1
|
Li B, Yang W, Liu N, Bi D, Yang T, Wu G, Sun Y. Phase II Study of Irinotecan, Trifluridine/tipiracil (TAS-102) plus Bevacizumab as a Later-line Therapy for Patients with Metastatic Colorectal Cancer (mCRC): a prospective single-center explorative study. Br J Cancer 2024:10.1038/s41416-024-02885-3. [PMID: 39448860 DOI: 10.1038/s41416-024-02885-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
PURPOSE To explore the efficacy and safety of the combination of irinotecan, trifluridine/tipiracil (TAS-102), and bevacizumab in a later-line setting for metastatic colorectal cancer (mCRC) patients. PATIENTS AND METHODS This was a single-center, phase II trial. The mCRC patients who are refractory to standard first-line and second-line treatment are eligible. Patients who previously received irinotecan while progressing during maintenance therapy are also eligible. The primary endpoint was the objective response rate (ORR). RESULTS Between August 1, 2022, and September 30, 2023, 35 patients were enrolled, and 31 of them were evaluable for efficacy. The ORR was 25.8% (8/31), and the disease control rate (DCR) was 93.5% (29/31). As of April 30, 2024, the median progression-free survival (PFS) was 9.2 months (95% CI 6.285-12.115), whereas the median overall survival (OS) was not reached with the 1-year OS rate of 73.5%. The most common grade 3/4 treatment-related adverse events were neutropenia (34.3%), anemia (17.1%), and thrombocytopenia (8.6%). CONCLUSION Irinotecan, TAS-102 plus bevacizumab regimen preliminarily demonstrated promising efficacy with tolerable toxicity for mCRC patients as later-line treatment. This regimen warrants further exploration in refractory mCRC patients.
Collapse
Affiliation(s)
- Baoqi Li
- Department of Medical Oncology, Beijing Chaoyang District Sanhuan Cancer Hospital, Beijing, 100122, China
| | - Wenwei Yang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Na Liu
- Department of Medical Oncology, Beijing Chaoyang District Sanhuan Cancer Hospital, Beijing, 100122, China
| | - Deying Bi
- Department of Medical Oncology, Beijing Chaoyang District Sanhuan Cancer Hospital, Beijing, 100122, China
| | - Tingting Yang
- Department of Medical Oncology, Beijing Chaoyang District Sanhuan Cancer Hospital, Beijing, 100122, China
| | - Guifu Wu
- Department of Medical Oncology, Beijing Chaoyang District Sanhuan Cancer Hospital, Beijing, 100122, China.
| | - Yongkun Sun
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
2
|
Toledo-Stuardo K, Ribeiro CH, González-Herrera F, Matthies DJ, Le Roy MS, Dietz-Vargas C, Latorre Y, Campos I, Guerra Y, Tello S, Vásquez-Sáez V, Novoa P, Fehring N, González M, Rodríguez-Siza J, Vásquez G, Méndez P, Altamirano C, Molina MC. Therapeutic antibodies in oncology: an immunopharmacological overview. Cancer Immunol Immunother 2024; 73:242. [PMID: 39358613 PMCID: PMC11448508 DOI: 10.1007/s00262-024-03814-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/16/2024] [Indexed: 10/04/2024]
Abstract
The biotechnological development of monoclonal antibodies and their immunotherapeutic use in oncology have grown exponentially in the last decade, becoming the first-line therapy for some types of cancer. Their mechanism of action is based on the ability to regulate the immune system or by interacting with targets that are either overexpressed in tumor cells, released into the extracellular milieu or involved in processes that favor tumor growth. In addition, the intrinsic characteristics of each subclass of antibodies provide specific effector functions against the tumor by activating antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, and antibody-dependent cellular phagocytosis, among other mechanisms. The rational design and engineering of monoclonal antibodies have improved their pharmacokinetic and pharmacodynamic features, thus optimizing the therapeutic regimens administered to cancer patients and improving their clinical outcomes. The selection of the immunoglobulin G subclass, modifications to its crystallizable region (Fc), and conjugation of radioactive substances or antineoplastic drugs may all improve the antitumor effects of therapeutic antibodies. This review aims to provide insights into the immunological and pharmacological aspects of therapeutic antibodies used in oncology, with a rational approach at molecular modifications that can be introduced into these biological tools, improving their efficacy in the treatment of cancer.
Collapse
Affiliation(s)
- Karen Toledo-Stuardo
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Carolina H Ribeiro
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Fabiola González-Herrera
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Douglas J Matthies
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - María Soledad Le Roy
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Claudio Dietz-Vargas
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Yesenia Latorre
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Ivo Campos
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Yuneisy Guerra
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Samantha Tello
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Valeria Vásquez-Sáez
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Pedro Novoa
- Departamento de Farmacia, Facultad de Farmacia, Universidad de Concepción, Concepción, Chile
| | - Nicolás Fehring
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Mauricio González
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Jose Rodríguez-Siza
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Gonzalo Vásquez
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Pamela Méndez
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile
| | - Claudia Altamirano
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Centro Regional de Estudio en Alimentos Saludables, Valparaíso, Chile
- Center of Interventional Medicine for Precision and Advanced Cellular Therapy (IMPACT), Santiago, Chile
| | - María Carmen Molina
- Programa de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Avda. Independencia 1027, Block I, 3er piso, Santiago, Chile.
| |
Collapse
|
3
|
Al-Khazraji Y, Muzammil MA, Javid S, Tangella AV, Gohil NV, Saifullah H, Kanagala SG, Fariha F, Muneer A, Ahmed S, Shariq A. Novel regimens and treatment strategies in neoadjuvant therapy for colorectal cancer: A systematic review. Int J Health Sci (Qassim) 2024; 18:43-58. [PMID: 39282125 PMCID: PMC11393386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Objective The objective of this systematic review was to describe novel regimens and treatment strategies in neoadjuvant therapy for colorectal cancer (CRC). The aim was to summarize the current advancements in neoadjuvant chemotherapy (NACT) for CRC, including the use of cytotoxic drugs, targeted treatments, and immunotherapy. The analysis aimed to provide insights into the potential benefits and drawbacks of these novel approaches and highlight the need for further research to optimize NACT use in CRC and improve patient outcomes. Methods From October 20, 2023, to December 10, 2023, a comprehensive literature search was conducted across multiple databases, including PubMed, Ovid, Web of Science, the Cochrane Library, Cumulative Index to Nursing and Allied Health Literature, Embase, and Scopus. Studies addressing the use of and treatment strategies for CRC and neoadjuvant therapies were included. Screening was conducted in two steps, initially by title and abstract and then by full-text articles. English-language articles were considered, while preprints, non-English publications, and articles published as grey literature were excluded from the study. A total of 85 studies were selected for further analysis after screening and filtering. Results After filtering out duplicates and items that were irrelevant to our research query from the initial database search's 510 results, 397 unique articles were found. Eighty-five studies were chosen for additional analysis after the articles underwent two rounds of screening. Conclusion The review concluded that neoadjuvant therapy for CRC has evolved beyond conventional approaches and holds promise for improving patient outcomes. Future prospects for advancing neoadjuvant approaches are promising, with ongoing clinical trials investigating the refinement of strategies, identification of predictive biomarkers, and optimization of patient selection. The adoption of novel regimens, precision medicine, and immunotherapy offers opportunities to redefine treatment paradigms and enhance patient care in CRC.
Collapse
Affiliation(s)
| | | | - Saman Javid
- Department of Medicine, CMH Kharian Medical College, Kharian, Pakistan
| | | | - Namra Vinay Gohil
- Department of Medicine, Medical College Baroda, Vadodara, Gujarat, India
| | - Hanya Saifullah
- Department of Medicine, Medical College Baroda, CMH Lahore Medical College, Lahore, Pakistan
| | | | - Fnu Fariha
- Department of Medicine, Dow University of Health Sciences, Karachi, Pakistan
| | - Asim Muneer
- Department of Adult Hematology Oncology, Prince Faisal Ca ncer Centre Buraidah, Al qaseem, Saudi Arabia
| | - Sumaira Ahmed
- Department of Gastroenterology, King Fahad Hospital, Burydah, KSA
| | - Ali Shariq
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
4
|
Gallegos-Saucedo R, Barrios-García T, Valdez-Morales EE, Cabañas-García E, Barajas-Espinosa A, Gómez-Aguirre YA, Guerrero-Alba R. Cytotoxic Activity of Lepidium virginicum L. Methanolic Extract on Human Colorectal Cancer Cells, Caco-2, through p53-Mediated Apoptosis. Molecules 2024; 29:3920. [PMID: 39202999 PMCID: PMC11357562 DOI: 10.3390/molecules29163920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common type of cancer worldwide. Its treatment options have had a limited impact on cancer remission prognosis. Therefore, there is an ongoing need to discover novel anti-cancer agents. Medicinal plants have gained recognition as a source of anti-cancer bioactive compounds. Recently, ethanolic extract of L. virginicum stems ameliorated dinitrobenzene sulfonic acid (DNBS)-induced colitis by modulating the intestinal immune response. However, no scientific study has demonstrated this potential cytotoxic impact on colon cancer cells. The objective of this study was to evaluate the cytotoxic effect of the methanolic extract of L. virginicum (ELv) on a human colorectal adenocarcinoma cell line (Caco-2) and to identify and quantify the phenolic compounds present in ELv extracts by liquid chromatography-mass spectrometry analysis. The cytotoxic activity was assessed using cell viability assays by reduction in the compound 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH). MTT and LDH assays revealed that the ELv decreases cell viability in the Caco-2 cell line in a concentration-dependent manner. Cell death was a result of DNA fragmentation and p53-mediated apoptosis. Eight phenolic acids and five flavonoids were identified and quantified in the stems. In conclusion, our findings demonstrate that the extract of L. virginicum possesses cytotoxic properties on Caco-2 cell line, suggesting that it could be a potential source of new drugs against CRC.
Collapse
Affiliation(s)
- Renata Gallegos-Saucedo
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (R.G.-S.); (T.B.-G.); (E.E.V.-M.)
| | - Tonatiuh Barrios-García
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (R.G.-S.); (T.B.-G.); (E.E.V.-M.)
| | - Eduardo E. Valdez-Morales
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (R.G.-S.); (T.B.-G.); (E.E.V.-M.)
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT), Ciudad de México 03940, Mexico;
| | - Emmanuel Cabañas-García
- Centro de Estudios Científicos y Tecnológicos No. 18, Instituto Politécnico Nacional, Blvd. del Bote 202 Cerro del Gato Ejido La Escondida, Col. Ciudad Administrativa, Zacatecas 98160, Mexico;
| | - Alma Barajas-Espinosa
- Escuela Superior de Huejutla, Universidad Autónoma del Estado de Hidalgo, Huejutla de Reyes, Hidalgo 43000, Mexico;
| | - Yenny Adriana Gómez-Aguirre
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT), Ciudad de México 03940, Mexico;
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico
| | - Raquel Guerrero-Alba
- Departamento de Fisiología y Farmacología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes 20100, Mexico; (R.G.-S.); (T.B.-G.); (E.E.V.-M.)
| |
Collapse
|
5
|
Huang P, Wen F, Wang X. Case report: Pyrotinib and tegafur combined with radiotherapy achieved notable response in HER2-amplified rectal cancer with multiple metastases after multiline treatments. Front Pharmacol 2024; 15:1431542. [PMID: 39193330 PMCID: PMC11347432 DOI: 10.3389/fphar.2024.1431542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Metastatic colorectal cancer (mCRC) is characterized by significant phenotypic heterogeneity at the molecular level and presents a poor prognosis. Chemotherapy is commonly employed as the primary treatment option. Nevertheless, the advantages of chemotherapy are constrained, underscoring the critical necessity for novel treatment protocols aimed at enhancing patient outcomes. Human epidermal growth factor receptor 2 (HER2) has been recognized as a promising therapeutic target in mCRC. Pyrotinib, an innovative irreversible dual tyrosine kinase inhibitor targeting HER2, effectively inhibits cancer progression in various types of human cancers. Here, we present a case of a 39-year-old female with metastatic rectal cancer showing amplification of HER2. Despite resistance to multiple therapies, including trastuzumab and pertuzumab, the patient exhibited a remarkable therapeutic response to pyrotinib, tegafur combined with radiotherapy. This case provides evidence for the feasibility and potential efficacy of deploying pyrotinib in the salvage treatment of mCRC patients with HER2 amplification even though resistant to other anti-HER2 drugs.
Collapse
Affiliation(s)
- Peng Huang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Wen
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Wang
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Li J, Wang Z, Zhong H, He Y, Zhang C, Niu Z, Yang S, Zhang T, Zhu L, Shu Y, Gao Y, Peng J, Song Y, Li J, Yuan Y, Zhang H, Yu G, Hua Y, Xiao J, Fu J, Zheng Y, Xue H, Luo X, Shi M, Su W, Qin S. A phase IV study to evaluate the safety of fruquintinib in Chinese patients in real-world clinical practice. Oncologist 2024; 29:e1012-e1019. [PMID: 38642091 PMCID: PMC11299944 DOI: 10.1093/oncolo/oyae073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/23/2024] [Indexed: 04/22/2024] Open
Abstract
INTRODUCTION Fruquintinib is approved in China for patients with metastatic colorectal cancer (CRC) who progressed after 2 lines of chemotherapy. This postmarketing study was conducted to evaluate the safety of fruquintinib in the Chinese population, including previously treated patients with advanced CRC and other solid tumors. METHODS Patients in the first cycle of fruquintinib or expected to start fruquintinib within a week were enrolled. Fruquintinib was administrated according to the label or per physicians' discretion. Patient characteristics and safety information were collected at baseline, 1 month, and 6 months after consent (or 30 days after the last dose). RESULTS Overall, 3005 patients enrolled between April 24, 2019 and September 27, 2022. All enrolled patients received at least one dose of fruquintinib. Most patients had metastases at baseline. The median age was 60 years. More than half (64.0%) of the patients started fruquintinib at 5 mg, and the median treatment exposure was 2.7 months. Nearly one-third (32.5%) of patients with CRC received fruquintinib with concomitant antineoplastic agents. Treatment-emergent adverse events (TEAEs) leading to dose modification were reported in 626 (20.8%) patients, and 469 (15.6%) patients experienced TEAEs leading to treatment discontinuation. The most common grade ≥ 3 TEAEs were hypertension (6.6%), palmar-plantar erythrodysesthesia syndrome (2.2%), and platelet count decreased (1.0%). Combination therapy did not lead to excessive toxicities. CONCLUSIONS The safety profile of fruquintinib in the real world was generally consistent with that in clinical studies, and the incidence of TEAEs was numerically lower than known VEGF/VEGFR inhibitor-related AEs. Fruquintinib exhibited manageable safety and tolerability in Chinese patients in the real-world setting.
Collapse
Affiliation(s)
- Jin Li
- Department of Medical Oncology, Tongji University Shanghai East Hospital, Shanghai, People’s Republic of China
| | - Zhiqiang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, People’s Republic of China
| | - Haijun Zhong
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, People’s Republic of China
| | - Yifu He
- Department of Medical Oncology, Anhui Provincial Cancer Hospital, Hefei, People’s Republic of China
| | - Chen Zhang
- Department of Radiotherapy and Chemotherapy, Ningbo No.2 Hospital, Ningbo, People’s Republic of China
| | - Zuoxing Niu
- Department of Medical Oncology, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Shujun Yang
- Department of Internal Medicine, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, People’s Republic of China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Liangjun Zhu
- Jiangsu Cancer Hospital, Nanjing, People’s Republic of China
| | - Yongqian Shu
- Oncology, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, People’s Republic of China
| | - Yong Gao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People’s Republic of China
| | - Jianjun Peng
- Center of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yan Song
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jian Li
- Department of Gastrointestinal Oncology, Peking University Cancer Hospital and Institute, Beijing, People’s Republic of China
| | - Ying Yuan
- Department of Medical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Haibo Zhang
- Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, People’s Republic of China
| | - Gengsheng Yu
- Department of Medical Oncology, Jiangmen Central Hospital, Jiangmen, People’s Republic of China
| | - Yunqi Hua
- Department of Medical Oncology, Baotou Tumor Hospital, Baotou, People’s Republic of China
| | - Jianjun Xiao
- Department of Oncology, Zhongshan City People’s Hospital, Zhongshan, People’s Republic of China
| | - Jianfei Fu
- Department of Medical Oncology, Jinhua Central Hospital, Jinhua, People’s Republic of China
| | - Yulong Zheng
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Hua Xue
- HUTCHMED Limited, Shanghai, People’s Republic of China
| | - Xian Luo
- HUTCHMED Limited, Shanghai, People’s Republic of China
| | - Ming Shi
- HUTCHMED Limited, Shanghai, People’s Republic of China
| | - Weiguo Su
- HUTCHMED Limited, Shanghai, People’s Republic of China
| | - Shukui Qin
- Gastrointestinal Cancer Center of Nanjing Tianyinshan Hospital, China Pharmaceutical University, Jiangsu, People’s Republic of China
| |
Collapse
|
7
|
Duda-Madej A, Viscardi S, Szewczyk W, Topola E. Natural Alkaloids in Cancer Therapy: Berberine, Sanguinarine and Chelerythrine against Colorectal and Gastric Cancer. Int J Mol Sci 2024; 25:8375. [PMID: 39125943 PMCID: PMC11313295 DOI: 10.3390/ijms25158375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
The rising incidence of colorectal cancer (CRC) and gastric cancer (GC) worldwide, coupled with the limited effectiveness of current chemotherapeutic agents, has prioritized the search for new therapeutic options. Natural substances, which often exhibit cytostatic properties, hold significant promise in this area. This review evaluates the anticancer properties of three natural alkaloids-berberine, sanguinarine, and chelerythrine-against CRC and GC. In vivo and in vitro studies have demonstrated that these substances can reduce tumor volume and inhibit the epithelial-mesenchymal transition (EMT) of tumors. At the molecular level, these alkaloids disrupt key signaling pathways in cancer cells, including mTOR, MAPK, EGFR, PI3K/AKT, and NF-κB. Additionally, they exhibit immunomodulatory effects, leading to the induction of programmed cell death through both apoptosis and autophagy. Notably, these substances have shown synergistic effects when combined with classical cytostatic agents such as cyclophosphamide, 5-fluorouracil, cetuximab, and erlotinib. Furthermore, berberine has demonstrated the ability to restore sensitivity in individuals originally resistant to cisplatin GC. Given these findings, natural compounds emerge as a promising option in the chemotherapy of malignant gastrointestinal tumors, particularly in cases with limited treatment options. However, more research is necessary to fully understand their therapeutic potential.
Collapse
Affiliation(s)
- Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| | - Szymon Viscardi
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (S.V.); (W.S.); (E.T.)
| | - Wiktoria Szewczyk
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (S.V.); (W.S.); (E.T.)
| | - Ewa Topola
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (S.V.); (W.S.); (E.T.)
| |
Collapse
|
8
|
Lang X, Tong C, Yu Y, Li H. Effect of body mass index on survival in patients with metastatic colorectal cancer receiving chemotherapy plus bevacizumab: a systematic review and meta-analysis. Front Nutr 2024; 11:1399569. [PMID: 39081675 PMCID: PMC11288195 DOI: 10.3389/fnut.2024.1399569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024] Open
Abstract
Aim This systematic review and meta-analysis was to evaluate the relationship between body mass index (BMI) and the clinical outcomes in patients with metastatic colorectal cancer (mCRC) undergoing treatment with bevacizumab plus chemotherapy. Methods The search for relevant literature was conducted across PubMed, Embase, Cochrane Library, and Web of Science, with the final search date being October 4, 2023. We utilized the weighted mean differences (WMDs), risk ratios (RRs), or Hazard ratios (HRs) as the metric for effect sizes, which were accompanied by 95% confidence intervals (CIs). Results A total of 9 studies were included for analysis. The results indicated that non-obese patients with mCRC undergoing treatment with bevacizumab experienced a reduced overall survival (OS) at the six-month compared to their obese counterparts (RR: 0.97, 95% CI: 0.94 to 1.00, p = 0.047). Furthermore, no significant differences in one-year, two-year, and five-year OS, as well as PFS and median OS, were observed between obese and non-obese mCRC patients undergoing treatment with bevacizumab plus chemotherapy. Conclusion These findings suggest that obesity may play a role in the short-term OS of patients with mCRC undergoing bevacizumab treatment. The clinical implications of these findings underscore the importance of considering patients' BMI in the context of mCRC care. This study may also help guide personalized treatment strategies and further research into the interplay between obesity, treatment efficacy, and patient survival in mCRC. However, further investigation is warranted to substantiate the findings of this study.
Collapse
Affiliation(s)
- Xiaohui Lang
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Chengliang Tong
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Yang Yu
- Department of Gastrointestinal Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Huiyan Li
- Department of Nursing, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| |
Collapse
|
9
|
Lin Y, Zhao W, Lv Z, Xie H, Li Y, Zhang Z. The functions and mechanisms of long non-coding RNA in colorectal cancer. Front Oncol 2024; 14:1419972. [PMID: 39026978 PMCID: PMC11254705 DOI: 10.3389/fonc.2024.1419972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
CRC poses a significant challenge in the global health domain, with a high number of deaths attributed to this disease annually. If CRC is detected only in its advanced stages, the difficulty of treatment increases significantly. Therefore, biomarkers for the early detection of CRC play a crucial role in improving patient outcomes and increasing survival rates. The development of a reliable biomarker for early detection of CRC is particularly important for timely diagnosis and treatment. However, current methods for CRC detection, such as endoscopic examination, blood, and stool tests, have certain limitations and often only detect cases in the late stages. To overcome these constraints, researchers have turned their attention to molecular biomarkers, which are considered a promising approach to improving CRC detection. Non-invasive methods using biomarkers such as mRNA, circulating cell-free DNA, microRNA, LncRNA, and proteins can provide more reliable diagnostic information. These biomarkers can be found in blood, tissue, stool, and volatile organic compounds. Identifying molecular biomarkers with high sensitivity and specificity for the early and safe, economic, and easily measurable detection of CRC remains a significant challenge for researchers.
Collapse
Affiliation(s)
- Yuning Lin
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Wenzhen Zhao
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Zhenyi Lv
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Hongyan Xie
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Ying Li
- Ultrasonography Department, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Zhongying Zhang
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| |
Collapse
|
10
|
Jiang L, Zhang Z, Luo Z, Li L, Yuan S, Cui M, He K, Xiao J. Rupatadine inhibits colorectal cancer cell proliferation through the PIP5K1A/Akt/CDK2 pathway. Biomed Pharmacother 2024; 176:116826. [PMID: 38838507 DOI: 10.1016/j.biopha.2024.116826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Phosphatidylinositol-4-phosphate 5-kinase type 1 alpha (PIP5K1A) acts upstream of the Akt regulatory pathway and is abnormally expressed in many types of malignancies. However, the role and mechanism of PIP5K1A in colorectal cancer (CRC) have not yet been reported. In this study, we aimed to determine the association between PIP5K1A and progression of CRC and assess the efficacy and mechanism by which rupatadine targets PIP5K1A. METHODS Firstly, expression and function of PIP5K1A in CRC were investigated by human colon cancer tissue chip analysis and cell proliferation assay. Next, rupatadine was screened by computational screening and cytotoxicity assay and interactions between PIP5K1A and rupatadine assessed by kinase activity detection assay and bio-layer interferometry analysis. Next, rupatadine's anti-tumor effect was evaluated by in vivo and in vitro pharmacodynamic assays. Finally, rupatadine's anti-tumor mechanism was explored by quantitative real-time reverse-transcription polymerase chain reaction, western blot, and immunofluorescence. RESULTS We found that PIP5K1A exerts tumor-promoting effects as a proto-oncogene in CRC and aberrant PIP5K1A expression correlates with CRC malignancy. We also found that rupatadine down-regulates cyclin-dependent kinase 2 and cyclin D1 protein expression by inhibiting the PIP5K1A/Akt/GSK-3β pathway, induces cell cycle arrest, and inhibits CRC cell proliferation in vitro and in vivo. CONCLUSIONS PIP5K1A is a potential drug target for treating CRC. Rupatadine, which targets PIP5K1A, could serve as a new option for treating CRC, its therapeutic mechanism being related to regulation of the Akt/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Lei Jiang
- China Pharmaceutical University, Nanjing 210000, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| | - Zhibo Zhang
- China Pharmaceutical University, Nanjing 210000, China; Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| | - Zhaofeng Luo
- Department of Gastrointestinal Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Luan Li
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Shengtao Yuan
- China Pharmaceutical University, Nanjing 210000, China
| | - Min Cui
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China.
| | - Ke He
- Minimally Invasive Tumor Therapies Center, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510310, China.
| | - Jing Xiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China; Centre of Reproduction, Development and Aging, Faculty of Health Sciences, University of Macau, Macau SAR, China.
| |
Collapse
|
11
|
Zhou X, Zhang Q, Zhu H, Zhao J, Cai Y. The application of graphene oxide and ferroptosis in the diagnosis and treatment of colorectal cancer: a narrative review. J Gastrointest Oncol 2024; 15:1297-1308. [PMID: 38989438 PMCID: PMC11231853 DOI: 10.21037/jgo-23-1016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/26/2024] [Indexed: 07/12/2024] Open
Abstract
Background and Objective Colorectal cancer (CRC), a leading global malignancy, continues to challenge the medical community. Despite advancements in surgical, chemotherapeutic, radiation, targeted, and immunotherapeutic strategies, issues like resistance and side effects persist. This review illuminates the potential of ferroptosis, an emerging non-apoptotic cell death form, and graphene oxide (GO), with its distinctive physicochemical properties, in CRC therapy. Methods The databases search included PubMed, Medline and Web of Science. Search terms focused on CRC, graphene, GO, ferroptosis, and related aspects in therapy and drug delivery. The time frame for literature retrieval was up to April 2024. Studies in languages other than English were excluded. Key Content and Findings Ferroptosis has been recognized for its role in addressing treatment resistance, a notable hurdle in effective CRC management. This form of cell death offers a promising avenue for enhancing the effectiveness of existing treatments. However, understanding its mechanisms and clinical implications in CRC remains an area of active research, with significant progress required for its practical application. Simultaneously, GO, a versatile two-dimensional material, has demonstrated substantial potential in biomedical applications, especially in cancer therapy. Its high specific surface area and unique π-electron domains facilitate the effective binding of chemotherapy drugs, target genes, and photosensitizers. This makes GO a promising candidate in cancer diagnosis and treatment, particularly through tumor photothermal and photodynamic therapy (PDT). Despite these advancements, GO's clinical application faces challenges, including in vitro cytotoxicity and decreased biodegradability, necessitating further research. Conclusions This review focuses on the characteristics of GO and ferroptosis, as well as their applications in tumor diagnosis and treatment, with a particular emphasis on their potential in CRC.
Collapse
Affiliation(s)
- Xiecheng Zhou
- Department of General Surgery, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai, China
| | - Qixing Zhang
- Department of Pediatrics, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai, China
| | - Haoran Zhu
- Department of General Surgery, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai, China
| | - Jiaying Zhao
- Department of General Surgery, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yuankun Cai
- Department of General Surgery, The Fifth People’s Hospital of Shanghai, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Xing F, Liu N, Wang C, Wang XD. Caffeic acid phenethyl ester promotes oxaliplatin sensitization in colon cancer by inhibiting autophagy. Sci Rep 2024; 14:14624. [PMID: 38918541 PMCID: PMC11199620 DOI: 10.1038/s41598-024-65409-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
Colon cancer ranks as the third most prevalent form of cancer globally, with chemotherapy remaining the primary treatment modality. To mitigate drug resistance and minimize adverse effects associated with chemotherapy, selection of appropriate adjuvants assumes paramount importance. Caffeic acid phenethyl ester (CAPE), a naturally occurring compound derived from propolis, exhibits a diverse array of biological activities. We observed that the addition of CAPE significantly augmented the drug sensitivity of colon cancer cells to oxaliplatin. In SW480 and HCT116 cells, oxaliplatin combined with 10 µM CAPE reduced the IC50 of oxaliplatin from 14.24 ± 1.03 and 84.16 ± 3.02 µM to 2.11 ± 0.15 and 3.92 ± 0.17 µM, respectively. We then used proteomics to detect differentially expressed proteins in CAPE-treated SW480 cells and found that the main proteins showing changes in expression after CAPE treatment were p62 (SQSTM1) and LC3B (MAP1LC3B). Gene ontology analysis revealed that CAPE exerted antitumor and chemotherapy-sensitization effects through the autophagy pathway. We subsequently verified the differentially expressed proteins using immunoblotting. Simultaneously, the autophagy inhibitor bafilomycin A1 and the mCherry-EGFP-LC3 reporter gene were used as controls to detect the effect of CAPE on autophagy levels. Collectively, the results indicate that CAPE may exert antitumor and chemotherapy-sensitizing effects by inhibiting autophagy, offering novel insights for the development of potential chemosensitizing agents.
Collapse
Affiliation(s)
- Fei Xing
- Department of Gastrointestinal Nutrition Surgery, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Ning Liu
- Academic Center, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Can Wang
- Department of Gastrointestinal Nutrition Surgery, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Xu-Dong Wang
- Department of Gastrointestinal Nutrition Surgery, The Second Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
13
|
Zheng E, Włodarczyk M, Węgiel A, Osielczak A, Możdżan M, Biskup L, Grochowska A, Wołyniak M, Gajewski D, Porc M, Maryńczak K, Dziki Ł. Navigating through novelties concerning mCRC treatment-the role of immunotherapy, chemotherapy, and targeted therapy in mCRC. Front Surg 2024; 11:1398289. [PMID: 38948479 PMCID: PMC11211389 DOI: 10.3389/fsurg.2024.1398289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
Over the course of nearly six decades since the inception of initial trials involving 5-FU in the treatment of mCRC (metastatic colorectal cancer), our progressive comprehension of the pathophysiology, genetics, and surgical techniques related to mCRC has paved the way for the introduction of novel therapeutic modalities. These advancements not only have augmented the overall survival but have also positively impacted the quality of life (QoL) for affected individuals. Despite the remarkable progress made in the last two decades in the development of chemotherapy, immunotherapy, and target therapies, mCRC remains an incurable disease, with a 5-year survival rate of 14%. In this comprehensive review, our primary goal is to present an overview of mCRC treatment methods following the latest guidelines provided by the National Comprehensive Cancer Network (NCCN), the American Society of Clinical Oncology (ASCO), and the American Society of Colon and Rectal Surgeons (ASCRS). Emphasis has been placed on outlining treatment approaches encompassing chemotherapy, immunotherapy, targeted therapy, and surgery's role in managing mCRC. Furthermore, our review delves into prospective avenues for developing new therapies, offering a glimpse into the future of alternative pathways that hold potential for advancing the field.
Collapse
Affiliation(s)
- Edward Zheng
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Marcin Włodarczyk
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Andrzej Węgiel
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Aleksandra Osielczak
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Maria Możdżan
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Laura Biskup
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Agata Grochowska
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Maria Wołyniak
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Dominik Gajewski
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Mateusz Porc
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Kasper Maryńczak
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Łukasz Dziki
- Department of General and Oncological Surgery, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
14
|
Zha J, Zhang J, Lu J, Zhang G, Hua M, Guo W, Yang J, Fan G. A review of lactate-lactylation in malignancy: its potential in immunotherapy. Front Immunol 2024; 15:1384948. [PMID: 38779665 PMCID: PMC11109376 DOI: 10.3389/fimmu.2024.1384948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/04/2024] [Indexed: 05/25/2024] Open
Abstract
Lactic acid was formerly regarded as a byproduct of metabolism. However, extensive investigations into the intricacies of cancer development have revealed its significant contributions to tumor growth, migration, and invasion. Post-translational modifications involving lactate have been widely observed in histone and non-histone proteins, and these modifications play a crucial role in regulating gene expression by covalently attaching lactoyl groups to lysine residues in proteins. This discovery has greatly enhanced our comprehension of lactic acid's involvement in disease pathogenesis. In this article, we provide a comprehensive review of the intricate relationship between lactate and tumor immunity, the occurrence of lactylation in malignant tumors, and the exploitation of targeted lactate-lactylation in tumor immunotherapy. Additionally, we discuss future research directions, aiming to offer novel insights that could inform the investigation, diagnosis, and treatment of related diseases.
Collapse
Affiliation(s)
- Jinhui Zha
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of General Surgery, Shenzhen University General Hospital, Shenzhen, China
| | - Junan Zhang
- Department of Basic Medicine, Shenzhen University, Shenzhen, China
| | - Jingfen Lu
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangcheng Zhang
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Department of General Surgery, Shenzhen University General Hospital, Shenzhen, China
| | - Mengzhan Hua
- Department of Basic Medicine, Shenzhen University, Shenzhen, China
| | - Weiming Guo
- Department of Sports Medicine Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Jing Yang
- Endocrinology Department, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Gang Fan
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
15
|
Li X, Li W, Wang J, Wang Q, Liang M, Chen S, Ba W, Fang J. Establishment of a novel microfluidic co-culture system for simultaneous analysis of multiple indicators of gefitinib sensitivity in colorectal cancer cells. Mikrochim Acta 2024; 191:279. [PMID: 38647729 DOI: 10.1007/s00604-024-06362-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
The therapeutic effect of gefitinib on colorectal cancer (CRC) is unclear, but it has been reported that stromal cells in the tumor microenvironment may have an impact on drug sensitivity. Herein, we established a microfluidic co-culture system and explored the sensitivity of CRC cells co-cultured with cancer-associated fibroblasts (CAFs) to gefitinib. The system consisted of a multichannel chip and a Petri dish. The chambers in the chip and dish were designed to continuously supply nutrients for long-term cell survival and create chemokine gradients for driving cell invasion without any external equipment. Using this system, the proliferation and invasiveness of cells were simultaneously evaluated by quantifying the area of cells and the migration distance of cells. In addition, the system combined with live cell workstation could evaluate the dynamic drug response of co-cultured cells and track individual cell trajectories in real-time. When CRC cells were co-cultured with CAFs, CAFs promoted CRC cell proliferation and invasion and reduced the sensitivity of cells to gefitinib through the exosomes secreted by CAFs. Furthermore, the cells that migrated out of the chip were collected, and EMT-related markers were determined by immunofluorescent and western blot assays. The results demonstrated that CAFs affected the response of CRC cells to gefitinib by inducing EMT, providing new ideas for further research on the resistance mechanism of gefitinib. This suggests that targeting CAFs or exosomes might be a new approach to enhance CRC sensitivity to gefitinib, and our system could be a novel platform for investigating the crosstalk between tumor cells and CAFs and understanding multiple biological changes of the tumor cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Xin Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, Ministry of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Wanming Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, Ministry of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Jie Wang
- Department of Cell Biology, Key Laboratory of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, Ministry of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Qun Wang
- Department of Cell Biology, Key Laboratory of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, Ministry of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Menghu Liang
- Department of Cell Biology, Key Laboratory of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, Ministry of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Shuo Chen
- Department of Cell Biology, Key Laboratory of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, Ministry of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Wei Ba
- Department of Cell Biology, Key Laboratory of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, Ministry of Public Health, China Medical University, Shenyang, 110122, PR China
| | - Jin Fang
- Department of Cell Biology, Key Laboratory of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, Ministry of Public Health, China Medical University, Shenyang, 110122, PR China.
| |
Collapse
|
16
|
Jimba M, Nakajima K, Momiyama M, Morikawa T, Satou S. Pathologic Complete Response and Long-Term Survival After Preoperative Chemotherapy for Transverse Colon Cancer With Para-Aortic Lymph Node Metastases. Cureus 2024; 16:e59363. [PMID: 38689672 PMCID: PMC11060184 DOI: 10.7759/cureus.59363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 05/02/2024] Open
Abstract
A 52-year-old male patient was diagnosed with transverse colon cancer and synchronous stage IVA para-aortic lymph node (PALN) metastases (cT3N1bM1a of the lymph node). Six courses of mFOLFOX6 plus bevacizumab were administered as neoadjuvant chemotherapy. Computed tomography showed shrinkage of the primary tumor and PALN metastases. Extended right hemicolectomy, D3 lymph node dissection, and PALN dissection were performed. A pathologic examination indicated that the tumor had completely changed and comprised necrotic tissue with no viable cells. Therefore, it was considered that mFOLFOX6 plus bevacizumab resulted in a pathologic complete response. Postoperatively, six courses of mFOLFOX6 were administered. Six years postoperatively, the patient did not exhibit any signs of recurrence. There have been few reports of pathologic complete response after neoadjuvant therapy and resection for colon cancer with synchronous PALN metastases. This report describes a unique case involving a pathologic complete response with long-term survival after mFOLFOX6 plus bevacizumab and radical resection, including PALN dissection. Preoperative mFOLFOX6 plus bevacizumab followed by radical resection and adjuvant mFOLFOX6 therapy was safe and resulted in a good outcome. This regimen should be considered for advanced colon cancer with PALN metastases.
Collapse
|
17
|
Zhang H, Wang R, Yu T, Yu D, Song C, Ma B, Li J. A prognostic nomogram integrating carcinoembryonic antigen levels for predicting overall survival in elderly patients with stage II-III colorectal cancer. J Gastrointest Oncol 2024; 15:164-178. [PMID: 38482246 PMCID: PMC10932663 DOI: 10.21037/jgo-23-863] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/19/2024] [Indexed: 09/17/2024] Open
Abstract
Background With the aging of the population, colorectal surgeons will have to face more elderly colorectal cancer (CRC) patients in the future. We aim to analyze independent risk factors affecting overall survival in elderly (age ≥65 years) patients with stage II-III CRC and construct a nomogram to predict patient survival. Methods A total of 3,016 elderly CRC patients with stage II-III were obtained from the SEER database. Univariate Cox regression and the least absolute shrinkage and selection operator (LASSO) regression analyses were used to screen independent prognostic factors, and a survival prediction nomogram was constructed based on the results. The consistency index (C-index), decision curve analysis (DCA), Akaike information criterion (AIC), and Bayesian information criterion (BIC) were used to compare the predictive ability between the nomogram and tumor-node-metastasis (TNM) stage system. All patients were classified into high-risk and low-risk groups based on risk scores calculated by nomogram. The Kaplan-Meier method was used to compare the survival differences between two groups. Results The 3- and 5-year area under the curve (AUC) values of the prediction nomogram model were 76.6% and 74.8%, respectively. The AIC, BIC, and C-index values of the nomogram model were 6,032.502, 15,728.72, and 0.707, respectively, which were better than the TNM staging system. Kaplan-Meier survival analysis showed a significant survival difference between high-risk and low-risk groups (P<0.0001). Conclusions We constructed a prediction nomogram for stage II-III elderly CRC patients by combining pre-treatment carcinoembryonic antigen (CEA) levels, which can accurately predict patient survival. This facilitates clinicians to accurately assess patient prognosis and identify high-risk patients to adopt more aggressive and effective treatment strategies.
Collapse
Affiliation(s)
- Haijiao Zhang
- Department of General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Rangrang Wang
- Department of General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Tianyu Yu
- Department of General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Dingye Yu
- Department of General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Changfeng Song
- Department of General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Bingwei Ma
- Department of General Surgery, Shanghai Tenth People’s Hospital of Tongji University, Tongji University, Shanghai, China
| | - Jiyu Li
- Department of General Surgery, Huadong Hospital Affiliated to Fudan University, Shanghai, China
- Geriatric Cancer Center, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
18
|
Jiang F, Zheng Q, Zhao Q, Qi Z, Wu D, Li W, Wu X, Han C. Magnetic propelled hydrogel microrobots for actively enhancing the efficiency of lycorine hydrochloride to suppress colorectal cancer. Front Bioeng Biotechnol 2024; 12:1361617. [PMID: 38449675 PMCID: PMC10915283 DOI: 10.3389/fbioe.2024.1361617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/23/2024] [Indexed: 03/08/2024] Open
Abstract
Research and development in the field of micro/nano-robots have made significant progress in the past, especially in the field of clinical medicine, where further research may lead to many revolutionary achievements. Through the research and experiment of microrobots, a controllable drug delivery system will be realized, which will solve many problems in drug treatment. In this work, we design and study the ability of magnetic-driven hydrogel microrobots to carry Lycorine hydrochloride (LH) to inhibit colorectal cancer (CRC) cells. We have successfully designed a magnetic field driven, biocompatible drug carrying hydrogel microsphere robot with Fe3O4 particles inside, which can achieve magnetic field response, and confirmed that it can transport drug through fluorescence microscope. We have successfully demonstrated the motion mode of hydrogel microrobots driven by a rotating external magnetic field. This driving method allows the microrobots to move in a precise and controllable manner, providing tremendous potential for their use in various applications. Finally, we selected drug LH and loaded it into the hydrogel microrobot for a series of experiments. LH significantly inhibited CRC cells proliferation in a dose- and time-dependent manner. LH inhibited the proliferation, mobility of CRC cells and induced apoptosis. This delivery system can significantly improve the therapeutic effect of drugs on tumors.
Collapse
Affiliation(s)
- Fengqi Jiang
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
- Department of General Surgery, Heilongjiang Provincial Hospital, Harbin, China
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Qiuyan Zheng
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingsong Zhao
- Postdoctoral Programme of Meteria Medica Institute of Harbin University of Commerce, Harbin, China
| | - Zijuan Qi
- Department of Pathology, Heilongjiang Provincial Hospital, Harbin, China
| | - Di Wu
- Department of General Surgery, Heilongjiang Provincial Hospital, Harbin, China
| | - Wenzhong Li
- Department of General Surgery, Heilongjiang Provincial Hospital, Harbin, China
| | - Xiaoke Wu
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Conghui Han
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, China
| |
Collapse
|
19
|
Chai Y, Liu JL, Zhang S, Li N, Xu DQ, Liu WJ, Fu RJ, Tang YP. The effective combination therapies with irinotecan for colorectal cancer. Front Pharmacol 2024; 15:1356708. [PMID: 38375031 PMCID: PMC10875015 DOI: 10.3389/fphar.2024.1356708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/19/2024] [Indexed: 02/21/2024] Open
Abstract
Colorectal cancer is the third most common type of cancer worldwide and has become one of the major human disease burdens. In clinical practice, the treatment of colorectal cancer has been closely related to the use of irinotecan. Irinotecan combines with many other anticancer drugs and has a broader range of drug combinations. Combination therapy is one of the most important means of improving anti-tumor efficacy and overcoming drug resistance. Reasonable combination therapy can lead to better patient treatment options, and inappropriate combination therapy will increase patient risk. For the colorectal therapeutic field, the significance of combination therapy is to improve the efficacy, reduce the adverse effects, and improve the ease of treatment. Therefore, we explored the clinical advantages of its combination therapy based on mechanism or metabolism and reviewed the rationale basis and its limitations in conducting exploratory clinical trials on irinotecan combination therapy, including the results of clinical trials on the combination potentiation of cytotoxic drugs, targeted agents, and herbal medicine. We hope that these can evoke more efforts to conduct irinotecan in the laboratory for further studies and evaluations, as well as the possibility of more in-depth development in future clinical trials.
Collapse
Affiliation(s)
- Yun Chai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Jing-Li Liu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Shuo Zhang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Wen-Juan Liu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| |
Collapse
|
20
|
Zheng Y, Dou G, Liu S, Meng Z, Tsao EI, Yu G, Zhu X, Gu R, Wu Z, Sun Y, Han P, Gan H. Preclinical Pharmacokinetics and Biodistribution of LR004, a Novel Antiepidermal Growth Factor Receptor Monoclonal Antibody. Molecules 2024; 29:545. [PMID: 38276624 PMCID: PMC10821095 DOI: 10.3390/molecules29020545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/12/2024] [Accepted: 01/20/2024] [Indexed: 01/27/2024] Open
Abstract
LR004 is a novel chimeric (human/mouse) monoclonal antibody developed for the treatment of advanced colorectal carcinoma with detectable epidermal growth factor receptor (EGFR) expression. We aimed to investigate the preclinical pharmacokinetics (PK) and in vivo biodistribution of LR004. The PK profiles of LR004 were initially established in rhesus monkeys. Subsequently, 125I radionuclide-labeled LR004 was developed and the biodistribution, autoradiography, and NanoSPECT/CT of 125I-LR004 in xenograft mice bearing A431 tumors were examined. The PK data revealed a prolonged half-life and nonlinear PK characteristics of LR004 within the dose range of 6-54 mg/kg. The radiochemical purity of 125I-LR004 was approximately 98.54%, and iodination of LR004 did not affect its specific binding activity to the EGFR antigen. In a classical biodistribution study, 125I-LR004 exhibited higher uptake in highly perfused organs than in poorly perfused organs. Prolonged retention properties of 125I-LR004 in tumors were observed at 4 and 10 days. Autoradiography and NanoSPECT/CT confirmed the sustained retention of 125I-LR004 at the tumor site in xenograft mice. These findings demonstrated the adequate tumor targeting capabilities of 125I-LR004 in EGFR-positive tumors, which may improve dosing strategies and future drug development.
Collapse
Affiliation(s)
- Ying Zheng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (G.D.); (S.L.); (Z.M.); (X.Z.); (R.G.); (Z.W.); (Y.S.); (P.H.)
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Guifang Dou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (G.D.); (S.L.); (Z.M.); (X.Z.); (R.G.); (Z.W.); (Y.S.); (P.H.)
| | - Shuchen Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (G.D.); (S.L.); (Z.M.); (X.Z.); (R.G.); (Z.W.); (Y.S.); (P.H.)
| | - Zhiyun Meng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (G.D.); (S.L.); (Z.M.); (X.Z.); (R.G.); (Z.W.); (Y.S.); (P.H.)
| | - Eric I. Tsao
- Synermore Biologics Co., Ltd., Suzhou 215000, China;
| | - Gang Yu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China;
| | - Xiaoxia Zhu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (G.D.); (S.L.); (Z.M.); (X.Z.); (R.G.); (Z.W.); (Y.S.); (P.H.)
| | - Ruolan Gu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (G.D.); (S.L.); (Z.M.); (X.Z.); (R.G.); (Z.W.); (Y.S.); (P.H.)
| | - Zhuona Wu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (G.D.); (S.L.); (Z.M.); (X.Z.); (R.G.); (Z.W.); (Y.S.); (P.H.)
| | - Yunbo Sun
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (G.D.); (S.L.); (Z.M.); (X.Z.); (R.G.); (Z.W.); (Y.S.); (P.H.)
| | - Peng Han
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (G.D.); (S.L.); (Z.M.); (X.Z.); (R.G.); (Z.W.); (Y.S.); (P.H.)
| | - Hui Gan
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Y.Z.); (G.D.); (S.L.); (Z.M.); (X.Z.); (R.G.); (Z.W.); (Y.S.); (P.H.)
| |
Collapse
|
21
|
Albadari N, Xie Y, Li W. Deciphering treatment resistance in metastatic colorectal cancer: roles of drug transports, EGFR mutations, and HGF/c-MET signaling. Front Pharmacol 2024; 14:1340401. [PMID: 38269272 PMCID: PMC10806212 DOI: 10.3389/fphar.2023.1340401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
In 2023, colorectal cancer (CRC) is the third most diagnosed malignancy and the third leading cause of cancer death worldwide. At the time of the initial visit, 20% of patients diagnosed with CRC have metastatic CRC (mCRC), and another 25% who present with localized disease will later develop metastases. Despite the improvement in response rates with various modulation strategies such as chemotherapy combined with targeted therapy, radiotherapy, and immunotherapy, the prognosis of mCRC is poor, with a 5-year survival rate of 14%, and the primary reason for treatment failure is believed to be the development of resistance to therapies. Herein, we provide an overview of the main mechanisms of resistance in mCRC and specifically highlight the role of drug transports, EGFR, and HGF/c-MET signaling pathway in mediating mCRC resistance, as well as discuss recent therapeutic approaches to reverse resistance caused by drug transports and resistance to anti-EGFR blockade caused by mutations in EGFR and alteration in HGF/c-MET signaling pathway.
Collapse
Affiliation(s)
| | | | - Wei Li
- College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
22
|
Kusumaningrum AE, Makaba S, Ali E, Singh M, Fenjan MN, Rasulova I, Misra N, Al-Musawi SG, Alsalamy A. A perspective on emerging therapies in metastatic colorectal cancer: Focusing on molecular medicine and drug resistance. Cell Biochem Funct 2024; 42:e3906. [PMID: 38269502 DOI: 10.1002/cbf.3906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 01/26/2024]
Abstract
The majority of cancer cases are colorectal cancer, which is also the second largest cause of cancer-related deaths worldwide. Metastasis is the leading cause of death for patients with colorectal cancer. Metastatic colorectal cancer incidence are on the rise due to a tiny percentage of tumors developing resistant to medicines despite advances in treatment tactics. Cutting-edge targeted medications are now the go-to option for customized and all-encompassing CRC care. Specifically, multitarget kinase inhibitors, antivascular endothelial growth factors, and epidermal growth factor receptors are widely used in clinical practice for CRC-targeted treatments. Rare targets in metastatic colorectal cancer are becoming more well-known due to developments in precision diagnostics and the extensive use of second-generation sequencing technology. These targets include the KRAS mutation, the BRAF V600E mutation, the HER2 overexpression/amplification, and the MSI-H/dMMR. Incorporating certain medications into clinical trials has significantly increased patient survival rates, opening new avenues and bringing fresh viewpoints for treating metastatic colorectal cancer. These focused therapies change how cancer is treated, giving patients new hope and better results. These markers can significantly transform and individualize therapy regimens. They could open the door to precisely customized and more effective medicines, improving patient outcomes and quality of life. The fast-growing body of knowledge regarding the molecular biology of colorectal cancer and the latest developments in gene sequencing and molecular diagnostics are directly responsible for this advancement.
Collapse
Affiliation(s)
| | - Sarce Makaba
- Researcher and lecturer, Universitas Cenderawasih Jayapura, Jayapura, Indonesia
| | - Eyhab Ali
- College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
| | - Mandeep Singh
- Directorate of Sports and Physical Education, University of Jammu, Jammu, India
| | - Mohammed N Fenjan
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Irodakhon Rasulova
- School of Humanities, Natural & Social Sciences, New Uzbekistan University, Tashkent, Uzbekistan
- Department of Public Health, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Neeti Misra
- Department of Management, Uttaranchal Institute of Management, Uttaranchal University, Dehradun, India
| | - Sada G Al-Musawi
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
23
|
Luo F, Tang Y, Zheng L, Yang Y, Gao H, Tian S, Chen H, Tang C, Tang S, Man Q, Wu Y. Isoliquiritigenin Inhibits the Growth of Colorectal Cancer Cells through the ESR2/PI3K/AKT Signalling Pathway. Pharmaceuticals (Basel) 2023; 17:43. [PMID: 38256877 PMCID: PMC10820227 DOI: 10.3390/ph17010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/10/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies. Isoliquiritigenin (ISL), a flavonoid phytoestrogen, has shown anti-tumour activities against various cancers. However, its anti-CRC mechanism has not been clarified. In this study, the potential molecular mechanism of ISL against CRC was investigated through network pharmacological prediction and experimental validation. The results of the network prediction indicate that ESR2, PIK3CG and GSK3β might be the key targets of ISL against CRC, which was verified by molecular docking, and that its anti-tumour mechanisms might be related to the oestrogen and PI3K/AKT signalling pathway. The experimental results show that ISL reduced the viability of SW480 and HCT116 cells, induced apoptosis, blocked the cell cycle in the G2 phase in vitro, and suppressed xenograft tumour growth in vivo. In addition, ISL significantly down-regulated the protein expression of PIK3CG, AKT, p-AKT, p-GSK3β, CDK1, NF-κB and Bcl-2; up-regulated ESR2 and Bax; decreased the ratio of p-AKT/AKT and p-GSK3β/GSK3β; and increased the Bax/Bcl-2 ratio. This study indicates that ISL can inhibit the growth of CRC cells and induce apoptosis, which may be related to the up-regulation of ESR2 and inhibition of the PI3K/Akt signalling pathway.
Collapse
Affiliation(s)
- Fenglin Luo
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (F.L.); (Y.T.); (L.Z.); (Y.Y.); (S.T.); (H.C.); (C.T.); (S.T.)
- Department of Pharmacy, Study on the Structure-Specific Small Molecule Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu 610500, China
| | - Yimeng Tang
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (F.L.); (Y.T.); (L.Z.); (Y.Y.); (S.T.); (H.C.); (C.T.); (S.T.)
- Department of Pharmacy, Study on the Structure-Specific Small Molecule Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu 610500, China
| | - Lin Zheng
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (F.L.); (Y.T.); (L.Z.); (Y.Y.); (S.T.); (H.C.); (C.T.); (S.T.)
- Department of Pharmacy, Study on the Structure-Specific Small Molecule Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu 610500, China
| | - Ying Yang
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (F.L.); (Y.T.); (L.Z.); (Y.Y.); (S.T.); (H.C.); (C.T.); (S.T.)
- Department of Pharmacy, Study on the Structure-Specific Small Molecule Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu 610500, China
| | - Haoyue Gao
- Department of Geriatrics, Women and Children, School of Nursing, Chengdu Medical College, Chengdu 610106, China;
| | - Shiya Tian
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (F.L.); (Y.T.); (L.Z.); (Y.Y.); (S.T.); (H.C.); (C.T.); (S.T.)
- Department of Pharmacy, Study on the Structure-Specific Small Molecule Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu 610500, China
| | - Hongyu Chen
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (F.L.); (Y.T.); (L.Z.); (Y.Y.); (S.T.); (H.C.); (C.T.); (S.T.)
- Department of Pharmacy, Study on the Structure-Specific Small Molecule Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu 610500, China
| | - Chenxi Tang
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (F.L.); (Y.T.); (L.Z.); (Y.Y.); (S.T.); (H.C.); (C.T.); (S.T.)
- Department of Pharmacy, Study on the Structure-Specific Small Molecule Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu 610500, China
| | - Shanshan Tang
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (F.L.); (Y.T.); (L.Z.); (Y.Y.); (S.T.); (H.C.); (C.T.); (S.T.)
- Department of Pharmacy, Study on the Structure-Specific Small Molecule Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu 610500, China
| | - Qiong Man
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (F.L.); (Y.T.); (L.Z.); (Y.Y.); (S.T.); (H.C.); (C.T.); (S.T.)
- Department of Pharmacy, Study on the Structure-Specific Small Molecule Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu 610500, China
| | - Yiying Wu
- Department of Pharmacology, School of Pharmacy, Chengdu Medical College, Chengdu 610500, China; (F.L.); (Y.T.); (L.Z.); (Y.Y.); (S.T.); (H.C.); (C.T.); (S.T.)
- Department of Pharmacy, Study on the Structure-Specific Small Molecule Drug in Sichuan Province College Key Laboratory, Chengdu Medical College, Chengdu 610500, China
| |
Collapse
|
24
|
Szemitko M, Falkowski A, Modrzejewska M, Golubinska-Szemitko E. Efficacy and Safety of Liver Chemoembolization Procedures, Combined with FOLFIRI Chemotherapy, in First-Line Treatment of Metastatic Colorectal Cancer in Patients with Oncogene Mutations. Cancers (Basel) 2023; 16:71. [PMID: 38201500 PMCID: PMC10778126 DOI: 10.3390/cancers16010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
PURPOSE The usual first- and second-line treatments for inoperable liver metastases from colorectal cancer (CRC) involve systemic chemotherapy, often with molecular targeted therapy. Chemoembolization, using microspheres loaded with irinotecan, has also been available as a treatment option for many years, used mainly in later lines of treatment when, due to increasing resistance, other chemotherapy regimens may have been exhausted. However, when there are contraindications to molecular therapies, the use of chemoembolization as first or second lines of treatment, in combination with FOLFIRI chemotherapy, may provide greater efficacy due to reduced irinotecan resistance. OBJECTIVE The aim of the study was to evaluate the efficacy and safety of transarterial chemoembolization (DEB-TACE) procedures for the treatment of metastatic liver lesions from CRC, using irinotecan-loaded microspheres as first-line treatment together with FOLFIRI chemotherapy. PATIENTS AND METHODS The analysis included 20 patients (12 females; 8 males) with unresectable liver metastases in the course of CRC with KRAS, NRAS and BRAF mutations, who underwent 73 chemoembolization procedures with microspheres loaded with 100 mg of irinotecan, in combination with interspersed FOLFIRI chemotherapy. Response to treatment was assessed through computed tomography according to the Modified Response Evaluation Criteria in Solid Tumors (mRECIST). Progression-free survival (PFS) and overall survival (OS) were calculated using the Kaplan-Meier method. Assessment of adverse events utilized the Cancer Therapy Evaluation Program's Common Terminology Criteria for Adverse Events (CTCAE; version 5.0). RESULTS Partial remission (PR) was observed in 11 (55%) patients while 5 (25%) patients showed stable disease (SD). Progression (PD) was observed in 4 (20%) patients. Median PFS was 9.1 months (95% CI: 7.2-10.1 months) and median OS was 20.7 months (95% CI: 18.2-23.3 months). The most common adverse events (AEs) resulting in treatment delay were hematological disorders, notably neutropenia (CTCAE grades 1-3). No deaths or AEs above grade 3 occurred during TACE. Continued FOLFIRI chemotherapy after TACE treatments resulted in grade 4 neutropenia in two patients, grade 3 in four patients and grade 2 thrombocytopenia in two patients. CONCLUSION Combining FOLFIRI chemotherapy with chemoembolization procedures for liver metastatic lesions from colorectal cancer may provide a valuable treatment option for patients not qualified for monoclonal antibody therapy.
Collapse
Affiliation(s)
- Marcin Szemitko
- Department of Interventional Radiology, Pomeranian Medical University, Al. Pow. Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Aleksander Falkowski
- Department of Interventional Radiology, Pomeranian Medical University, Al. Pow. Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Monika Modrzejewska
- II Department of Ophthalmology, Pomeranian Medical University, Al. Pow. Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Elzbieta Golubinska-Szemitko
- Department of General and Dental Diagnostic Imaging, Pomeranian Medical University, Al. Pow. Wielkopolskich 72, 70-111 Szczecin, Poland;
| |
Collapse
|
25
|
Adachi T, Shimomura M, Egi H, Shimizu W, Takakura Y, Mukai S, Kochi M, Yoshimitsu M, Hinoi T, Ohdan H. Clinical Phase I Study of TAS102/Irinotecan/Bevacizumab Combination Therapy in Japanese Patients With Unresectable Metastatic Colorectal Cancer (mCRC). Cureus 2023; 15:e50431. [PMID: 38222210 PMCID: PMC10785010 DOI: 10.7759/cureus.50431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND In this phase I study, we aimed to examine the safety of a triple combination (TAS-102/irinotecan/bevacizumab) therapy in patients with previously treated metastatic colorectal cancer (mCRC). METHODS In the TAS-102 dose-escalation phase, we determined dose-limiting toxicity (DLT), estimated the maximum tolerated dose (MTD), and determined the recommended dose (RD); in the expansion phase, we evaluated safety. The RD was administered in advance for 10 patients. The TAS-102 dose was increased to 25-35 mg/m2 and administered orally twice on days 1-5 and 8-12. Irinotecan (100 mg/m2) and bevacizumab (5 mg/m2) were administered on days 1 and 15 of the treatment, respectively. RESULTS Fifteen patients were enrolled in dose-escalation Levels 1-3, and ten in the expansion phase. A 30 mg/m2 TAS-102 dose at Level 2 was administered to three patients, with one presenting grade 4 neutropenia. A 35 mg/m2 TAS-102 dose at Level 3 was administered to five patients, with three patients presenting grade 4 neutropenia and grade 3 DLTs. We added three patients at Level 2 and set the MTD at 30 mg/m2, with no DLTs. The RD was fixed at 25 mg/m2, with no DLTs (N = 10) or treatment-related deaths. One patient showed complete response at Level 2, four presented partial response, and eleven individuals maintained stable disease for over four months. The median progression-free survival duration was 7.6 months, while the median overall survival period was 16.9 months. CONCLUSION The TAS-102/irinotecan/bevacizumab combination therapy was safe, effective, and well-tolerated in patients previously treated with mCRC.
Collapse
Affiliation(s)
- Tomohiro Adachi
- Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, JPN
- Gastroenterological Surgery, Hiroshima City North Medical Center Asa Citizens Hospital, Hiroshima, JPN
| | - Manabu Shimomura
- Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, JPN
| | - Hiroyuki Egi
- Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, JPN
| | - Wataru Shimizu
- Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, JPN
- Gastroenterological Surgery, Hiroshima City North Medical Center Asa Citizens Hospital, Hiroshima, JPN
| | | | | | - Masatoshi Kochi
- Gastroenterological Surgery, Higashihiroshima Medical Center, Hiroshima, JPN
| | | | - Takao Hinoi
- Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, JPN
| | - Hideki Ohdan
- Gastroenterological and Transplant Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, JPN
| |
Collapse
|
26
|
Ruff SM, Brown ZJ, Pawlik TM. A review of targeted therapy and immune checkpoint inhibitors for metastatic colorectal cancer. Surg Oncol 2023; 51:101993. [PMID: 37742544 DOI: 10.1016/j.suronc.2023.101993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/29/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
Surgical resection is the cornerstone of treatment for metastatic colorectal cancer (CRC) and offers the best chance at long-term survival. Unfortunately, most patients do not present with resectable metastatic disease and, among patients who do undergo curative-intent resection, many will develop recurrence. In turn, patients require a multi-disciplinary treatment approach with a combination of chemotherapy, surgery, radiation, and/or liver directed therapies that is guided by patient disease burden and clinical status. The development of targeted therapies has led to varying success in other cancers and has emerged as a treatment option for patients with metastatic CRC. While cytotoxic chemotherapy aims to kill cells as they replicate, targeted therapies are directed at biologic features of cancers, like angiogenesis or immune checkpoints. Targeted therapy can facilitate a more treatment tailored approach to the unique genomic alterations of the tumor and hopefully deliver more personalized therapy. We herein provide a systematic review of approved targeted therapies and immune checkpoint inhibitors for metastatic CRC and provide an overview of the current literature.
Collapse
Affiliation(s)
- Samantha M Ruff
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Zachary J Brown
- Department of Surgery, Division of Surgical Oncology, New York University Long Island, Mineola, NY, USA
| | - Timothy M Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
27
|
Kwon IS, Hwang YN, Park JH, Na HH, Kwon TH, Park JS, Kim KC. Metallothionein Family Proteins as Regulators of Zinc Ions Synergistically Enhance the Anticancer Effect of Cannabidiol in Human Colorectal Cancer Cells. Int J Mol Sci 2023; 24:16621. [PMID: 38068944 PMCID: PMC10705991 DOI: 10.3390/ijms242316621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Cannabidiol (CBD) is a chemical obtained from Cannabis sativa; it has therapeutic effects on anxiety and cognition and anti-inflammatory properties. Although pharmacological applications of CBD in many types of tumors have recently been reported, the mechanism of action of CBD is not yet fully understood. In this study, we perform an mRNA-seq analysis to identify the target genes of CBD after determining the cytotoxic concentrations of CBD using an MTT assay. CBD treatment regulated the expression of genes related to DNA repair and cell division, with metallothionein (MT) family genes being identified as having highly increased expression levels induced by CBD. It was also found that the expression levels of MT family genes were decreased in colorectal cancer tissues compared to those in normal tissues, indicating that the downregulation of MT family genes might be highly associated with colorectal tumor progression. A qPCR experiment revealed that the expression levels of MT family genes were increased by CBD. Moreover, MT family genes were regulated by CBD or crude extract but not by other cannabinoids, suggesting that the expression of MT family genes was specifically induced by CBD. A synergistic effect between CBD and MT gene transfection or zinc ion treatment was found. In conclusion, MT family genes as novel target genes could synergistically increase the anticancer activity of CBD by regulating the zinc ions in human colorectal cancer cells.
Collapse
Affiliation(s)
- In-Seo Kwon
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Kangwon, Republic of Korea; (I.-S.K.); (Y.-N.H.); (J.-H.P.); (H.-H.N.)
| | - Yu-Na Hwang
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Kangwon, Republic of Korea; (I.-S.K.); (Y.-N.H.); (J.-H.P.); (H.-H.N.)
| | - Ju-Hee Park
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Kangwon, Republic of Korea; (I.-S.K.); (Y.-N.H.); (J.-H.P.); (H.-H.N.)
| | - Han-Heom Na
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Kangwon, Republic of Korea; (I.-S.K.); (Y.-N.H.); (J.-H.P.); (H.-H.N.)
- Kangwon Center for System Imaging, Chuncheon 24341, Kangwon, Republic of Korea
| | - Tae-Hyung Kwon
- Chuncheon Bioindustry Foundation, Chuncheon 24232, Kangwon, Republic of Korea;
| | - Jin-Sung Park
- Korean Pharmacopuncture Institute, Seoul 07525, Republic of Korea;
| | - Keun-Cheol Kim
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 24341, Kangwon, Republic of Korea; (I.-S.K.); (Y.-N.H.); (J.-H.P.); (H.-H.N.)
- Kangwon Center for System Imaging, Chuncheon 24341, Kangwon, Republic of Korea
| |
Collapse
|
28
|
Sun Z, Zhang Q, Lv J, Sun Y, Feng Z, Zhang M, Zhang F, Xia C, Gao Y, Zhang Z, Zuo YF, Ren SY. High expression of NOLC1 as an independent prognostic factor for survival in patients with colorectal cancer. J Cancer Res Clin Oncol 2023; 149:15697-15712. [PMID: 37670166 PMCID: PMC10620263 DOI: 10.1007/s00432-023-05297-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/14/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND As a phosphorylated protein, NOLC1 is mainly located in the nucleus and is highly expressed in a variety of tumors, participating in the regulation of cell proliferation and aging. This study further investigated the role of NOLC1 in colorectal cancer tumors, aiming to provide sufficient scientific evidence for the clinical treatment of colorectal cancer. METHODS We used TCGA, GEO, TNMplot, GEPIA, and other databases to explore the expression level of NOLC1 in colorectal cancer patients, as well as the correlation between the clinical characteristics of colorectal cancer patients and their expression, and conducted the prognostic analysis. Immunohistofluorescence (IHF) staining verified the analytical results. Subsequently, KEGG and GO enrichment analysis was used to identify the potential molecular mechanism of NOLC1 promoting the occurrence and development of colorectal cancer. The influence of NOLC1 expression on the immune microenvironment of colorectal cancer patients was further investigated using the TIMER database. GDSC database analysis was used to screen out possible anti-colorectal cancer drugs against NOLC1. Finally, we demonstrated the effect of NOLC1 on the activity and migration of colorectal cancer cells by Edu Cell proliferation assay and Wound Healing assay in vitro. RESULTS Our results suggest that NOLC1 is overexpressed in colorectal cancer, and that overexpression of NOLC1 is associated with relevant clinical features. NOLC1, as an independent risk factor affecting the prognosis of colorectal cancer patients, can lead to a poor prognosis of colorectal cancer. In addition, NOLC1 may be associated with MCM10, HELLS, NOC3L, and other genes through participating in Wnt signaling pathways and jointly regulate the occurrence and development of colorectal cancer under the influence of the tumor microenvironment and many other influencing factors. Related to NOLC1: Selumetinib, Imatinib, and targeted drugs such as Lapatinib have potential value in the clinical application of colorectal cancer. NOLC1 enhances the proliferation and migration of colorectal cancer cells. CONCLUSIONS High expression of NOLC1 as an independent prognostic factor for survival in patients with colorectal cancer. NOLC1 enhances the proliferation and migration of colorectal cancer cells. Further studies and clinical trials are needed to confirm the role of NOLC1 in the development and progression of colorectal cancer.
Collapse
Affiliation(s)
- Zhiwei Sun
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Qianshi Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Jinjuan Lv
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, China
| | - Yuzhu Sun
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, China
| | - Zhen Feng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Mengyan Zhang
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, China
| | - Feifan Zhang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Cong Xia
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China
| | - Yina Gao
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, China
| | - Zhenyu Zhang
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, China
| | - Yun-Fei Zuo
- Department of Clinical Biochemistry, College of Laboratory Diagnostic Medicine, Dalian Medical University, Dalian, China.
| | - Shuang-Yi Ren
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
29
|
Farzam OR, Mehran N, Bilan F, Aghajani E, Dabbaghipour R, Shahgoli GA, Baradaran B. Nanoparticles for imaging-guided photothermal therapy of colorectal cancer. Heliyon 2023; 9:e21334. [PMID: 37920521 PMCID: PMC10618772 DOI: 10.1016/j.heliyon.2023.e21334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/04/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies with a high mortality rate worldwide. While surgery, chemotherapy, and radiotherapy have shown some effectiveness in improving survival rates, they come with drawbacks such as side effects and harm to healthy tissues. The theranostic approach, which integrates the processes of cancer diagnosis and treatment, can minimize biological side effects. Photothermal therapy (PTT) is an emerging treatment method that usages light-sensitive agents to generate heat at the tumor site and induce thermal erosion. The development of nanotechnology for CRC treatment using imaging-guided PTT has garnered significant. Nanoparticles with suitable physical and chemical properties can enhance the efficiency of cancer diagnosis and PTT. This approach enables the monitoring of cancer treatment progress and safeguards healthy tissues. In this article, we concisely introduce the application of metal nanoparticles, polymeric nanoparticles, and carbon nanoparticles in imaging-guided PTT of colorectal cancer.
Collapse
Affiliation(s)
- Omid Rahbar Farzam
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Niloofar Mehran
- Clinical Research Development Unit, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farzaneh Bilan
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Aghajani
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Dabbaghipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
- Clinical Research Development Unit, Imam Reza General Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Ionescu VA, Gheorghe G, Bacalbasa N, Chiotoroiu AL, Diaconu C. Colorectal Cancer: From Risk Factors to Oncogenesis. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1646. [PMID: 37763765 PMCID: PMC10537191 DOI: 10.3390/medicina59091646] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023]
Abstract
Colorectal cancer is the second leading cause of cancer-related mortality worldwide. Numerous pathophysiological mechanisms, such as abnormal cell proliferation, cell differentiation, resistance to apoptosis, invasion of structures adjacent to colorectal tumor cells, and distant metastasis, are involved in colorectal carcinogenesis. These processes are initiated by the complex interaction of a number of genetic and environmental factors, including sedentary lifestyle, obesity, alcohol consumption, smoking, or gut microbiota. Despite the significant progress achieved in the diagnostic and therapeutic management of patients with colorectal cancer, there has been recently a noteworthy increase in the incidence of colorectal cancer in individuals below the age of 50 years. Early-onset colorectal cancer has a different frequency of oncogenic mutations, a higher prevalence of mucinous histology, a distinct deoxyribonucleic acid (DNA) methylation profile, a more distal location, and lower survival rates. A significant improvement in the prognosis of these patients can be achieved through the detection and removal of modifiable risk factors, along with the implementation of personalized screening strategies for individuals at high risk for this malignancy. Furthermore, gaining comprehension of the pathophysiological mechanisms by which these risk factors contribute to the process of oncogenesis may facilitate the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Vlad Alexandru Ionescu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (V.A.I.); (N.B.)
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
- Department of Cellular and Mollecular Pathology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania
| | - Gina Gheorghe
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (V.A.I.); (N.B.)
- Department of Cellular and Mollecular Pathology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania
- Gastroenterology Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Nicolae Bacalbasa
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (V.A.I.); (N.B.)
- Department of Visceral Surgery, Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | | | - Camelia Diaconu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (V.A.I.); (N.B.)
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
- Academy of Romanian Scientists, 050085 Bucharest, Romania
| |
Collapse
|
31
|
Li Q, Wang Y, Wang JW, Qian L, Wang S, Cao TT, Xia YB, Huang XX, Xu L. Preserving or peeling the inferior mesenteric arterial sheath during laparoscopic rectal cancer surgery: a prospective study of surgical outcomes. BMC Surg 2023; 23:176. [PMID: 37370110 PMCID: PMC10303794 DOI: 10.1186/s12893-023-02083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND We mainly evaluated whether preserving the inferior mesenteric artery (IMA) sheath to dissecting IMA root lymph nodes (also called No.253 lymph nodes) would benefit patients in terms of comparable lymph-node yield removed during operation and postoperative complications in laparoscopic radical resection of rectal cancer. METHODS This is a prospective study included 141 rectal cancer patients who received laparoscopic radical resection during September 2018 to December 2020. All patients were randomly assigned to the preserved group (n = 71) and the peeled group (n = 70). The baseline characteristics, pathological features, intraoperative and postoperative data outcomes and complications were analyzed by independent samples t test, chi-square test or Fisher's exact test between the 2 groups. RESULTS The baseline characteristic and pathological features had no statistical difference between the 2 groups. The preserved group had a shorter operative time (P = 0.002), a shorter lymph node dissection time (P < 0.001), less intraoperative bleeding (P = 0.004), an earlier time to first flatus (P = 0.013), an earlier time to fluid intake (P = 0.033) and a shorter length of hospitalization (P = 0.012) than the peeled group. The differences between the 2 groups were not statistically significant (P > 0.05) in regard to the total number of lymph nodes cleared, positive lymph nodes, bleeding, anastomotic leakage, pneumonia, wound infection, abscess, ileus, urinary retention, urinary tract infection and chyle leakage. CONCLUSION Preserving of the IMA sheath in laparoscopic radical surgery for rectal cancer will reduce the total operation time and the length of hospitalization. This surgical method could lead to lower complication rate and faster recovery. TRIAL REGISTRATION The study was approved by the Ethics Committee of The First Affiliated Hospital of Wannan Medical College and registered by the China Clinical Trials Registry (ChiCTR2200060830, Date of Registration:2022-06-12 -retrospective registration) http://www.chictr.org.cn/index.aspx .
Collapse
Affiliation(s)
- Qian Li
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu, Anhui, 241001, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Ye Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu, Anhui, 241001, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Jia-Wei Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu, Anhui, 241001, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Long Qian
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu, Anhui, 241001, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Song Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu, Anhui, 241001, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Ting-Ting Cao
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu, Anhui, 241001, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Ya-Bin Xia
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu, Anhui, 241001, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China
| | - Xiao-Xu Huang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu, Anhui, 241001, China.
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China.
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China.
| | - Li Xu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road, Wuhu, Anhui, 241001, China.
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wuhu, Anhui, China.
- Non-coding RNA Research Center of Wannan Medical College, Yijishan Hospital, Wuhu, Anhui, China.
| |
Collapse
|
32
|
Goto N, Suzuki H, Tanaka T, Ishikawa K, Ouchida T, Kaneko MK, Kato Y. EMab-300 Detects Mouse Epidermal Growth Factor Receptor-Expressing Cancer Cell Lines in Flow Cytometry. Antibodies (Basel) 2023; 12:42. [PMID: 37489364 PMCID: PMC10366908 DOI: 10.3390/antib12030042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/26/2023] Open
Abstract
Epidermal Growth Factor Receptor (EGFR) overexpression or its mutation mediates the sustaining proliferative signaling, which is an important hallmark of cancer. Human EGFR-targeting monoclonal antibody (mAb) therapy such as cetuximab has been approved for clinical use in patients with colorectal cancers and head and neck squamous cell carcinomas. A reliable preclinical mouse model is essential to further develop the mAb therapy against EGFR. Therefore, sensitive mAbs against mouse EGFR (mEGFR) should be established. In this study, we developed a specific and sensitive mAb for mEGFR using the Cell-Based Immunization and Screening (CBIS) method. The established anti-mEGFR mAb, EMab-300 (rat IgG1, kappa), reacted with mEGFR-overexpressed Chinese hamster ovary-K1 (CHO/mEGFR) and endogenously mEGFR-expressed cell lines, including NMuMG (a mouse mammary gland epithelial cell) and Lewis lung carcinoma cells, using flow cytometry. The kinetic analysis using flow cytometry indicated that the KD of EMab-300 for CHO/mEGFR and NMuMG was 4.3 × 10-8 M and 1.9 × 10-8 M, respectively. These results indicated that EMab-300 applies to the detection of mEGFR using flow cytometry and may be useful to obtain the proof of concept in preclinical studies.
Collapse
Affiliation(s)
- Nohara Goto
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Tomohiro Tanaka
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Kenichiro Ishikawa
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Tsunenori Ouchida
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Mika K Kaneko
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Miyagi, Japan
| |
Collapse
|
33
|
Asemi R, Rajabpoor Nikoo N, Asemi Z, Shafabakhsh R, Hajijafari M, Sharifi M, Homayoonfal M, Davoodvandi A, Hakamifard A. Modulation of long non-coding RNAs by resveratrol as a potential therapeutic approach in cancer: A comprehensive review. Pathol Res Pract 2023; 246:154507. [PMID: 37196467 DOI: 10.1016/j.prp.2023.154507] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
LncRNAs, or long non-coding RNAs, are a subset of RNAs that play a regulatory role in a wide range of biological functions, including RNA processing, epigenetic regulation, and signal transduction. Recent research indicates that lncRNAs play a key role in the development and spread of cancer by being dysregulated in the disease. In addition, lncRNAs have been linked to the overexpression of certain proteins that are involved in tumor development and progression. Resveratrol has anti-inflammatory and anti-cancer properties that it exerts through regulating different lncRNAs. By the regulation of tumor-supportive and tumor-suppressive lncRNAs, resveratrol acts as an anti-cancer agent. By downregulating the tumor-supportive lncRNAs DANCR, MALAT1, CCAT1, CRNDE, HOTAIR, PCAT1, PVT1, SNHG16, AK001796, DIO3OS, GAS5 and H19, and upregulating MEG3, PTTG3P, BISPR, PCAT29, GAS5, LOC146880, HOTAIR, PCA3, NBR2, this herbal remedy causes apoptosis and cytotoxicity. For the purpose of using polyphenols in cancer therapy, it would be helpful to have more in-depth knowledge about lncRNA modulation via resveratrol. Here, we discuss the current knowledge and future promise of resveratrol as modulators of lncRNAs in different cancers.
Collapse
Affiliation(s)
- Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran.
| | - Nesa Rajabpoor Nikoo
- Department of Gynecology and Obstetrics, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Mohammad Hajijafari
- Department of Anesthesiology, School of Medicine, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran.
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran.
| | - Amirhossein Davoodvandi
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Islamic Republic of Iran.
| | - Atousa Hakamifard
- Department of Infectious Diseases, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Islamic Republic of Iran.
| |
Collapse
|
34
|
Zhang H, Cai J, Yu S, Sun B, Zhang W. Anticancer Small-Molecule Agents Targeting Eukaryotic Elongation Factor 1A: State of the Art. Int J Mol Sci 2023; 24:ijms24065184. [PMID: 36982256 PMCID: PMC10049629 DOI: 10.3390/ijms24065184] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Eukaryotic elongation factor 1A (eEF1A) canonically delivers amino acyl tRNA to the ribosomal A site during the elongation stage of protein biosynthesis. Yet paradoxically, the oncogenic nature of this instrumental protein has long been recognized. Consistently, eEF1A has proven to be targeted by a wide assortment of small molecules with excellent anticancer activity, among which plitidepsin has been granted approval for the treatment of multiple myeloma. Meanwhile, metarrestin is currently under clinical development for metastatic cancers. Bearing these exciting advances in mind, it would be desirable to present a systematic up-to-date account of the title topic, which, to the best of our knowledge, has thus far been unavailable in the literature. The present review summarizes recent advances in eEF1A-targeting anticancer agents, both naturally occurring and synthetically crafted, with regard to their discovery or design, target identification, structure–activity relationship, and mode of action. Their structural diversity and differential eEF1A-targeting mechanisms warrant continuing research in pursuit of curing eEF1A-driven malignancy.
Collapse
|