1
|
Liu J, Li B, Zhou X, Liu G, Li C, Hu Z, Peng R. Uncovering the mechanisms of Zhubi decoction against rheumatoid arthritis through an integrated study of network pharmacology, metabolomics, and intestinal flora. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118736. [PMID: 39186991 DOI: 10.1016/j.jep.2024.118736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhubi Decoction (ZBD) is a modified formulation derived from the classic traditional Chinese medicine prescription "Er-Xian Decoction" documented in the esteemed "Clinical Manual of Chinese Medical Prescription". While the utilization of ZBD has exhibited promising clinical outcomes in treating rheumatoid arthritis (RA), the precise bioactive chemical constituents and the underlying mechanisms involved in its therapeutic efficacy remain to be comprehensively determined. AIM OF THE STUDY This study aims to systematically examine ZBD's pharmacological effects and molecular mechanisms for RA alleviation. MATERIALS AND METHODS Utilizing the collagen-induced arthritis (CIA) rat model, we comprehensively evaluated the anti-rheumatoid arthritis effects of ZBD in vivo through various indices, such as paw edema, arthritis index, ankle diameter, inflammatory cytokine levels, pathological conditions, and micro-CT analysis. The UPLC-MS/MS technique was utilized to analyze the compounds of ZBD. The potential therapeutic targets and signaling pathways of ZBD in the management of RA were predicted using network pharmacology. To analyze comprehensive metabolic profiles and identify underlying metabolic pathways, we conducted a serum-based widely targeted metabolomics analysis utilizing LC-MS technology. Key targets and predicted pathways were further validated using immunofluorescent staining, which integrated findings from serum metabolomics and network pharmacology analysis. Additionally, we analyzed the gut microbiota composition in rats employing 16 S rDNA sequencing and investigated the effects of ZBD on the microbiota of CIA rats through bioinformatics and statistical methods. RESULTS ZBD exhibited remarkable efficacy in alleviating RA symptoms in CIA rats without notable side effects. This included reduced paw redness and swelling, minimized joint damage, improved the histopathology of cartilage and synovium, mitigated the inflammatory state, and lowered serum concentrations of cytokines TNF-α, IL-1β and IL-6. Notably, the effectiveness of ZBD was comparable to MTX. Network pharmacology analysis revealed inflammation and immunity-related signaling pathways, such as PI3K/AKT, MAPK, IL-17, and TNF signaling pathways, as vital mediators in the effectual mechanisms of ZBD. Immunofluorescence analysis validated ZBD's ability to inhibit PI3K/AKT pathway proteins. Serum metabolomics studies revealed that ZBD modulates 170 differential metabolites, partially restored disrupted metabolic profiles in CIA rats. With a notable impact on amino acids and their metabolites, and lipids and lipid-like molecules. Integrated analysis of metabolomics and network pharmacology identified 6 pivotal metabolite pathways and 3 crucial targets: PTGS2, GSTP1, and ALDH2. Additionally, 16 S rDNA sequencing illuminated that ZBD mitigated gut microbiota dysbiosis in the CIA group, highlighting key genera such as Ligilactobacillus, Prevotella_9, unclassified_Bacilli, and unclassified_rumen_bacterium_JW32. Correlation analysis disclosed a significant link between 47 distinct metabolites and specific bacterial species. CONCLUSION ZBD is a safe and efficacious TCM formulation, demonstrates efficacy in treating RA through its multi-component, multi-target, and multi-pathway mechanisms. The regulation of inflammation and immunity-related signaling pathways constitutes a crucial mechanism of ZBD's efficacy. Furthermore, ZBD modulates host metabolism and intestinal flora. The integrated analysis presents experimental evidence of ZBD for the management of RA.
Collapse
Affiliation(s)
- Jing Liu
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Bocun Li
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Xiaohong Zhou
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Guangya Liu
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Chao Li
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Zhaoduan Hu
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| | - Rui Peng
- College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, 430061, China.
| |
Collapse
|
2
|
Umsumarng S, Dissook S, Arjsri P, Srisawad K, Thippraphan P, Sangphukieo A, Thongkumkoon P, Dejkriengkraikul P. Inhibitory Effect of Luteolin on Spike S1 Glycoprotein-Induced Inflammation in THP-1 Cells via the ER Stress-Inducing Calcium/CHOP/MAPK Pathway. Pharmaceuticals (Basel) 2024; 17:1402. [PMID: 39459041 PMCID: PMC11509993 DOI: 10.3390/ph17101402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/13/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The global SARS-CoV-2 outbreak has escalated into a critical public health emergency, with the spike glycoprotein S1 subunit of SARS-CoV-2 (spike-S1) linked to inflammation in lung tissue and immune cells. Luteolin, a flavone with anti-inflammatory properties, shows promise, but research on its effectiveness against long-COVID-related inflammation and spike protein-induced responses remains limited. This study aims to elucidate the underlying mechanisms of inflammation in THP-1 cells induced by the spike-S1. Additionally, it seeks to assess the potential of luteolin in mitigating inflammatory responses induced by the spike-S1 in a THP-1 macrophage model. METHODS The gene expression profiles of spike-S1 in THP-1 cells were analyzed by transcriptome sequencing. The inhibitory effect of luteolin on ER stress and inflammation in spike-S1-induced THP-1 cells was investigated using Western blotting, RT-PCR, and ELISA. RESULTS The candidate genes (CAMK2A, SIGLEC7, PPARGC1B, SEC22B, USP28, IER2, and TIRAP) were upregulated in the spike-S1-induced THP-1 group compared to the control group. Among these, calcium/calmodulin-dependent protein kinase II alpha (CAMK2A) was identified as the most promising molecule in spike-S1-induced THP-1 cells. Our results indicate that the spike S1 significantly increased the expression of ER-stress markers at both gene and protein levels. Luteolin significantly reduced ER stress by decreasing the expression of ER-stress marker genes and ER-stress marker proteins (p < 0.01). Additionally, luteolin exhibited anti-inflammatory properties upon spike S1-induction in THP-1 cells by significantly suppressing IL-6, IL-8, and IL-1β cytokine secretion in a dose-dependent manner (p < 0.05). Furthermore, our results revealed that luteolin exhibited the downregulation of the MAPK pathway, as evidenced by modulating the phosphorylation of p-ERK1/2, p-JNK and p-p38 proteins (p < 0.05). CONCLUSIONS The results from this study elucidate the mechanisms by which the spike S1 induces inflammation in THP-1 cells and supports the use of naturally occurring bioactive compounds, like luteolin, against inflammation-related SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sonthaya Umsumarng
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Sivamoke Dissook
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.A.); (K.S.); (P.T.)
| | - Punnida Arjsri
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.A.); (K.S.); (P.T.)
| | - Kamonwan Srisawad
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.A.); (K.S.); (P.T.)
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pilaiporn Thippraphan
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.A.); (K.S.); (P.T.)
| | - Apiwat Sangphukieo
- Center of Multidisciplinary Technology for Advanced Medicine (CMU-TEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (A.S.); (P.T.)
| | - Patcharawadee Thongkumkoon
- Center of Multidisciplinary Technology for Advanced Medicine (CMU-TEAM), Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (A.S.); (P.T.)
| | - Pornngarm Dejkriengkraikul
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (P.A.); (K.S.); (P.T.)
- Anticarcinogenesis and Apoptosis Research Cluster, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
3
|
Pei SN, Lee KT, Rau KM, Lin TY, Tsai TH, Hsu YC. Luteolin (LUT) Induces Apoptosis and Regulates Mitochondrial Membrane Potential to Inhibit Cell Growth in Human Cervical Epidermoid Carcinoma Cells (Ca Ski). Biomedicines 2024; 12:2330. [PMID: 39457642 PMCID: PMC11505502 DOI: 10.3390/biomedicines12102330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/27/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Luteolin (LUT) is a natural flavonoid with known anti-inflammatory, antioxidant, and anti-cancer properties. Cervical cancer, particularly prevalent in certain regions, remains a significant health challenge due to its high recurrence and poor response to treatment. This study aimed to investigate the anti-tumor effects of LUT on human cervical epidermoid carcinoma cells (Ca Ski), focusing on cell growth inhibition, apoptosis induction, and regulation of mitochondrial membrane potential. Methods: Ca Ski cells were treated with varying concentrations of LUT (0, 25, 50, 100 µM) for different time periods (24, 48, 72 hours). Cell viability was measured using the MTT assay, apoptosis was assessed by flow cytometry with annexin V-FITC/PI staining, and changes in mitochondrial membrane potential were evaluated using JC-1 staining. Caspase-3 activation was examined by flow cytometry, and expression of apoptosis-related proteins (caspase-3, -8, -9, AIF) was analyzed via Western blotting. Results: LUT significantly inhibited the growth of Ca Ski cells in a dose- and time-dependent manner, with the most pronounced effects observed at 100 µM over 72 hours. Flow cytometry confirmed that LUT induced apoptosis without causing necrosis. Mitochondrial membrane potential was reduced after LUT treatment, coinciding with increased caspase-3 activation. Western blot analysis revealed the upregulation of pro-apoptotic proteins caspase-3, -8, -9, and AIF, indicating that LUT induces apoptosis through the intrinsic mitochondrial pathway. Conclusions: Luteolin effectively inhibits cervical cancer cell proliferation and induces apoptosis by disrupting mitochondrial membrane potential and activating caspases. These findings suggest that LUT holds potential as a therapeutic agent for cervical cancer, with further studies needed to explore its in vivo efficacy and broader clinical applications.
Collapse
Affiliation(s)
- Sung-Nan Pei
- Department of Hematology Oncology, E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (S.-N.P.); (K.-M.R.)
| | - Kuan-Ting Lee
- Division of Neurosurgery, Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan; (K.-T.L.); (T.-Y.L.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Kun-Ming Rau
- Department of Hematology Oncology, E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (S.-N.P.); (K.-M.R.)
- School of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Tsung-Ying Lin
- Division of Neurosurgery, Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan; (K.-T.L.); (T.-Y.L.)
| | - Tai-Hsin Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan; (K.-T.L.); (T.-Y.L.)
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807378, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Yi-Chiang Hsu
- School of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| |
Collapse
|
4
|
Zhang Y, Luo C, Huang P, Cheng Y, Ma Y, Gao J, Ding H. Luteolin alleviates muscle atrophy, mitochondrial dysfunction and abnormal FNDC5 expression in high fat diet-induced obese rats and palmitic acid-treated C2C12 myotubes. J Nutr Biochem 2024:109780. [PMID: 39395694 DOI: 10.1016/j.jnutbio.2024.109780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/22/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
Obesity is associated with a series of skeletal muscle impairments and dysfunctions, which are characterized by metabolic disturbances and muscle atrophy. Luteolin is a phenolic phytochemical with broad pharmacological activities. The present study aimed to evaluate the protective effects of Luteolin on muscle function and explore the potential mechanisms in high-fat diet (HFD)-induced obese rats and palmitic acid (PA)-treated C2C12 myotubes. Male Sprague-Dawley (SD) rats were fed with a control diet or HFD and orally administrated 0.5% sodium carboxymethyl cellulose (vehicle) or Luteolin (25, 50 and 100 mg/kg, respectively) for 12 weeks. The results showed that Luteolin ameliorated HFD-induced body weight gain, glucose intolerance and hyperlipidemia. Luteolin also alleviated muscle atrophy, decreased ectopic lipid deposition and prompted muscle-fiber-type conversion in the skeletal muscle. Meanwhile, we observed an evident improvement in mitochondrial quality control and respiratory capacity, accompanied by reduced oxidative stress. Mechanistic studies indicated that AMPK/SIRT1/PGC-1α signaling pathway plays a key role in the protective effects of Luteolin on skeletal muscle in the obese states, which was further verified by using specific inhibitors of AMPK and SIRT1. Moreover, the mRNA expression levels of markers in brown adipocyte formation were significantly up-regulated post Luteolin supplementation in different adipose depots. Taken together, these results revealed that Luteolin supplementation might be a promising strategy to prevent obesity-induced loss of mass and biological dysfunctions of skeletal muscle.
Collapse
Affiliation(s)
- Yiyuan Zhang
- Department of Pharmaceutical Science, Wuhan University, Wuhan, 430000
| | - Chunyun Luo
- Department of Pharmaceutical Science, Wuhan University, Wuhan, 430000
| | - Puxin Huang
- Department of Pharmaceutical Science, Wuhan University, Wuhan, 430000
| | - Yahong Cheng
- Department of Pharmaceutical Science, Wuhan University, Wuhan, 430000
| | - Yufang Ma
- Department of Pharmaceutical Science, Wuhan University, Wuhan, 430000
| | - Jiefang Gao
- Department of Pharmaceutical Science, Wuhan University, Wuhan, 430000
| | - Hong Ding
- Department of Pharmaceutical Science, Wuhan University, Wuhan, 430000.
| |
Collapse
|
5
|
Pan B, Wu F, Lu S, Lu W, Cao J, Cheng F, Ou M, Chen Y, Zhang F, Wu G, Mei L. Luteolin-Loaded Hyaluronidase Nanoparticles with Deep Tissue Penetration Capability for Idiopathic Pulmonary Fibrosis Treatment. SMALL METHODS 2024:e2400980. [PMID: 39370583 DOI: 10.1002/smtd.202400980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/20/2024] [Indexed: 10/08/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease characterized by sustained fibrotic lesions. Orally administered drugs usually fail to efficiently penetrate the interstitial tissue and reach the lesions, resulting in low treatment efficiency. Luteolin (Lut) is a natural flavonoid, active metabolites of which possess antioxidant, anti-inflammatory, anti-fibrotic, and anti-apoptotic properties. In this study, a nano-formulation is developed by loading Lut into hyaluronidase nanoparticles (Lut@HAase). These Lut@HAase nanoparticles (NPs) exhibit small size and good stability, suitable for noninvasive inhalation and accumulation in the lungs, and hyaluronidase at the site of lesions can degrade hyaluronic acid in the interstitial tissue, enabling efficient penetration of Lut. Lut's therapeutic effect, when administered via NPs, is studied both in vitro (using MRC5 cells) and in vivo (using IPF mice models), and its anti-fibrotic properties are found to inhibit inflammation and eliminate reactive oxygen species. Conclusively, this study demonstrates that Lut@HAase can improve lung function and enhance survival rates while reducing lung damage with few abnormalities during IPF treatment.
Collapse
Affiliation(s)
- Bo Pan
- The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Fangping Wu
- The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Shanming Lu
- Department of Pathology, Longgang Central Hospital, Shenzhen, Guangdong, 518100, China
| | - Wenwen Lu
- The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Jiahui Cao
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Fei Cheng
- The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Meitong Ou
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Youyi Chen
- The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Fan Zhang
- Department of Pathology, Longgang Central Hospital, Shenzhen, Guangdong, 518100, China
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Guolin Wu
- The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, 310003, China
| | - Lin Mei
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
6
|
Chen YJ, Li YY, Xiao BL, Ma LL, Xu KX, Abdalbage Mohammed Abdalsadeg S, Hong T, Akbar Moosavi-Movahedi A, Yousefi R, Ning YN, Hong J. Electrochemical biosensor based on functional nanomaterials and horseradish peroxidase for the determination of luteolin in peanut shell, honeysuckle and perilla. Bioelectrochemistry 2024; 161:108827. [PMID: 39321497 DOI: 10.1016/j.bioelechem.2024.108827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/19/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Constructing a biosensor to detect luteolin content accurately is essential, especially considering its specific health benefits at certain concentrations. In this work, the reaction of HRP catalyzed luteolin could be successfully applied in electrocatalytic processes, the oxidation process of electron loss and dehydrogenation occurring on the electrode replaced the hydrogen receptor role of H2O2 in the HRP biocatalytic process. This oxidation reaction had an apparent current response, thus achieving accurate measurement of luteolin. On this biosensor, CTAB was used to disperse MWCNTs, and BSA was used to improve the hydrophobicity of MWCNTs, which was conducive to the subsequent AuNPs fixation of HRP. Three detection methods (LSV, DPV and SWV) for the detection of luteolin were compared and showed that SWV method had a wider linear range (1 × 10-8-2 × 10-5 M) and lower detection limit (8 × 10-10 M). The determination of luteolin in Traditional Chinese Medicine (TCM) by high performance liquid chromatography (HPLC) and biosensor was almost identical. Therefore, this biosensor could successfully replace HPLC in detecting luteolin in TCM.
Collapse
Affiliation(s)
- Yu-Jie Chen
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Yu-Ying Li
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Bao-Lin Xiao
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Lin-Lin Ma
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Ke-Xin Xu
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | | | - Tao Hong
- Shool of Fine Arts, Henan University, Kaifeng 475000, China.
| | | | - Reza Yousefi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614411, Iran
| | - Yan-Na Ning
- Department of Medical Laboratory, Kaifeng Central Hospital, Kaifeng 475000, China
| | - Jun Hong
- School of Life Sciences, Henan University, Kaifeng 475000, China.
| |
Collapse
|
7
|
Mohammed A, Ramadan A, Elnour AA, Saeed AAAM, Al Mazrouei N, Alsulami FT, Alqarni YS, Menon V, Amoodi AA, Abdalla SF. Luteolin as potential treatment for Huntington's disease: Insights from a transgenic mouse model. CNS Neurosci Ther 2024; 30:e70025. [PMID: 39228080 PMCID: PMC11371662 DOI: 10.1111/cns.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/28/2024] [Accepted: 08/10/2024] [Indexed: 09/05/2024] Open
Abstract
AIMS The study aimed to evaluate the potential benefits of luteolin treatment in Huntington's disease (HD), an inherited progressive neurodegenerative disorder. METHODS HD N171-82Q transgenic and WT mice received luteolin or vehicle for treatment at 6 weeks of age. The mice's body weight changes and survival rates were monitored throughout the study, and a series of motor functional tests were conducted. Serum level of the marker NfL was also determined. Immunohistochemical staining and western blotting were utilized to assess the expression of huntingtin aggregates. RESULTS Luteolin treatment enhanced survival and prevented weight loss in HD mice compared to the vehicle-treated HD group. Furthermore, the luteolin-treated HD mice exhibited enhanced motor coordination and balance and significantly reduced motor dysfunction. Also, luteolin decreased serum NfL levels in HD mice. Notably, the accumulation of huntingtin aggregates was significantly reduced in the brain's cortex, hippocampus, and striatum of luteolin-treated HD mice compared to the vehicle-treated HD group. CONCLUSION Luteolin holds promise as a therapeutic agent for improving survival outcomes, managing motor dysfunction, and reducing huntingtin aggregates in HD. The findings are of significance as currently, there are no approved therapeutic interventions that reverse HD pathology or slow down its progression.
Collapse
Affiliation(s)
- Abuelnor Mohammed
- Department of Basic Medical Sciences, College of Medicine-Dar Al Uloom University, Riyadh, Saudi Arabia
- Department of Histology and Embryology, School of Basic Medical Sciences, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Azza Ramadan
- College of Pharmacy, Al Ain University, Abu Dhbai, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Asim Ahmed Elnour
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
- Program of Clinical Pharmacy, College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Ali Awadallah Ali Mohamed Saeed
- Department of Pharmacology, Faculty of Clinical and Industrial Pharmacy, National University, Mycetoma Research Center, Khartoum, Sudan
| | - Nadia Al Mazrouei
- Department of Pharmacy Practice and Pharmacotherapeutics, Faculty of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Fahad T Alsulami
- Clinical Pharmacy Department, College of Pharmacy, Taif university, Taif, Saudi Arabia
| | - Yousef Saeed Alqarni
- Department of pharmacy practice, college of pharmacy, Imam abdulrahman bin faisal university, Dammam, Saudi Arabia
| | - Vineetha Menon
- Department of Pharmacy Practice, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
| | - Abdulla Al Amoodi
- Ambulatory Healthcare Services, Academic Affairs, Abu Dhabi Health Services (SEHA), Abu Dhabi, United Arab Emirates
| | - Sami Fatehi Abdalla
- Clinical Department, College of Medicine, Almaarefa University (Diriyah), Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Sun X, Zhou Q, Xiao C, Mao C, Liu Y, Chen G, Song Y. Role of post-translational modifications of Sp1 in cardiovascular diseases. Front Cell Dev Biol 2024; 12:1453901. [PMID: 39252788 PMCID: PMC11381397 DOI: 10.3389/fcell.2024.1453901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
Specific protein 1 (Sp1) is pivotal in sustaining baseline transcription as well as modulating cell signaling pathways and transcription factors activity. Through interactions with various proteins, especially transcription factors, Sp1 controls the expression of target genes, influencing numerous biological processes. Numerous studies have confirmed Sp1's significant regulatory role in the pathogenesis of cardiovascular disorders. Post-translational modifications (PTMs) of Sp1, such as phosphorylation, ubiquitination, acetylation, glycosylation, SUMOylation, and S-sulfhydration, can enhance or modify its transcriptional activity and DNA-binding stability. These modifications also regulate Sp1 expression across different cell types. Sp1 is crucial in regulating non-coding gene expression and the activity of proteins in response to pathophysiological stimuli. Understanding Sp1 PTMs advances our knowledge of cell signaling pathways in controlling Sp1 stability during cardiovascular disease onset and progression. It also aids in identifying novel pharmaceutical targets and biomarkers essential for preventing and managing cardiovascular diseases.
Collapse
Affiliation(s)
- Xutao Sun
- Department of Synopsis of the Golden Chamber, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qi Zhou
- Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chengpu Xiao
- Department of Typhoid, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Caiyun Mao
- Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ying Liu
- The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan, China
| | - Guozhen Chen
- Department of Pediatrics, Yantai Yuhuangding Hospital, Shandong, China
| | - Yunjia Song
- Department of Pharmacology, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
9
|
Bian Y, Liu T, Wang XJ, Zhang Y, Zhang F. Core-shell magnetic covalent organic polymer nanocomposites as an adsorbent for the extraction of flavonoids. Mikrochim Acta 2024; 191:498. [PMID: 39088087 DOI: 10.1007/s00604-024-06588-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024]
Abstract
A novel 3D magnetic nanocomposite material based on covalent organic polymers was successfully synthesized and utilized as an efficient sorbent for magnetic solid-phase extraction. It exhibited a regular core-shell structure, large specific surface area, superior stability, and paramagnetism. To evaluate its extraction efficiency, six flavonoids were tested, demonstrating maximum adsorption capacities ranging from 90 to 218 mg/g. Additionally, the material exhibited remarkable reusability and mechanical stability, maintaining its original state over eight cycles with consistent recovery. An analytical strategy combining magnetic solid-phase extraction with high performance liquid chromatography and tandem mass spectrometry was developed for the determination of flavonoids in orange, honey, soybean, and Dioscorea bulbifera L. samples. The low limits of detection (0.01-0.1 ng/mL) and limits of quantification (0.05-0.5 ng/mL), as well as satisfactory recovery (80.4-114.8%), were obtained. The linear range started from the limits of quantification to 500 ng/mL with R2 ≥ 0.9929. These results suggest that the prepared adsorbent possesses excellent adsorption capabilities for flavonoids, highlighting its significant potential for detecting these compounds in complex sample matrices.
Collapse
Affiliation(s)
- Yu Bian
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Tong Liu
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Xiu-Juan Wang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing, 100176, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, 110122, China
| | - Feng Zhang
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
- Key Laboratory of Food Quality and Safety for State Market Regulation, Beijing, 100176, China.
| |
Collapse
|
10
|
Li Y, Wang Y, Ding Y, Fan X, Ye L, Pan Q, Zhang B, Li P, Luo K, Hu B, He B, Pu Y. A Double Network Composite Hydrogel with Self-Regulating Cu 2+/Luteolin Release and Mechanical Modulation for Enhanced Wound Healing. ACS NANO 2024; 18:17251-17266. [PMID: 38907727 DOI: 10.1021/acsnano.4c04816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Designing adaptive and smart hydrogel wound dressings to meet specific needs across different stages of wound healing is crucial. Here, we present a composite hydrogel, GSC/PBE@Lut, that offers self-regulating release of cupric ions and luteolin and modulates mechanical properties to promote chronic wound healing. The double network hydrogel, GSC, is fabricated through photo-cross-linking of gelatin methacrylate, followed by Cu2+-alginate coordination cross-linking. On one hand, GSC allows for rapid Cu2+ release to eliminate bacteria in the acidic pH environment during inflammation and reduces the hydrogel's mechanical strength to minimize tissue trauma during early dressing changes. On the other hand, GSC enables slow Cu2+ release during the proliferation stage, promoting angiogenesis and biocompatibility. Furthermore, the inclusion of pH- and reactive oxygen species (ROS)-responsive luteolin nanoparticles (PBE@Lut) in the hydrogel matrix allows for controlled release of luteolin, offering antioxidant and anti-inflammatory effects and promoting anti-inflammatory macrophage polarization. In a murine model of Staphylococcus aureus infected wounds, GSC/PBE@Lut demonstrates exceptional therapeutic benefits in antibacterial, anti-inflammatory, angiogenic, and tissue regeneration. Overall, our results suggest that smart hydrogels with controlled bioactive agent release and mechanical modulation present a promising solution for treating chronic wounds.
Collapse
Affiliation(s)
- Yue Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Yunpeng Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Yuanyuan Ding
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Liansong Ye
- Department of Gastroenterology and Hepatology, Digestive Endoscopy Medical Engineering Research Laboratory, West China Hospital, Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Bowen Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Comfort Care Dental Center, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bing Hu
- Department of Gastroenterology and Hepatology, Digestive Endoscopy Medical Engineering Research Laboratory, West China Hospital, Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
11
|
Zhu M, Sun Y, Su Y, Guan W, Wang Y, Han J, Wang S, Yang B, Wang Q, Kuang H. Luteolin: A promising multifunctional natural flavonoid for human diseases. Phytother Res 2024; 38:3417-3443. [PMID: 38666435 DOI: 10.1002/ptr.8217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/06/2024] [Accepted: 04/14/2024] [Indexed: 07/12/2024]
Abstract
Natural products are closely associated with human health. Luteolin (LUT), a flavonoid polyphenolic compound, is widely found in fruits, vegetables, flowers, and herbs. It is noteworthy that LUT exhibits a variety of beneficial pharmacological properties and holds significant potential for clinical applications, particularly in antitumor, anti-convulsion, diabetes control, anti-inflammatory, neuroprotection, anti-oxidation, anti-cardiovascular, and other aspects. The potential mechanism of action has been partially elucidated, including the mediation of NF-κB, toll-like receptor, MAPK, Wnt/β-catenin, PI3K/Akt, AMPK/mTOR, and Nrf-2, among others. The review that aimed to comprehensively consolidate essential information on natural sources, pharmacological effects, therapeutic and preventive potential, as well as potential mechanisms of LUT. The objective is to establish a theoretical basis for the continued development and application of LUT.
Collapse
Affiliation(s)
- Mingtao Zhu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yang Su
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Yu Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Jianwei Han
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Shuang Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| | - Qiuhong Wang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Harbin, China
| |
Collapse
|
12
|
Zhang J, Ma Y. Luteolin as a potential therapeutic candidate for lung cancer: Emerging preclinical evidence. Biomed Pharmacother 2024; 176:116909. [PMID: 38852513 DOI: 10.1016/j.biopha.2024.116909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
Lung cancer is a prevalent malignant tumor and a leading cause of cancer-related fatalities globally. However, current treatments all have limitations. Therefore, there is an urgent need to identify a readily available therapeutic agent to counteract lung cancer development and progression. Luteolin is a flavonoid derived from vegetables and herbs that possesses preventive and therapeutic effects on various cancers. With the goal of providing new directions for the treatment of lung cancer, we review here the recent findings on luteolin so as to provide new ideas for the development of new anti-lung cancer drugs. The search focused on studies published between January 1995 and January 2024 that explored the use of luteolin in lung cancer. A comprehensive literature search was conducted in the SCOPUS, Google Scholar, PubMed, and Web of Science databases using the keywords "luteolin" and "lung cancer." By collecting previous literature, we found that luteolin has multiple mechanisms of therapeutic effects, including promotion of apoptosis in lung cancer cells; inhibition of tumor cell proliferation, invasion and metastasis; and modulation of immune responses. In addition, it can be used as an adjuvant to radio-chemotherapy and helps to ameliorate cancer complications. This review summarizes the structure, natural sources, physicochemical properties and pharmacokinetics of luteolin, and focuses on the anti-lung cancer mechanism of luteolin, so as to provide new ideas for the development of new anti-lung cancer drugs.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China
| | - Yue Ma
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, Liaoning 110004, PR China.
| |
Collapse
|
13
|
Zhang N, Chen P, Liang X, Sun J, Liu Q, Guan S, Wang Q. Luteolin targets the AGE-RAGE signaling to mitigate inflammation and ferroptosis in chronic atrophic gastritis. Aging (Albany NY) 2024; 16:10918-10930. [PMID: 38917486 PMCID: PMC11272119 DOI: 10.18632/aging.205969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024]
Abstract
Chronic atrophic gastritis (CAG) is a chronic inflammatory disease and precancerous lesion in stomach cancer. Abnormal activation cellular ferroptosis further damages gastric tissue, which is susceptible to inflammation. Luteolin has powerful anti-inflammatory and regulatory potential for cellular ferroptosis. We aimed to clarify the involvement of luteolin in inflammation and ferroptosis during CAG. Luteolin targets were searched to identify intersecting genes in the chronic atrophic gastritis disease database. The AGE-RAGE pathway is a potential target of luteolin for the treatment of chronic atrophic gastritis and a binding site between luteolin and RAGE was predicted through a computer simulation of molecular docking. We established a CAG rat model using N-methyl-N-nitro-N-nitroguanidine. The therapeutic effect of luteolin on CAG was detected using western blotting, qPCR, hematoxylin and eosin staining, lipid oxidation (MDA), and Fe2+ assays. Luteolin inhibited the AGE-RAGE signaling pathway and reduced the inflammatory response in gastric tissues. Additionally, luteolin downregulated the concentration of (MDA) and Fe2+, and CAG downregulated the expression levels of ACSL4 and NOX1 and upregulated the expression levels of FIH1 and GPX4 ferroptosis-related proteins, thus inhibiting the ferroptosis of gastric tissue cells, which had a therapeutic effect on CAG.
Collapse
Affiliation(s)
- Nailin Zhang
- Clinical Research Base Office, Hebei Provincial Hospital of Chinese Medicine, Hebei, China
- Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, Hebei Provincial Hospital of Chinese Medicine, Hebei, China
| | - Pingping Chen
- Department of Pharmacology, Hebei University of Chinese Medicine, Hebei, China
| | - Xiaoyan Liang
- Eighth Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianhui Sun
- Hebei Key Laboratory of Turbidity Toxin Syndrome, Hebei University of Chinese Medicine, Hebei, China
| | - Qiquan Liu
- Department of Spleen and Stomach Diseases, Hebei Provincial Hospital of Chinese Medicine, Hebei, China
| | - Shengjiang Guan
- Pharmaceutical Department, Hebei Provincial Hospital of Chinese Medicine, Hebei, China
| | - Qiao Wang
- Pharmacological Analysis Teaching and Research Department, Hebei Medical University, Hebei, China
| |
Collapse
|
14
|
Rauf A, Wilairatana P, Joshi PB, Ahmad Z, Olatunde A, Hafeez N, Hemeg HA, Mubarak MS. Revisiting luteolin: An updated review on its anticancer potential. Heliyon 2024; 10:e26701. [PMID: 38455556 PMCID: PMC10918152 DOI: 10.1016/j.heliyon.2024.e26701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/04/2024] [Accepted: 02/19/2024] [Indexed: 03/09/2024] Open
Abstract
Numerous natural products found in our diet, such as polyphenols and flavonoids, can prevent the progression of cancer. Luteolin, a natural flavone, present in significant amounts in various fruits and vegetables plays a key role as a chemopreventive agent in treating various types of cancer. By inducing apoptosis, initiating cell cycle arrest, and decreasing angiogenesis, metastasis, and cell proliferation, luteolin is used to treat cancer. Its anticancer properties are attributed to its capability to engage with multiple molecular targeted sites and modify various signaling pathways in tumor cells. Luteolin has been shown to slow the spread of cancer in breast, colorectal, lung, prostate, liver, skin, pancreatic, oral, and gastric cancer models. It exhibits antioxidant properties and can be given to patients receiving Doxorubicin (DOX) chemotherapy to prevent the development of unexpected adverse reactions in the lungs and hematopoietic system subjected to DOX. Furthermore, it could be an excellent candidate for synergistic studies to overcome drug resistance in cancer cells. Accordingly, this review covers the recent literature related to the use of luteolin against different types of cancer, along with the mechanisms of action. In addition, the review highlights luteolin as a complementary medicine for preventing and treating cancer.
Collapse
Affiliation(s)
- Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Payal B. Joshi
- Operations and Method Development, Shefali Research Laboratories, Ambernath, (East)-421501, Maharashtra, India
| | - Zubair Ahmad
- Department of Chemistry, University of Swabi, Anbar 23561, Khyber Pakhtunkhwa, Pakistan
| | - Ahmed Olatunde
- Department of Medical Biochemistry, Abubakar Tafawa Balewa University, Bauchi, 740272, Nigeria
| | - Nabia Hafeez
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, 25120, KPK, Pakistan
| | - Hassan A. Hemeg
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Al-Medinah, Al-Monawara Postcode, Saudi Arabia
| | | |
Collapse
|
15
|
Hao F, Deng X, Yu X, Wang W, Yan W, Zhao X, Wang X, Bai C, Wang Z, Han L. Taraxacum: A Review of Ethnopharmacology, Phytochemistry and Pharmacological Activity. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:183-215. [PMID: 38351703 DOI: 10.1142/s0192415x24500083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Taraxacum refers to the genus Taraxacum, which has a long history of use as a medicinal plant and is widely distributed around the world. There are over 2500 species in the genus Taraxacum recorded as medicinal plants in China, Central Asia, Europe, and the Americas. It has traditionally been used for detoxification, diuresis, liver protection, the treatment of various inflammations, antimicrobial properties, and so on. We used the most typically reported Taraxacum officinale as an example and assembled its chemical makeup, including sesquiterpene, triterpene, steroids, flavone, sugar and its derivatives, phenolic acids, fatty acids, and other compounds, which are also the material basis for its pharmacological effects. Pharmacological investigations have revealed that Taraxacum crude extracts and chemical compounds contain antimicrobial infection, anti-inflammatory, antitumor, anti-oxidative, liver protective, and blood sugar and blood lipid management properties. These findings adequately confirm the previously described traditional uses and aid in explaining its therapeutic applications.
Collapse
Affiliation(s)
- Fusheng Hao
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Xinxin Deng
- Department of Integration of Chinese and Western Medicine, Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Peking University Cancer Hospital & Institute, Beijing 100142, P. R. China
| | - Xin Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Wen Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Wei Yan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Xi Zhao
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Xiaofei Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Changcai Bai
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Zhizhong Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, P. R. China
| | - Lu Han
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, P. R. China
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, P. R. China
| |
Collapse
|
16
|
Guo Z, Ye G, Tang C, Xiong H. Exploring effect of herbal monomers in treating gouty arthritis based on nuclear factor-kappa B signaling: A review. Medicine (Baltimore) 2024; 103:e37089. [PMID: 38306549 PMCID: PMC10843426 DOI: 10.1097/md.0000000000037089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/05/2024] [Indexed: 02/04/2024] Open
Abstract
Gouty arthritis (GA) is an inflammatory disease caused by disorders of the purine metabolism. Although increasing number of drugs have been used to treat GA with the deepening of relevant research, GA still cannot be cured by simple drug therapy. The nuclear factor-kappa B (NF-κB) signaling pathway plays a key role in the pathogenesis of GA. A considerable number of Chinese herbal medicines have emerged as new drugs for the treatment of GA. This article collected relevant research on traditional Chinese medicine monomers in the treatment of GA using NF-κB, GA, etc. as keywords; and conducted a systematic search of relevant published articles using the PubMed database. In this study, we analyzed the therapeutic effects of traditional Chinese medicine monomers on GA in the existing literature through in vivo and in vitro experiments using animal and cell models. Based on this review, we believe that traditional Chinese medicine monomers that can treat GA through the NF-κB signaling pathway are potential new drug development targets. This study provides research ideas for the development and application of new drugs for GA.
Collapse
Affiliation(s)
- Zhanghao Guo
- Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Guisheng Ye
- Department of Ophthalmology, The First Hospital of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Chengjian Tang
- Department of Ophthalmology, The First Hospital of Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Hui Xiong
- Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| |
Collapse
|
17
|
Khatib M, Cecchi L, Bellumori M, Zonfrillo B, Mulinacci N. Polysaccharides and Phenolic Compounds Recovered from Red Bell Pepper, Tomato and Basil By-Products Using a Green Extraction by Extractor Timatic ®. Int J Mol Sci 2023; 24:16653. [PMID: 38068976 PMCID: PMC10706253 DOI: 10.3390/ijms242316653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Fruits and vegetables processing produces significant amounts of by-products rich in valuable bioactive compounds such as polyphenols and dietary fiber. Food by-product re-use promotes the eco-sustainability of several crops. This study aimed to apply green extractions of bioactive compounds from by-products of basil, tomato, and red bell pepper production. Tests were performed by applying extraction procedures both at laboratory scale and using the Timatic® extractor. Water and ethanol 10% and 20% were used for extraction of red bell pepper and tomato, testing different temperatures (30, 50, and 90 °C; water at 90 °C and ethanol 20% were applied for basil. The obtained phenolic extracts were analyzed by HPLC-DAD-MS. Polysaccharides of tomato and red bell pepper were extracted at laboratory scale and chemically characterized using 1H-NMR to define the methylation and acylation degree, and DLS to estimate the hydrodynamic volume. Laboratory extraction tests allowed efficient scaling-up of the process on the Timatic® extractor. Phenolic content in the dried extracts (DE) ranged 8.0-11.2 mg/g for tomato and red bell pepper and reached 240 mg/g for basil extracts. Polysaccharide yields (w/w on DM) reached 6.0 and 10.4% for dried tomato and red bell pepper, respectively. Dry extracts obtained using the Timatic® extractor and water can be useful sources of bioactive phenols. The study provided new data on tomato and red bell pepper polysaccharides that may be useful for future applications.
Collapse
Affiliation(s)
- Mohamad Khatib
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.K.); (M.B.); (B.Z.)
- National Interuniversity Consortium of Materials Science & Technology, Via Giusti 9, 50121 Florence, Italy
| | - Lorenzo Cecchi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale Delle Cascine 16, 50144 Florence, Italy;
| | - Maria Bellumori
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.K.); (M.B.); (B.Z.)
| | - Beatrice Zonfrillo
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.K.); (M.B.); (B.Z.)
| | - Nadia Mulinacci
- Department of NEUROFARBA, Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (M.K.); (M.B.); (B.Z.)
| |
Collapse
|
18
|
Han X, Liang L, He C, Ren Q, Su J, Cao L, Zheng J. A real-world study and network pharmacology analysis of EGFR-TKIs combined with ZLJT to delay drug resistance in advanced lung adenocarcinoma. BMC Complement Med Ther 2023; 23:422. [PMID: 37990309 PMCID: PMC10664478 DOI: 10.1186/s12906-023-04213-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/12/2023] [Indexed: 11/23/2023] Open
Abstract
OBJECTIVE This study aimed to explore the efficacy and safety of combining epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) with ZiLongJin Tablet (ZLJT) in delaying acquired resistance in advanced EGFR-mutant lung adenocarcinoma (LUAD) patients. Furthermore, we employed network pharmacology and molecular docking techniques to investigate the underlying mechanisms. METHODS A retrospective comparative study was conducted on stage IIIc/IV LUAD patients treated with EGFR-TKIs alone or in combination with ZLJT at the Second Affiliated Hospital of the Air Force Medical University between January 1, 2017, and May 1, 2023. The study evaluated the onset of TKI resistance, adverse reaction rates, safety indicators (such as aspartate aminotransferase, alanine aminotransferase, and creatinine), and inflammatory markers (neutrophil-to-lymphocyte ratio and platelet-to-lymphocyte ratio) to investigate the impact of EGFR-TKI combined with ZLJT on acquired resistance and prognostic indicators. Additionally, we utilized the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, the Bioinformatics Analysis Tool for Molecular Mechanism of Traditional Chinese Medicine, PubChem, UniProt, and Swiss Target Prediction databases to identify the active ingredients and targets of ZLJT. We obtained differentially expressed genes related to EGFR-TKI sensitivity and resistance from the Gene Expression Omnibus database using the GSE34228 dataset, which included sensitive (n = 26) and resistant (n = 26) PC9 cell lines. The "limma" package in R software was employed to detect DEGs. Based on this, we constructed a protein‒protein interaction network, performed gene ontology and KEGG enrichment analyses, and conducted pathway network analysis to elucidate the correlation between the active ingredients in ZLJT and signaling pathways. Finally, molecular docking was performed using AutoDockVina, PYMOL 2.2.0, and Discovery Studio Client v19.1.0 software to simulate spatial and energy matching during the recognition process between predicted targets and their corresponding compounds. RESULTS (1) A total of 89 patients were included, with 40 patients in the EGFR-TKI combined with ZLJT group (combination group) and 49 patients in the EGFR-TKI alone group (monotherapy group). The baseline characteristics of the two groups were comparable. There was a significant difference in the onset of resistance between the combination group and the monotherapy group (P < 0.01). Compared to the monotherapy group, the combination group showed a prolongation of 3.27 months in delayed acquired resistance. There was also a statistically significant difference in the onset of resistance to first-generation TKIs between the two groups (P < 0.05). (2) In terms of safety analysis, the incidence of adverse reactions related to EGFR-TKIs was 12.5% in the combination group and 14.3% in the monotherapy group, but this difference was not statistically significant (P > 0.05). There were no statistically significant differences in serum AST, ALT, CREA, TBIL, ALB and BUN levels between the two groups after medication (P > 0.05). (3) Regarding inflammatory markers, there were no statistically significant differences in the changes in neutrophil-to-lymphocyte Ratio(NLR) and Platelet-to-lymphocyte Ratio(PLR) values before and after treatment between the two groups (P > 0.05). (4) Network pharmacology analysis identified 112 active ingredients and 290 target genes for ZLJT. From the GEO database, 2035 differentially expressed genes related to resistant LUAD were selected, and 39 target genes were obtained by taking the intersection. A "ZLJT-compound-target-disease" network was successfully constructed using Cytoscape 3.7.0. GO enrichment analysis revealed that ZLJT mainly affected biological processes such as adenylate cyclase-modulating G protein-coupled receptor. In terms of cellular components, ZLJT was associated with the cell projection membrane. The molecular function primarily focused on protein heterodimerization activity. KEGG enrichment analysis indicated that ZLJT exerted its antitumor and anti-drug resistance effects through pathways such as the PI3K-Akt pathway. Molecular docking showed that luteolin had good binding activity with FOS (-9.8 kJ/mol), as did tanshinone IIA with FOS (-9.8 kJ/mol) and quercetin with FOS (-8.7 kJ/mol). CONCLUSION ZLJT has potential antitumor progression effects. For patients with EGFR gene-mutated non-small cell LUAD, combining ZLJT with EGFR-TKI treatment can delay the occurrence of acquired resistance. The underlying mechanisms may involve altering signal transduction pathways, blocking the tumor cell cycle, inhibiting tumor activity, enhancing cellular vitality, and improving the bioavailability of combination therapy. The combination of EGFR-TKI and ZLJT represents an effective approach for the treatment of tumors using both Chinese and Western medicine.
Collapse
Affiliation(s)
- Xue Han
- Shaanxi University of Chinese Medicine, Shiji Avenue, Xixian new area, Xianyang, Shaanxi, China
- The Second Affiliated Hospital of Air Force Medical University, Xinsi Avenue, Baqiao Area, Xi'an, Shaanxi, China
| | - Lan Liang
- Shaanxi University of Chinese Medicine, Shiji Avenue, Xixian new area, Xianyang, Shaanxi, China
| | - Chenming He
- Shaanxi University of Chinese Medicine, Shiji Avenue, Xixian new area, Xianyang, Shaanxi, China
| | - Qinyou Ren
- The Second Affiliated Hospital of Air Force Medical University, Xinsi Avenue, Baqiao Area, Xi'an, Shaanxi, China
| | - Jialin Su
- The Second Affiliated Hospital of Air Force Medical University, Xinsi Avenue, Baqiao Area, Xi'an, Shaanxi, China
| | - Liang Cao
- The Second Affiliated Hospital of Air Force Medical University, Xinsi Avenue, Baqiao Area, Xi'an, Shaanxi, China.
| | - Jin Zheng
- The Second Affiliated Hospital of Air Force Medical University, Xinsi Avenue, Baqiao Area, Xi'an, Shaanxi, China.
| |
Collapse
|
19
|
Xue L, Jin X, Ji T, Li R, Zhuge X, Xu F, Quan Z, Tong H, Yu W. Luteolin ameliorates DSS-induced colitis in mice via suppressing macrophage activation and chemotaxis. Int Immunopharmacol 2023; 124:110996. [PMID: 37776768 DOI: 10.1016/j.intimp.2023.110996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/03/2023] [Accepted: 09/24/2023] [Indexed: 10/02/2023]
Abstract
OBJECTIVES Luteolin, known for its multifaceted therapeutic properties against inflammatory diseases, holds potential for addressing the unmet need for effective treatments in ulcerative colitis (UC), a prevalent subtype of inflammatory bowel disease (IBD). This study aimed to comprehensively assess luteolin's therapeutic efficacy in a dextran sulfate sodium (DSS)-induced colitis mouse model, shedding light on its anti-UC mechanisms. METHODS Our investigation encompassed in vivo assessments of luteolin's therapeutic potential against DSS-induced colitis through rigorous histopathological examination and biochemical analyses. Furthermore, we scrutinized luteolin's anti-inflammatory prowess in vitro using lipopolysaccharide (LPS)-stimulated RAW264.7 cells and primary peritoneal macrophages. Additionally, we quantitatively evaluated the impact of luteolin on C-C motif chemokine ligand 2 (CCL2)-induced macrophage migration employing Transwell and Zigmond chambers. Furthermore, cellular thermal shift assay (CETSA), drug affinity responsive target stability (DARTS) assay, and molecular docking were employed to identify potential therapeutic targets of luteolin and investigate their binding sites and interaction patterns. RESULTS Luteolin demonstrated therapeutic potential against DSS-induced colitis by ameliorating colitis symptoms, restoring intestinal barrier integrity, and inhibiting proinflammatory cytokine production in the colonic tissues. Moreover, luteolin demonstrated robust anti-inflammatory activity in vitro, in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and primary peritoneal macrophages. Notably, luteolin suppressed the phosphorylation of IKKα/β, IκBα, and p65, along with preventing IκBα degradation in LPS-treated RAW264.7 cells and peritoneal macrophages. Furthermore, luteolin impaired the migratory behavior of RAW264.7 cells and peritoneal macrophages, as evidenced by reduced migration distance and velocity of luteolin-treated macrophages. Mechanistically, luteolin was found to antagonize IKKα/β, subsequently inhibiting IKKα/β phosphorylation and the activation of NF-κB signaling. CONCLUSION Luteolin emerges as a promising lead compound for the clinical therapy of colitis by virtue of its ability to ameliorate DSS-induced colitis, antagonize IKKα/β, suppress NF-κB signaling, and impede macrophage activation and migration.
Collapse
Affiliation(s)
- Liwei Xue
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, Zhejiang Province, PR China
| | - Xiaosheng Jin
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, Zhejiang Province, PR China
| | - Tingting Ji
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, Zhejiang Province, PR China
| | - Rongzhou Li
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, Zhejiang Province, PR China
| | - Xiaoju Zhuge
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, Zhejiang Province, PR China
| | - Fang Xu
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, Zhejiang Province, PR China
| | - Zijiao Quan
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, Zhejiang Province, PR China
| | - Haibin Tong
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou 325000, Zhejiang Province, PR China.
| | - Weilai Yu
- Department of Gastroenterology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, Zhejiang Province, PR China.
| |
Collapse
|
20
|
Aghelan Z, Pashaee S, Abtahi SH, Karima S, Khazaie H, Ezati M, Khodarahmi R. Natural Immunosuppressants as a Treatment for Chronic Insomnia Targeting the Inflammatory Response Induced by NLRP3/caspase-1/IL-1β Axis Activation: A Scooping Review. J Neuroimmune Pharmacol 2023; 18:294-309. [PMID: 37552452 DOI: 10.1007/s11481-023-10078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/10/2023] [Indexed: 08/09/2023]
Abstract
Chronic insomnia is an inflammatory-related disease with an important pathological basis for various diseases which is a serious threat to a person's physical and mental health. So far, many hypotheses have been proposed to explain the pathogenesis of insomnia, among which inflammatory mechanisms have become the focus of scientific attention. In this regard, the aim of the present scooping review is to evaluate the potential benefits of natural compounds in treatment of chronic insomnia targeting nucleotide-binding oligomerization domain (NOD)-like receptor-pyrin-containing protein 3 (NLRP3)/caspase-1/IL-1β axis as one of the most important activators of inflammatory cascades. The data show that compounds that have the potential to cause inflammation induce sleep disorders, and that inflammatory mediators are key molecules in regulating the sleep-related activity of neurons. In the inflammatory process of insomnia, the role of NLRP3 in the pathogenesis of insomnia has been gradually considered by researchers. NLRP3 is an intracellular sensor that recognizes the widest range of pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs). After identification and binding to damage factors, NLRP3 inflammasome is assembled to activate the caspase-1 and IL-1β. Increased production and secretion of IL-1β may be involved in central nervous system dysregulation of physiological sleep. The current scooping review reports the potential benefits of natural compounds that target NLRP3 inflammasome pathway activity and highlights the hypothesis which NLRP3 /caspase-1/IL-1β may serve as a potential therapeutic target for managing inflammation and improving symptoms in chronic insomnia.
Collapse
Affiliation(s)
- Zahra Aghelan
- Department of Clinical Biochemistry, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Somayeh Pashaee
- Department of Clinical Biochemistry, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Hosein Abtahi
- Department of Laboratory Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Behehshti University of Medical Sciences, Tehran, Iran
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Ezati
- Medical Biology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Nurse Street, Kermanshah, 6714415185, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Nurse Street, Kermanshah, 6714415185, Iran.
| |
Collapse
|
21
|
Tassinari V, Smeriglio A, Stillittano V, Trombetta D, Zilli R, Tassinari R, Maranghi F, Frank G, Marcoccia D, Di Renzo L. Endometriosis Treatment: Role of Natural Polyphenols as Anti-Inflammatory Agents. Nutrients 2023; 15:2967. [PMID: 37447296 DOI: 10.3390/nu15132967] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Endometriosis is an estrogen-dependent common chronic inflammatory disease defined by the presence of extrauterine endometrial tissue that promotes pelvic pain and fertility impairment. Its etiology is complex and multifactorial, and several not completely understood theories have been proposed to describe its pathogenesis. Indeed, this disease affects women's quality of life and their reproductive system. Conventional therapies for endometriosis treatment primarily focus on surgical resection, lowering systemic levels of estrogen, and treatment with non-steroidal anti-inflammatory drugs to counteract the inflammatory response. However, although these strategies have shown to be effective, they also show considerable side effects. Therefore, there is a growing interest in the use of herbal medicine for the treatment of endometriosis; however, to date, only very limited literature is present on this topic. Polyphenols display important anti-endometriotic properties; in particular, they are potent phytoestrogens that in parallel modulates estrogen activity and exerts anti-inflammatory activity. The aim of this review is to provide an overview on anti-inflammatory activity of polyphenols in the treatment of endometriosis.
Collapse
Affiliation(s)
- Valentina Tassinari
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Virgilio Stillittano
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Romano Zilli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
| | - Roberta Tassinari
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Francesca Maranghi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Giulia Frank
- Ph.D. School of Applied Medical-Surgical Sciences, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Daniele Marcoccia
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova 1411, 00178 Rome, Italy
- School of Specialization in Food Science, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Laura Di Renzo
- School of Specialization in Food Science, University of Rome Tor Vergata, 00133 Rome, Italy
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
22
|
Jeong PS, Yang HJ, Jeon SB, Gwon MA, Kim MJ, Kang HG, Lee S, Park YH, Song BS, Kim SU, Koo DB, Sim BW. Luteolin supplementation during porcine oocyte maturation improves the developmental competence of parthenogenetic activation and cloned embryos. PeerJ 2023; 11:e15618. [PMID: 37377789 PMCID: PMC10292194 DOI: 10.7717/peerj.15618] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Luteolin (Lut), a polyphenolic compound that belongs to the flavone subclass of flavonoids, possesses anti-inflammatory, cytoprotective, and antioxidant activities. However, little is known regarding its role in mammalian oocyte maturation. This study examined the effect of Lut supplementation during in vitro maturation (IVM) on oocyte maturation and subsequent developmental competence after somatic cell nuclear transfer (SCNT) in pigs. Lut supplementation significantly increased the proportions of complete cumulus cell expansion and metaphase II (MII) oocytes, compared with control oocytes. After parthenogenetic activation or SCNT, the developmental competence of Lut-supplemented MII oocytes was significantly enhanced, as indicated by higher rates of cleavage, blastocyst formation, expanded or hatching blastocysts, and cell survival, as well as increased cell numbers. Lut-supplemented MII oocytes exhibited significantly lower levels of reactive oxygen species and higher levels of glutathione than control MII oocytes. Lut supplementation also activated lipid metabolism, assessed according to the levels of lipid droplets, fatty acids, and ATP. The active mitochondria content and mitochondrial membrane potential were significantly increased, whereas cytochrome c and cleaved caspase-3 levels were significantly decreased, by Lut supplementation. These results suggest that Lut supplementation during IVM improves porcine oocyte maturation through the reduction of oxidative stress and mitochondria-mediated apoptosis.
Collapse
Affiliation(s)
- Pil-Soo Jeong
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Hae-Jun Yang
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Se-Been Jeon
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, Republic of Korea
| | - Min-Ah Gwon
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, Republic of Korea
| | - Min Ju Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang, Republic of Korea
| | - Hyo-Gu Kang
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
- Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University, Daejeon, Republic of Korea
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Young-Ho Park
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Bong-Seok Song
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Sun-Uk Kim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
- Department of Functional Genomics, University of Science and Technology, Daejeon, Republic of Korea
| | - Deog-Bon Koo
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, Republic of Korea
| | - Bo-Woong Sim
- Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| |
Collapse
|
23
|
Skała E, Szopa A. Dipsacus and Scabiosa Species-The Source of Specialized Metabolites with High Biological Relevance: A Review. Molecules 2023; 28:molecules28093754. [PMID: 37175164 PMCID: PMC10180103 DOI: 10.3390/molecules28093754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
The genera Dipsacus L. and Scabiosa L. of the Caprifoliaceae family are widely distributed in Europe, Asia, and Africa. This work reviews the available literature on the phytochemical profiles, ethnomedicinal uses, and biological activities of the most popular species. These plants are rich sources of many valuable specialized metabolites with beneficial medicinal properties, such as triterpenoid derivatives, iridoids, phenolic acids, and flavonoids. They are also sources of essential oils. The genus Dipsacus has been used for centuries in Chinese and Korean folk medicines to treat bone (osteoporosis) and joint problems (rheumatic arthritis). The Korean Herbal Pharmacopoeia and Chinese Pharmacopoeia include Dipsaci radix, the dried roots of D. asperoides C.Y.Cheng & T.M.Ai. In addition, S. comosa Fisch. ex Roem & Schult. and S. tschiliiensis Grunning are used in traditional Mongolian medicine to treat liver diseases. The current scientific literature data indicate that these plants and their constituents have various biological properties, including inter alia antiarthritic, anti-neurodegenerative, anti-inflammatory, antioxidant, anticancer, and antimicrobial activities; they have also been found to strengthen tendon and bone tissue and protect the liver, heart, and kidney. The essential oils possess antibacterial, antifungal, and insecticidal properties. This paper reviews the key biological values of Dipsacus and Scabiosa species, as identified by in vitro and in vivo studies, and presents their potential pharmacological applications.
Collapse
Affiliation(s)
- Ewa Skała
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| |
Collapse
|