodrigues Sanches J, Araújo Serra Pinto B, de Andrade Paes AM, Alencar LMR. Diabetes and Cognitive Decline: An Innovative Approach to Analyzing the Biophysical and Vibrational Properties of the Hippocampus. ACS OMEGA 2024; 9:40870-40881. [PMID: 39371966 PMCID: PMC11447714 DOI: 10.1021/acsomega.4c05869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 06/24/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 10/08/2024]
Abstract
Diabetes Mellitus (DM) is a disease characterized by high blood glucose levels, known as hyperglycemia. Diabetes represents a risk factor for the development of neurodegenerative diseases, such as Alzheimer's Disease (AD), one of the most prevalent neurodegenerative diseases worldwide, which leads to progressive mental, behavioral, and functional decline, affecting many brain structures, especially the hippocampus. Here, we aim to characterize the ultrastructural, nanomechanical, and vibrational changes in hyperglycemic hippocampal tissue using atomic force microscopy (AFM) and Raman spectroscopy. DM was induced in rats by streptozotocin injection (type 1) or dietary intervention (type 2). Cryosections of the hippocampus were prepared and analyzed on an MM8 AFM (Bruker) in Peak Force Quantitative Nanomechanics mode, performing 25 μm2 scans in 9 regions of 3 samples from each group. Ultrastructural and nanomechanical data such as surface roughness, area, volume, Young's modulus, and adhesion were evaluated. The hippocampal samples were also analyzed on a T64000 Spectrometer (Horiba), using a laser λ = 632.8 nm, and for each sample, four spectra were obtained in different regions. AFM analyses show changes on the ultrastructural scale since diabetic animals had hippocampal tissue with greater roughness and volume. Meanwhile, diabetic tissues had decreased adhesion and Young's modulus compared to control tissues. These were corroboratedby Raman data that shows changes in the molecular composition of diabetic tissues. The individual spectra show that the most significant changes are in the amide, cholesterol, and lipid bands. Overall, the data presented here show that hyperglycemia induces biophysical alterations in the hippocampal tissue of diabetic rats, providing novel biophysical and vibrational cues on the relationship between hyperglycemia and dementia.
Collapse
Affiliation(s)
- Maria
Do Socorro Do Nascimento Amorim
- Federal
University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, Maranhão 65080-805, Brazil
- Federal
University of Maranhão, University
School, Campus Bacanga, São Luís, Maranhão 65080-805, Brazil
| | - Erick Rafael Dias Rates
- Federal
University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, Maranhão 65080-805, Brazil
| | - de Araujo Costa
Melo Isabela Vitoria
- Federal
University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, Maranhão 65080-805, Brazil
| | - Joel Félix Silva Diniz Filho
- Federal
University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, Maranhão 65080-805, Brazil
| | - Clenilton Costa dos Santos
- Federal
University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, Maranhão 65080-805, Brazil
| | - Ralph Santos-Oliveira
- Brazilian
Nuclear Energy Commission, Nuclear Engineering
Institute, Rio de
Janeiro 21941906, Brazil
- Rio
de Janeiro State University, Laboratory
of Nanoradiopharmacy, Rio de Janeiro 23070200, Brazil
| | - Renato Simões Gaspar
- Campinas
State University, Translational Medicine
Department, Campinas, Sao Paulo 13083888, Brazil
| | - Jonas Rodrigues Sanches
- Federal
University of Maranhão, Department of Physiological Sciences, Laboratory of Experimental
Physiology, Campus Bacanga, São Luís, Maranhão 65080-805, Brazil
| | - Bruno Araújo Serra Pinto
- Federal
University of Maranhão, Department of Physiological Sciences, Laboratory of Experimental
Physiology, Campus Bacanga, São Luís, Maranhão 65080-805, Brazil
| | - Antonio Marcus de Andrade Paes
- Federal
University of Maranhão, Department of Physiological Sciences, Laboratory of Experimental
Physiology, Campus Bacanga, São Luís, Maranhão 65080-805, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Federal
University of Maranhão, Department of Physics, Laboratory of Biophysics and Nanosystems, Campus Bacanga, São Luís, Maranhão 65080-805, Brazil
| |
Collapse
|
4
|
Sunwoo Y, Park J, Choi CY, Shin S, Choi YJ. Risk of Dementia and Alzheimer's Disease Associated With Antidiabetics: A Bayesian Network Meta-Analysis. Am J Prev Med 2024; 67:434-443. [PMID: 38705542 DOI: 10.1016/j.amepre.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/16/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
INTRODUCTION Dementia risk is substantially elevated in patients with diabetes. However, evidence on dementia risk associated with various antidiabetic regimens is still limited. This study aims to comprehensively investigate the risk of dementia and Alzheimer's disease (AD) associated with various antidiabetic classes. METHODS Cochrane Central Register of Controlled Trials, Embase, MEDLINE (PubMed), and Scopus were searched from inception to March 2024 (PROSPERO CRD 42022365927). Observational studies investigating dementia and AD incidences after antidiabetic initiation were identified. Bayesian network meta-analysis was performed to determine dementia and AD risks associated with antidiabetics. Preferred Reporting Items for Systematic Reviews-Network Meta-Analyses (PRISMA-NMA) guidelines were followed. Statistical analysis was performed and updated in November 2023 and March 2024, respectively. RESULTS A total of 1,565,245 patients from 16 studies were included. Dementia and AD risks were significantly lower with metformin and sodium glucose co-transporter-2 inhibitors (SGLT2i). Metformin displayed the lowest risk of dementia across diverse antidiabetics, whereas α-glucosidase inhibitors demonstrated the highest risk. SGLT2i exhibited the lowest dementia risk across second-line antidiabetics. Dementia risk was significantly higher with dipeptidyl peptidase-4 inhibitor (DPP4i), metformin, sulfonylureas, and thiazolidinediones (TZD) compared to SGLT2i in the elderly (≥75 years). Dementia risk associated with metformin was substantially lower, regardless of diabetic complication status or baseline A1C. DISCUSSION Metformin and SGLT2i demonstrated lower dementia risk than other antidiabetic classes. Patient-specific factors may affect this relationship and cautious interpretation is warranted as metformin is typically initiated at an earlier stage with fewer complications. Hence, further large-scaled clinical trials are required.
Collapse
Affiliation(s)
- Yongjun Sunwoo
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Korea; Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul, Korea; Institute of Regulatory Innovation Through Science (IRIS), Kyung Hee University, Seoul, Korea
| | - Jaeho Park
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Korea
| | - Chang-Young Choi
- Department of Internal Medicine, Ajou University Medical Center, Suwon, Korea
| | - Sooyoung Shin
- Department of Pharmacy, College of Pharmacy, Ajou University, Suwon, Korea; Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Korea
| | - Yeo Jin Choi
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, Korea; Department of Regulatory Science, Graduate School, Kyung Hee University, Seoul, Korea; Institute of Regulatory Innovation Through Science (IRIS), Kyung Hee University, Seoul, Korea.
| |
Collapse
|
5
|
Chauhan A, Dubey S, Jain S. Association Between Type 2 Diabetes Mellitus and Alzheimer's Disease: Common Molecular Mechanism and Therapeutic Targets. Cell Biochem Funct 2024; 42:e4111. [PMID: 39228117 DOI: 10.1002/cbf.4111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/12/2024] [Revised: 07/11/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024]
Abstract
Diabetes mellitus (DM) and Alzheimer's disease (AD) rates are rising, mirroring the global trend of an aging population. Numerous epidemiological studies have shown that those with Type 2 diabetes (T2DM) have an increased risk of developing dementia. These degenerative and progressive diseases share some risk factors. To a large extent, the amyloid cascade is responsible for AD development. Neurofibrillary tangles induce neurodegeneration and brain atrophy; this chain reaction begins with hyperphosphorylation of tau proteins caused by progressive amyloid beta (Aβ) accumulation. In addition to these processes, it seems that alterations in brain glucose metabolism and insulin signalling lead to cell death and reduced synaptic plasticity in AD, before the onset of symptoms, which may be years away. Due to the substantial evidence linking insulin resistance in the brain with AD, researchers have coined the name "Type 3 diabetes" to characterize the condition. We still know little about the processes involved, even though current animal models have helped illuminate the links between T2DM and AD. This brief overview discusses insulin and IGF-1 signalling disorders and the primary molecular pathways that may connect them. The presence of GSK-3β in AD is intriguing. These proteins' association with T2DM and pancreatic β-cell failure suggests they might be therapeutic targets for both disorders.
Collapse
Affiliation(s)
- Aparna Chauhan
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Rajasthan, India
| | - Sachin Dubey
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Rajasthan, India
| | - Smita Jain
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Rajasthan, India
| |
Collapse
|
6
|
Abdulhameed N, Babin A, Hansen K, Weaver R, Banks WA, Talbot K, Rhea EM. Comparing regional brain uptake of incretin receptor agonists after intranasal delivery in CD-1 mice and the APP/PS1 mouse model of Alzheimer's disease. Alzheimers Res Ther 2024; 16:173. [PMID: 39085976 PMCID: PMC11293113 DOI: 10.1186/s13195-024-01537-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/29/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Targeting brain insulin resistance (BIR) has become an attractive alternative to traditional therapeutic treatments for Alzheimer's disease (AD). Incretin receptor agonists (IRAs), targeting either or both of the glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptors, have proven to reverse BIR and improve cognition in mouse models of AD. We previously showed that many, but not all, IRAs can cross the blood-brain barrier (BBB) after intravenous (IV) delivery. Here we determined if widespread brain uptake of IRAs could be achieved by circumventing the BBB using intranasal (IN) delivery, which has the added advantage of minimizing adverse gastrointestinal effects of systemically delivered IRAs. Of the 5 radiolabeled IRAs tested (exenatide, dulaglutide, semaglutide, DA4-JC, and DA5-CH) in CD-1 mice, exenatide, dulaglutide, and DA4-JC were successfully distributed throughout the brain following IN delivery. We observed significant sex differences in uptake for DA4-JC. Dulaglutide and DA4-JC exhibited high uptake by the hippocampus and multiple neocortical areas. We further tested and found the presence of AD-associated Aβ pathology minimally affected uptake of dulaglutide and DA4-JC. Of the 5 tested IRAs, dulaglutide and DA4-JC are best capable of accessing brain regions most vulnerable in AD (neocortex and hippocampus) after IN administration. Future studies will need to be performed to determine if IN IRA delivery can reduce BIR in AD or animal models of that disorder.
Collapse
Affiliation(s)
- Noor Abdulhameed
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Alice Babin
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Kim Hansen
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - Riley Weaver
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA
| | - William A Banks
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98498, USA
| | - Konrad Talbot
- Departments of Neurosurgery, Pathology and Human Anatomy, and Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA.
| | - Elizabeth M Rhea
- Veterans Affairs Puget Sound Health Care System, Geriatrics Research Education and Clinical Center, 1660 S. Columbian Way, Seattle, WA, 98108, USA.
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98498, USA.
| |
Collapse
|
7
|
Ding X, Yin L, Zhang L, Zhang Y, Zha T, Zhang W, Gui B. Diabetes accelerates Alzheimer's disease progression in the first year post mild cognitive impairment diagnosis. Alzheimers Dement 2024; 20:4583-4593. [PMID: 38865281 PMCID: PMC11247667 DOI: 10.1002/alz.13882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/28/2023] [Revised: 02/28/2024] [Accepted: 03/18/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Mild cognitive impairment (MCI) heightens Alzheimer's disease (AD) risk, with diabetes mellitus (DM) potentially exacerbating this vulnerability. This study identifies the optimal intervention period and neurobiological targets in MCI to AD progression using the Alzheimer's Disease Neuroimaging Initiative dataset. METHODS Analysis of 980 MCI patients, categorized by DM status, used propensity score matching and inverse probability treatment weighting to assess rate of conversion from MCI to AD, neuroimaging, and cognitive changes. RESULTS DM significantly correlates with cognitive decline and an increased risk of progressing to AD, especially within the first year of MCI follow-up. It adversely affects specific brain structures, notably accelerating nucleus accumbens atrophy, decreasing gray matter volume and sulcal depth. DISCUSSION Findings suggest the first year after MCI diagnosis as the critical window for intervention. DM accelerates MCI-to-AD progression, targeting specific brain areas, underscoring the need for early therapeutic intervention. HIGHLIGHTS Diabetes mellitus (DM) accelerates mild cognitive impairment (MCI)-to-Alzheimer's disease (AD) progression within the first year after MCI diagnosis. DM leads to sharper cognitive decline within 12 months of follow-up. There is notable nucleus accumbens atrophy observed in MCI patients with DM. DM causes significant reductions in gray matter volume and sulcal depth. There are stronger correlations between cognitive decline and brain changes due to DM.
Collapse
Affiliation(s)
- Xiahao Ding
- Department of AnesthesiologyNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
- Department of Anesthesiology and Perioperative MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Li Yin
- Department of Anesthesiology and Perioperative MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Lin Zhang
- Department of Anesthesiology and Perioperative MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yang Zhang
- Department of Anesthesiology and Perioperative MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Tianming Zha
- Department of Anesthesiology and Perioperative MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Wen Zhang
- Department of RadiologyNanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing UniversityNanjingChina
- Medical Imaging Centerthe Affiliated Drum Tower Hospital, Medical School of Nanjing UniversityNanjingChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjingChina
| | - Bo Gui
- Department of Anesthesiology and Perioperative MedicineThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | | |
Collapse
|
8
|
Farokhi Larijani S, Hassanzadeh G, Zahmatkesh M, Radfar F, Farahmandfar M. Intranasal insulin intake and exercise improve memory function in amyloid-β induced Alzheimer's-like disease in rats: Involvement of hippocampal BDNF-TrkB receptor. Behav Brain Res 2024; 460:114814. [PMID: 38104636 DOI: 10.1016/j.bbr.2023.114814] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/15/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
The most prevalent type of dementia, Alzheimer's disease (AD), is a compelling illustration of the link between cognitive deficits and neurophysiological anomalies. We investigated the possible protective effect of intranasal insulin intake with exercise on amyloid-β (Aβ)-induced neuronal damage. The level of hippocampal brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) were analyzed to understand the involvement of BDNF-TrkB pathway in this modulation. In this study, we induced AD-like pathology by amyloid-β (Aβ) administration. Then, we examined the impact of a 4-week pretreatment of moderate treadmill exercise and intranasal intake of insulin on working and spatial memory in male Wistar rats. We also analyzed the mechanisms of improved memory and anxiety through changes in the protein level of BDNF and TrkB. Results showed that animals received Aβ had impaired working memory, increased anxiety which were accompanied by lower protein levels of BDNF and TrkB in the hippocampus. The exercise training and intranasal insulin improved working memory deficits, decreased anxiety, and increased BDNF, and TrkB levels in the hippocampus of animals received Aβ. Our finding of improved memory performance after intranasal intake of insulin and exercise may be of significance for the treatment of memory impairments and anxiety-like behavior in AD.
Collapse
Affiliation(s)
- Setare Farokhi Larijani
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Zahmatkesh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Forough Radfar
- Department of Behavioral and Cognitive Sciences in Sports, Sports and Health Sciences Faculty, University of Tehran, Tehran, Iran
| | - Maryam Farahmandfar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Luo J, Lu Q, Sun B, Shao N, Huang W, Hu G, Cai B, Si W. Chrysophanol improves memory impairment and cell injury by reducing the level of ferroptosis in A β25-35 treated rat and PC12 cells. 3 Biotech 2023; 13:348. [PMID: 37780805 PMCID: PMC10539257 DOI: 10.1007/s13205-023-03769-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/14/2023] [Accepted: 09/06/2023] [Indexed: 10/03/2023] Open
Abstract
Alzheimer's disease (AD) is a common age-related chronic and neurodegenerative disease that has become a global health problem. AD pathogenesis is complex, and the clinical efficacy of commonly used anti-AD drugs is suboptimal. Recent research has revealed a close association between AD-induced damage and the activation of ferroptosis signaling pathways. Chrysophanol (CHR) the principal medicinal component of Rhubarb, has been reported to have anti-AD effects and can reduce ROS levels in AD-damaged models. AD has been linked to the activation of ferroptosis signaling pathways, which has an important feature of higher levels of reactive oxygen species (ROS). Therefore, the present study explored whether CHR had an anti-AD effect by regulating the ferroptosis levels in AD injury models. Morris water maze, novel object recognition test, Y-maze test, Hematoxylin-eosin (H&E) staining, western blotting, ROS measurement, GPx activity measurement, LPO measurement, transmission electron microscopy, live/dead cell staining were used to investigate the changes in spatial memory level and ferroptosis level in AD model, and the intervention effect of CHR. CHR improved the spatial memory level of AD rat models, reduced the level of hippocampal neuron damage, and improved the survival rate of PC12 cells damaged by β-amyloid (Aβ). Meanwhile, CHR increased glutathione peroxidase-4 (GPX4) protein expression, GPx activity, and GSH, decreased ROS and LPO levels in AD rat models and Aβ-damaged PC12 cells, and improved mitochondrial pathological damage. Our findings suggest that CHR may play a protective role in AD injury by lowering ferroptosis levels, which may provide a potential pathway for developing drugs for AD. However, the mechanism of CHR's role requires further investigation.
Collapse
Affiliation(s)
- Jing Luo
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Qingyang Lu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Bin Sun
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Nan Shao
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Wei Huang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Guanhua Hu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Biao Cai
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012 China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012 China
| | - Wenwen Si
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012 China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012 China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012 China
| |
Collapse
|
10
|
Shi X, Li L, Liu Z, Wang F, Huang H. Exploring the mechanism of metformin action in Alzheimer's disease and type 2 diabetes based on network pharmacology, molecular docking, and molecular dynamic simulation. Ther Adv Endocrinol Metab 2023; 14:20420188231187493. [PMID: 37780174 PMCID: PMC10540612 DOI: 10.1177/20420188231187493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 03/19/2022] [Accepted: 05/19/2023] [Indexed: 10/03/2023] Open
Abstract
Background Metformin, which has been shown to be highly effective in treating type 2 diabetes (T2D), is also believed to be valuable for Alzheimer's disease (AD). Computer simulation techniques have emerged as an innovative approach to explore mechanisms. Objective To study the potential mechanism of metformin action in AD and T2D. Methods The chemical structure of metformin was obtained from PubChem. The targets of metformin were obtained from PubChem, Pharm Mapper, Batman, SwissTargetPrediction, DrugBank, and PubMed. The pathogenic genes of AD and T2D were retrieved from the GeneCards, OMIM, TTD, Drugbank, PharmGKB, and DisGeNET. The intersection of metformin with the targets of AD and T2D is represented by a Venn diagram. The protein-protein interaction (PPI) and core targets networks of intersected targets were constructed by Cytoscape 3.7.1. The enrichment information of GO and Kyoto Encyclopedia of Gene and Genomics (KEGG) pathways obtained by the Metascape was made into a bar chart and a bubble diagram. AutoDockTools, Pymol, and Chem3D were used for the molecular docking. Gromacs software was used to perform molecular dynamics (MD) simulation of the best binding target protein. Results A total of 115 key targets of metformin for AD and T2D were obtained. GO analysis showed that biological process mainly involved response to hormones and the regulation of ion transport. Cellular component was enriched in the cell body and axon. Molecular function mainly involved kinase binding and signal receptor regulator activity. The KEGG pathway was mainly enriched in pathways of cancer, neurodegeneration, and endocrine resistance. Core targets mainly included TP53, TNF, VEGFA, HIF1A, IL1B, IGF1, ESR1, SIRT1, CAT, and CXCL8. The molecular docking results showed best binding of metformin to CAT. MD simulation further indicated that the CAT-metformin complex could bind well and converge relatively stable at 30 ns. Conclusion Metformin exerts its effects on regulating oxidative stress, gluconeogenesis and inflammation, which may be the mechanism of action of metformin to improve the common pathological features of T2D and AD.
Collapse
Affiliation(s)
- Xin Shi
- Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Lingling Li
- Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Zhiyao Liu
- Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Fangqi Wang
- Shandong University of Traditional Chinese Medicine, Jinan City, Shandong Province, China
| | - Hailiang Huang
- Shandong University of Traditional Chinese Medicine, 4655 Guyunhu Street, Changqing District, Jinan City, Shandong Province, China
| |
Collapse
|
11
|
Aghaei Z, Karbalaei N, Namavar MR, Haghani M, Razmkhah M, Ghaffari MK, Nemati M. Neuroprotective Effect of Wharton's Jelly-Derived Mesenchymal Stem Cell-Conditioned Medium (WJMSC-CM) on Diabetes-Associated Cognitive Impairment by Improving Oxidative Stress, Neuroinflammation, and Apoptosis. Stem Cells Int 2023; 2023:7852394. [PMID: 37081849 PMCID: PMC10113062 DOI: 10.1155/2023/7852394] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/13/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 04/22/2023] Open
Abstract
According to strong evidence, diabetes mellitus increases the risk of cognitive impairment. Mesenchymal stem cells have been shown to be potential therapeutic agents for neurological disorders. In the current study, we aimed to examine the effects of Wharton's jelly-derived mesenchymal stem cell-conditioned medium (WJMSC-CM) on learning and memory, oxidative stress, apoptosis, and histological changes in the hippocampus of diabetic rats. Randomly, 35 male Sprague Dawley rats weighing 260-300 g were allocated into five groups: control, diabetes, and three diabetic groups treated with insulin, WJMSC-CM, and DMEM. The injections of insulin (3 U/day, S.C.) and WJMSC-CM (10 mg/week, I.P.) were done for 60 days. The Morris water maze and open field were used to measure cognition and anxiety-like behaviors. Colorimetric assays were used to determine hippocampus glutathione (GSH), malondialdehyde (MDA) levels, and antioxidant enzyme activity. The histopathological evaluation of the hippocampus was performed by Nissl staining. The expression levels of Bax, Bcl-2, BDNF, and TNF-α were detected by real-time polymerase chain reaction (RT-PCR). According to our findings, WJMSC-CM significantly reduced and increased blood glucose and insulin levels, respectively. Enhanced cognition and improved anxiety-like behavior were also found in WJMSC-CM-treated diabetic rats. In addition, WJMSC-CM treatment reduced oxidative stress by lowering MDA and elevating GSH and antioxidant enzyme activity. Reduced TNF-α and enhanced Bcl-2 gene expression levels and elevated neuronal and nonneuronal (astrocytes and oligodendrocytes) cells were detected in the hippocampus of WJMSC-CM-treated diabetic rats. In conclusion, WJMSC-CM alleviated diabetes-related cognitive impairment by reducing oxidative stress, neuroinflammation, and apoptosis in diabetic rats.
Collapse
Affiliation(s)
- Zohre Aghaei
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Karbalaei
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Namavar
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Masoud Haghani
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahdi Khorsand Ghaffari
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Nemati
- Department of Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|