1
|
Yang JP, Kulkarni NN, Yamaji M, Shiraishi T, Pham T, Do H, Aiello N, Shaw M, Nakamura T, Abiru A, Gavva NR, Horman SR. Unveiling immune cell response disparities in human primary cancer-associated fibroblasts between two- and three-dimensional cultures. PLoS One 2024; 19:e0314227. [PMID: 39700125 DOI: 10.1371/journal.pone.0314227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/06/2024] [Indexed: 12/21/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) play pivotal roles in solid tumor initiation, growth, and immune evasion. However, the optimal biomimetic modeling conditions remain elusive. In this study, we investigated the effects of 2D and 3D culturing conditions on human primary CAFs integrated into a modular tumor microenvironment (TME). Using single-nucleus RNA sequencing (snRNAseq) and Proteomics' Proximity Extension Assays, we characterized CAF transcriptomic profiles and cytokine levels. Remarkably, when cultured in 2D, CAFs exhibited a myofibroblast (myCAF) subtype, whereas in 3D tumor spheroid cultures, CAFs displayed a more inflammatory (iCAF) pathological state. By integrating single-cell gene expression data with functional interrogations of critical TME-related processes [natural killer (NK)-mediated tumor killing, monocyte migration, and macrophage differentiation], we were able to reconcile form with function. In 3D TME spheroid models, CAFs enhance cancer cell growth and immunologically shield cells from NK cell-mediated cytotoxicity, in striking contrast with their 2D TME counterparts. Notably, 3D CAF-secreted proteins manifest a more immunosuppressive profile by enhancing monocyte transendothelial migration and differentiation into M2-like tumor-associated macrophages (TAMs). Our findings reveal a more immunosuppressive and clinically relevant desmoplastic TME model that can be employed in industrial drug discovery campaigns to expand the cellular target range of chemotherapeutics.
Collapse
Affiliation(s)
- Jian-Ping Yang
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| | - Nikhil Nitin Kulkarni
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| | - Masashi Yamaji
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| | | | - Thang Pham
- BioTuring, San Diego, California, United States of America
| | - Han Do
- BioTuring, San Diego, California, United States of America
| | - Nicole Aiello
- Bristol-Myers Squibb, Princeton, New Jersey, United States of America
| | - Michael Shaw
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | | | - Akiko Abiru
- Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa, Japan
| | - Narender R Gavva
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| | - Shane R Horman
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| |
Collapse
|
2
|
Cho HS, Park JH, Olawuyi IF, Nam JO, Lee WY. Physicochemical characteristics and anti-inflammatory properties of Zophobas morio (super mealworm) protein extracted by different methods. Food Chem 2024; 468:142519. [PMID: 39706115 DOI: 10.1016/j.foodchem.2024.142519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/01/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
In this study, Zophobas morio protein (ZMP) was extracted via combining alkaline extraction with ultrasound-assisted (AE-UAE) or microwave-assisted (AE-MAE) extraction in comparison with their respective single extraction methods and conventional method. AE-UAE and AE-MAE exhibited a higher extraction yield (40.68 % and 36.80 %, respectively) than single methods and conventional method (29.19 %-35.89 %). SDS-PAGE showed AE-UAE and AE-MAE induced new formation of smaller molecular weight proteins. Moreover, the hybrid methods decreased α-helix content, whereas increased β-sheet by unfolding the structure of ZMPs. ZMPs demonstrated significant anti-inflammatory properties by ameliorating LPS-induced macrophage activation and subsequent excessive expression of immune modulators in RAW264.7 cells. Notably, at 200 μg/mL, AE-UAE protein reduced approximately 65 % of nitric oxide and 85 % of iNOS expression, decreased TNF-α secretion by 35 % and IL-6 secretion by 68 %, and decreased CD80 expression by 50 %. In conclusion, the proposed hybrid methods are applicable for efficient extraction of ZMP with improved biological activities.
Collapse
Affiliation(s)
- Ha-Seong Cho
- School of Food Science and Technology, Kyungpook National University, Daegu 702-701, Republic of Korea.
| | - Ju-Hwi Park
- School of Food Science and Technology, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Ibukunoluwa Fola Olawuyi
- School of Food Science and Technology, Kyungpook National University, Daegu 702-701, Republic of Korea; Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ju-Ock Nam
- School of Food Science and Technology, Kyungpook National University, Daegu 702-701, Republic of Korea; Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Won-Young Lee
- School of Food Science and Technology, Kyungpook National University, Daegu 702-701, Republic of Korea; Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
3
|
Wang X, Dou J, Liu M, Zhang Y, Li Y, Tong Z. Potential predictive value of immune-related genes FUCA1 and NCKAP1L for osteosarcoma metastasis. Gene 2024; 927:148645. [PMID: 38844271 DOI: 10.1016/j.gene.2024.148645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/07/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Osteosarcoma is a common malignant tumor with a low survival rate after metastasis. Current treatments have not proven to effectively increase patient survival rates. Immunotherapy is a promising new treatment approach, however, immune target therapy has not shown satisfactory results. This study aims to provide new insights and evidence for the use of immunotherapy in osteosarcoma, based on a comprehensive analysis of gene expression data from databases. METHODS Gene expression and GSAV analysis were conducted on samples from patients with metastatic and non-metastatic osteosarcoma in the TARGET and GEO databases to identify relevant genes. These genes were further analyzed using GO, KEGG, GSVA, correlation analysis, and immune microenvironment scoring techniques. The tissue location of gene expression was confirmed through single-cell analysis. Validation of gene expression patterns was performed using polymerase chain reaction, western blot, and immunohistochemistry. RESULTS The study identified FUCA1 and NCKAP1L as significantly enriched in non-metastatic osteosarcoma, with higher expression associated with better patient survival rates. Gene function enrichment was primarily related to immune functions, with positive correlations to macrophage phagocytosis, antigen presentation, and macrophage polarization pathways. Analysis of the immune microenvironment revealed a positive correlation between gene expression and immune scores, with increased presence of macrophages, T cells, and B cells in the high expression group. Single-cell analysis and experimental results confirmed the enrichment of FUCA1 and NCKAP1L in macrophages. CONCLUSION The identification of FUCA1 and NCKAP1L as potential prognostic biomarkers suggests their potential for improving patient outcomes. Modulation of macrophages may offer a promising strategy for enhancing the immune microenvironment in osteosarcoma.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi'an Jiaotong University, 76 Nanguo Road, Xi'an, China
| | - Junzhe Dou
- The Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Maorong Liu
- The Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yunheng Zhang
- The Second Clinical Medical College, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yi Li
- Department of Foot and Ankle Surgery, Honghui Hospital, Xi'an Jiaotong University, 76 Nanguo Road, Xi'an, China.
| | - Zhichao Tong
- Department of Bone tumor, Honghui Hospital, Xi'an Jiaotong University, 76 Nanguo Road, Xi'an, China.
| |
Collapse
|
4
|
Nujoom N, Koyakutty M, Biswas L, Rajkumar T, Nair SV. Emerging Gene-editing nano-therapeutics for Cancer. Heliyon 2024; 10:e39323. [PMID: 39524822 PMCID: PMC11550658 DOI: 10.1016/j.heliyon.2024.e39323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Remarkable progress has been made in the field of genome engineering after the discovery of CRISPR/Cas9 in 2012 by Jennifer Doudna and Emmanuelle Charpentier. Compared to any other gene-editing tools, CRISPR/Cas9 attracted the attention of the scientific community because of its simplicity, specificity, and multiplex editing possibilities for which the inventors were awarded the Nobel prize for chemistry in 2020. CRISPR/Cas9 allows targeted alteration of the genomic sequence, gene regulation, and epigenetic modifications using an RNA-guided site-specific endonuclease. Though the impact of CRISPR/Cas9 was undisputed, some of its limitations led to key modifications including the use of miniature-Cas proteins, Cas9 Retron precise Parallel Editing via homologY (CRISPEY), Cas-Clover, or development of alternative methods including retron-recombineering, Obligate Mobile Element Guided Activity(OMEGA), Fanzor, and Argonaute proteins. As cancer is caused by genetic and epigenetic alterations, gene-editing was found to be highly useful for knocking out oncogenes, editing mutations to regain the normal functioning of tumor suppressor genes, knock-out immune checkpoint blockade in CAR-T cells, producing 'off-the-shelf' CAR-T cells, identify novel tumorigenic genes and functional analysis of multiple pathways in cancer, etc. Advancements in nanoparticle-based delivery of guide-RNA and Cas9 complex to the human body further enhanced the potential of CRISPR/Cas9 for clinical translation. Several studies are reported for developing novel delivery methods to enhance the tumor-specific application of CRISPR/Cas9 for anticancer therapy. In this review, we discuss new developments in novel gene editing techniques and recent progress in nanoparticle-based CRISPR/Cas9 delivery specific to cancer applications.
Collapse
Affiliation(s)
- Najma Nujoom
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Manzoor Koyakutty
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Lalitha Biswas
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Thangarajan Rajkumar
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| | - Shantikumar V. Nair
- Amrita School of Nanosciences and Molecular Medicine, Amrita Vishwavidyapeetham (University), Ponekkara P.O., Kochi, India
| |
Collapse
|
5
|
Palmerini E, Lopez Pousa A, Grignani G, Redondo A, Hindi N, Provenzano S, Sebio A, Lopez Martin JA, Valverde C, Martinez Trufero J, Gutierrez A, de Alava E, Gomez MPA, D'Ambrosio L, Collini P, Bazzocchi A, Moura DS, Ibrahim T, Stacchiotti S, Broto JM. Nivolumab and sunitinib in patients with advanced bone sarcomas: A multicenter, single-arm, phase 2 trial. Cancer 2024. [PMID: 39540661 DOI: 10.1002/cncr.35628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/31/2024] [Accepted: 09/09/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Herein, we present the results of the phase 2 IMMUNOSARC study (NCT03277924), investigating sunitinib and nivolumab in adult patients with advanced bone sarcomas (BS). METHODS Progressing patients with a diagnosis of BS were eligible. Treatment was comprised of sunitinib (37.5 mg/day on days 1-14, 25 mg/day afterword) plus nivolumab (3 mg/kg every 2 weeks). Primary end point was progression-free survival rate (PFSR) at 6 months based on central radiology review. Secondary end points were overall survival (OS), overall response rate (ORR) by Response Evaluation Criteria in Solid Tumors (RECIST) v1.1, and safety. RESULTS A total of 46 patients were screened, 40 patients entered the study, and 38 underwent central radiological review and were evaluable for primary end point. Median age was 47 years (range, 21-74). Histologies include 17 (43%) osteosarcoma, 14 chondrosarcoma (35%, 10 conventional, four dedifferentiated [DDCS]), eight (20%) Ewing sarcoma, and one (2%) undifferentiated pleomorphic sarcoma. The PFSR at 6 months was 42% (95% confidence interval [CI], 27-58). With a median follow-up of 39.8 months (95% CI, 37.9-41.7), the median PFS and OS were 3.8 months (95% CI, 2.7-4.8) and 11.9 months (95% CI, 5.6-18.2). ORR by RECIST was 5%, with two of 38 partial responses (one of four DDCS and one of 17 osteosarcoma), 19 of 38 (50%) stable disease, and 17 of 38 (45%) progressions. Grade ≥3 adverse events were neutropenia (six of 40, 15%), anemia (5/40, hypertension (6/40, 15%), 12.5%), ALT/AST elevation (5/40, 12.5%), and pneumonitis (1/40, 2.5%). Seventeen percent of patients discontinued treatment due to toxicity, including a treatment-related grade 5 pneumonitis CONCLUSION: The trial met its primary end point in the BS cohort with >15% of patients progression-free at 6 months. However, the toxicity profile of this regimen was relevant.
Collapse
Affiliation(s)
- Emanuela Palmerini
- Osteoncology, Bone and Soft Tissue Tumors and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | | | - Andres Redondo
- Medical Oncology Department, Hospital Universitario La Paz-IdiPAZ, Madrid, Spain
| | - Nadia Hindi
- Medical Oncology Department, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
- Hospital General de Villalba, Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Salvatore Provenzano
- Adult Mesenchymal and Rare Tumour Unit, Fondazione IRCCS Istituto Nazionale Tumori Milan, Milano, Italy
| | - Ana Sebio
- Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | | | | | - Enrique de Alava
- Institute of Biomedicine of Sevilla, IBiS/Virgen del Rocio University Hospital/CSIC/University of Sevilla/CIBERONC, Seville, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, Seville, Spain
| | - Maria Pilar Aparisi Gomez
- Department of Radiology, Auckland City Hospital, Auckland District Health Board, Grafton, Auckland, New Zealand
- Department of Radiology, IMSKE, Valencia, Spain
| | - Lorenzo D'Ambrosio
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo (TO), Italy
- Department of Oncology, University of Turin, Turin, Italy
| | - Paola Collini
- Soft Tissue Tumor Pathology, Advanced Diagnostics Department, IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alberto Bazzocchi
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - David S Moura
- Medical Oncology Department, Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Toni Ibrahim
- Osteoncology, Bone and Soft Tissue Tumors and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Silvia Stacchiotti
- Adult Mesenchymal and Rare Tumour Unit, Fondazione IRCCS Istituto Nazionale Tumori Milan, Milano, Italy
| | - Javier Martin Broto
- Medical Oncology Department, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
- Hospital General de Villalba, Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| |
Collapse
|
6
|
Wang J, Wang L, Han L, Han Y, Gu J, Chen Z. Formononetin attenuates hepatic injury in diabetic mice by regulating macrophage polarization through the PTP1B/STAT6 axis. Int Immunopharmacol 2024; 140:112802. [PMID: 39088924 DOI: 10.1016/j.intimp.2024.112802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/05/2024] [Accepted: 07/23/2024] [Indexed: 08/03/2024]
Abstract
BACKGROUND Formononetin (FNT) is an isoflavone known for its anti-inflammatory properties and has been shown to reduce insulin resistance in Type 2 Diabetes Mellitus (T2DM). However, its effects and the underlying mechanisms in diabetic liver injury remain largely unexplored. METHODS We established a T2DM-induced liver injury mouse model by feeding high-fat diet, followed by injecting streptozotocin. The mice were then treated with FNT and the liver function in these mice was assessed. Macrophage markers in FNT-treated T2DM mice or human THP-1 cells were evaluated using flow cytometry, RT-qPCR, and Western blotting. The expression of PTP1B and STAT6 in mouse liver tissues and THP-1 cells was analyzed. Molecular docking predicted the interaction between PTP1B and STAT6, which was validated via co-immunoprecipitation (Co-IP) and phos-tag analysis. Microscale thermophoresis (MST) assessed the binding affinity of FNT to PTP1B. RESULTS FNT treatment significantly ameliorated blood glucose levels, hepatocyte apoptosis, inflammatory response, and liver dysfunction in T2DM mice. Moreover, FNT facilitated M2 macrophage polarization in both T2DM mice and high glucose (HG)-induced THP-1-derived macrophages. The PTP1B/STAT6 axis, deregulated in T2DM mice, was normalized by FNT treatment, which counteracted the T2DM-induced upregulation of PTP1B and downregulation of phosphorylated STAT6. Molecular docking and subsequent analyses revealed that PTP1B binds to and dephosphorylates STAT6 at the S325A site. In contrast, FNT strongly binds to PTP1B and influences its expression at the K116A site, promoting M2 polarization of THP-1 cells via downregulation of PTP1B. CONCLUSION Formononetin mitigates diabetic hepatic injury by fostering M2 macrophage polarization via the PTP1B/STAT6 axis.
Collapse
Affiliation(s)
- Jinchun Wang
- Department of Pharmacy, Jiangsu Health Vocational College, 150 Fenghuang W St, Gulou, Nanjing, Jiangsu 211800, China
| | - Lei Wang
- Department of Pharmacy, Jiangsu Health Vocational College, 150 Fenghuang W St, Gulou, Nanjing, Jiangsu 211800, China
| | - Lei Han
- Department of Pharmacy, Jiangsu Health Vocational College, 150 Fenghuang W St, Gulou, Nanjing, Jiangsu 211800, China
| | - Yiwen Han
- Department of Clinical Medicine, Jiangsu Health Vocational College, 150 Fenghuang W St, Gulou, Nanjing, Jiangsu 211800, China
| | - Jun Gu
- Department of Public Health, Nanjing Medical University, 140 Hanzhong Rd, Gulou, Nanjing, Jiangsu 211166, China
| | - Zhujing Chen
- Department of Outpatient, Jurong People's Hospital, Jurong, No 66. Two holy road, Jurong, Zhenjiang, Jiangsu 212400, China.
| |
Collapse
|
7
|
Yang C, Lai Y, Wang J, Chen Q, Pan Q, Xu C, Mo P, Guo G, Chen R, Liu N, Wu Y. Spatial Heterogeneity of PD-1/PD-L1 Defined Osteosarcoma Microenvironments at Single-Cell Spatial Resolution. J Transl Med 2024; 104:102143. [PMID: 39321925 DOI: 10.1016/j.labinv.2024.102143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/25/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
Osteosarcoma, predominantly affecting children and adolescents, is a highly aggressive bone cancer with a 5-year survival rate of 65% to 70%. The spatial dynamics between tumor-associated macrophage (TAM) and other cellular subtypes, including T cells, osteoblasts, and osteoclasts, are critical for understanding the complexities of the osteosarcoma tumor microenvironment (TME) and can provide insights into potential immunotherapeutic strategies. Our study employs a pioneering approach that combines deep learning-based digital image analysis with multiplex fluorescence immunohistochemistry to accurately implement cell detection, segmentation, and fluorescence intensity measurements for the in-depth study of the TME. We introduce a novel algorithm for TAM/osteoclast differentiation, crucial for the accurate characterization of cellular composition. Our findings reveal distinct heterogeneity in cell composition and spatial orchestration between PD-1 (-/+) and PD-L1 (-/+) patients, highlighting the role of T-cell functionality in this context. Furthermore, our analysis demonstrates the efficacy of nivolumab in suppressing tumor growth and enhancing lymphocyte infiltration without altering the M1/M2-TAM ratio. This study provides critical insights into the spatial orchestration of cellular subtypes within the PD-1/PD-L1 defined osteosarcoma TME. By leveraging advanced multiplex fluorescence immunohistochemistry and artificial intelligence, we underscore the critical role of TAMs and T-cell interactions, proposing new therapeutic avenues focusing on TAM repolarization and targeted immunotherapies, thus underscoring the study's potential impact on improving osteosarcoma treatment.
Collapse
Affiliation(s)
- Cheng Yang
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| | - Yan Lai
- Department of Pathology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| | - Juan Wang
- The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| | - Qin Chen
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| | - Qilin Pan
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| | - Canhua Xu
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| | - Pingfan Mo
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| | - Guangxiu Guo
- Department of Pathology, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China
| | - Rongchun Chen
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China.
| | - Ning Liu
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China.
| | - Yaohong Wu
- Department of Spine Surgery, The Affiliated Ganzhou Hospital of Nanchang University, Ganzhou, China.
| |
Collapse
|
8
|
Shahrezaei A, Sohani M, Sohouli M, Taherkhani S, Nasirinezhad F. The involvement and significance of M2 macrophages in neuropathic pain following spinal cord injury: a systematic review. J Physiol Sci 2024; 74:45. [PMID: 39294621 PMCID: PMC11409760 DOI: 10.1186/s12576-024-00932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 08/09/2024] [Indexed: 09/20/2024]
Abstract
Neuropathic pain (NeP) is a type of persistent pain initiated by diseases or injuries of the nervous system. Although the underlying pathophysiological mechanisms of NeP are poorly understood, the immune system plays a key role in this condition. M2 macrophages have a key role in tissue healing and the reduction of inflammation. This systematic study aims to provide an overview of the role and importance of M2 macrophages in NeP after spinal cord injury (SCI). A comprehensive systematic review was conducted utilizing Scopus, PubMed, Embase, and ISI Web of Science databases. Two independent reviewers conducted the article selection. All publications examine the impact of M2 macrophages on NeP following spinal cord injuries. A quality assessment was conducted on bias entities that had been predetermined. Eleven papers met the criteria. According to the findings, focusing on immune cell polarization presents viable therapeutic options for treating NeP and enhancing recovery after SCI. M2 macrophages are essential for reducing neuropathic pain and promoting recovery after spinal cord injury. The modulation of M2 macrophages by a number of therapeutic approaches, including ivermectin-functionalized MWCNTs, isorhamnetin, Neuregulin-1 administration, TMEM16F inhibition, lentivirus-mediated delivery of anti-inflammatory cytokines, epigallocatechin-3-gallate, and red-light therapy promotes neuroregeneration, decreases neuroinflammatory cytokines, and reduces NeP. The results of these preclinical investigations must, however, be interpreted with caution, according to the quality assessment and risk of bias analysis of the studies that were included. Targeting M2 macrophages may have therapeutic benefits as they are essential for the management of NeP and recovery following spinal cord damage.
Collapse
Affiliation(s)
- Aidin Shahrezaei
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Sohani
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadhassan Sohouli
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soroush Taherkhani
- Department of Physiology, Iran University of Medical Sciences, Tehran, Iran
| | - Farinaz Nasirinezhad
- Department of Physiology, Iran University of Medical Sciences, Tehran, Iran.
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Center of Experimental and Comparative Study, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Ren S, Pan R, Wang Z. Multi-omics and Single Cell Sequencing Analyses Reveal Associations of Mitophagy-Related Genes Predicting Clinical Prognosis and Immune Infiltration Characteristics in Osteosarcoma. Mol Biotechnol 2024:10.1007/s12033-024-01280-w. [PMID: 39264525 DOI: 10.1007/s12033-024-01280-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Despite recent advances in clinical treatments, identifying high-risk osteosarcoma (OS) patients remains an unresolved clinical challenge. Mitophagy, a specialized form of cellular autophagy, selectively reduces the number of mitochondria or repairs their abnormal functions in response to external stress, thereby ensuring mitochondrial quality and maintaining mitochondrial function. Mitophagy plays a crucial role in cancer development, including processes such as mitochondrial repair, homeostasis maintenance, and tumor metabolism. However, its impact on OS has not yet been reported. In this study, we collected 58 mitophagy-related genes (MPRGs) from the TARGET and GEO databases and bioinformatically screened for those associated with OS prognosis. By LASSO-multivariable Cox regression algorithm, we subsequently developed a novel scoring system, the MPRG score, and validated its significance in predicting OS prognosis. Immune landscape analysis showed patients in the low MPRG group had a higher immune infiltration level than those in the high MPRG group. Drug sensitivity differences highlighted the potential need for alternative therapeutic strategies based on MPRG scoring system. The distribution characteristics of the MPRG signature in different cell subtypes of OS were explored by single-cell sequencing analyses. In vitro experiments further confirmed the abnormal expression of screened targets in OS. Our findings highlight the role of mitophagy in OS and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Shengquan Ren
- Department of Hand and Foot Microsurgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Rongfang Pan
- Department of Nutrition, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Zhengdan Wang
- Department of Hand and Foot Microsurgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
10
|
Lin Y, Chen J, Xin S, Lin Y, Chen Y, Zhou X, Chen H, Li X. CYP24A1 affected macrophage polarization through degradation of vitamin D as a candidate biomarker for ovarian cancer prognosis. Int Immunopharmacol 2024; 138:112575. [PMID: 38963981 DOI: 10.1016/j.intimp.2024.112575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024]
Abstract
Ovarian cancer (OC) is a fatal gynecological malignancy with a poor prognosis in which mitochondria-related genes are involved deeply. In this study, we aim to screen mitochondria-related genes that play a role in OC prognosis and investigate its effects. Through single-cell sequencing technology and bioinformatics analysis, including TCGA ovarian cancer data analysis, gene expression signature analysis (GES), immune infiltration analysis, Gene Ontology (GO) enrichment analysis, Gene Set Enrichment Analysis (GSEA), and Principal Component Analysis (PCA), our findings revealed that CYP24A1 regulated macrophage polarization through vitamin D (VD) degradation and served as a target gene for the second malignant subtype of OC through bioinformatics analyses. For further validation, the expression and function of CYP24A1 in OC cells was investigated. And the expression of CYP24A1 was much higher in carcinoma than in paracancerous tissue, whereas the VD content decreased in the OC cell lines with CYP24A1 overexpression. Moreover, macrophages were polarized towards M1 after the intervention of VD-treated OC cell lines and inhibited the malignant phenotypes of OC. However, the effect could be reversed by overexpressing CYP24A1, resulting in the polarization of M2 macrophages, thereby promoting tumor progression, as verified by constructing xenograft models in vitro. In conclusion, our findings suggested that CYP24A1 induced M2 macrophage polarization through interaction with VD, thus promoting the malignant progression of OC.
Collapse
Affiliation(s)
- YaoXiang Lin
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - JiongFei Chen
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - SiJia Xin
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Ya Lin
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - YongChao Chen
- Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Xiaojing Zhou
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - Hao Chen
- Department of Pathology, Hangzhou Women's Hospital, Hangzhou, Zhejiang 310008, People's Republic of China.
| | - XiangJuan Li
- Hangzhou Women's Hospital, Hangzhou, Zhejiang 310008, People's Republic of China.
| |
Collapse
|
11
|
Gholami A. Cancer stem cell-derived exosomes in CD8 + T cell exhaustion. Int Immunopharmacol 2024; 137:112509. [PMID: 38889509 DOI: 10.1016/j.intimp.2024.112509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/15/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024]
Abstract
Tumor-derived extracellular vesicles (EVs) are one of the most important ways of intercellular communication and signaling. Cancer stem cells (CSCs) secrete EVs to modulate immune checkpoint molecules and evade immune surveillance. Activated CD8+ T cells known as cytotoxic T lymphocytes (CTLs) are the most powerful anti-cancer adaptive cells. Their activity is compromised upon encountering cells and signaling within the tumor microenvironment (TME), resulting in hyporesponsiveness called exhaustion. CSC-derived exosomes express programmed death ligand-1 (PD-L1) and upregulate programmed death-1 (PD-1) on CD8+ T cells to promote their exhaustion. PD-L1 expression on tumor-derived exosomes appears to be induced by CSC-derived exosomes containing transforming growth factor (TGF)-β. Tenascin-C is another constituent of CSC exosomes that acts on mammalian target of rapamycin (mTOR) signaling in T cells. Glycolysis is a metabolic event promoted by the inducing effect of CSC-derived exosomes on hypoxia-inducible factor-1α (HIF-1α). CSC interaction with CD8+ T cells is even more complex as the CSC-derived exosomes contain Notch1 to stimulate stemness in non-tumor cells, and the inducible effect of Notch1 on PD-1 promotes CD8+ T cell exhaustion. CSC exosome targeting has not been extensively studied yet. Advances in the field will open up new therapeutic windows and shape the future of cancer immunotherapy.
Collapse
Affiliation(s)
- Amir Gholami
- Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
12
|
Tatsuno R, Komohara Y, Pan C, Kawasaki T, Enomoto A, Jubashi T, Kono H, Wako M, Ashizawa T, Haro H, Ichikawa J. Surface Markers and Chemokines/Cytokines of Tumor-Associated Macrophages in Osteosarcoma and Other Carcinoma Microenviornments-Contradictions and Comparisons. Cancers (Basel) 2024; 16:2801. [PMID: 39199574 PMCID: PMC11353089 DOI: 10.3390/cancers16162801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumor in children and adolescents. Prognosis is improving with advances in multidisciplinary treatment strategies, but the development of new anticancer agents has not, and improvement in prognosis for patients with pulmonary metastases has stalled. In recent years, the tumor microenvironment (TME) has gained attention as a therapeutic target for cancer. The immune component of OS TME consists mainly of tumor-associated macrophages (TAMs). They exhibit remarkable plasticity, and their phenotype is influenced by the TME. In general, surface markers such as CD68 and CD80 show anti-tumor effects, while CD163 and CD204 show tumor-promoting effects. Surface markers have potential value as diagnostic and prognostic biomarkers. The cytokines and chemokines produced by TAMs promote tumor growth and metastasis. However, the role of TAMs in OS remains unclear to date. In this review, we describe the role of TAMs in OS by focusing on TAM surface markers and the TAM-produced cytokines and chemokines in the TME, and by comparing their behaviors in other carcinomas. We found contrary results from different studies. These findings highlight the urgency for further research in this field to improve the stalled OS prognosis percentages.
Collapse
Affiliation(s)
- Rikito Tatsuno
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan; (Y.K.); (C.P.)
| | - Cheng Pan
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8555, Japan; (Y.K.); (C.P.)
| | - Tomonori Kawasaki
- Department of Pathology, Saitama Medical University International Medical Center, Saitama 350-1298, Japan;
| | - Atsushi Enomoto
- Department of Pathology, Graduate School of Medicine, Nagoya University, Nagoya 464-8601, Japan;
| | - Takahiro Jubashi
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Hiroyuki Kono
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Masanori Wako
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Tomoyuki Ashizawa
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Hirotaka Haro
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| | - Jiro Ichikawa
- Department of Orthopaedic Surgery, University of Yamanashi, Yamanashi 400-0016, Japan; (R.T.); (T.J.); (H.K.); (M.W.); (T.A.); (H.H.)
| |
Collapse
|
13
|
Gu W, Guo W, Ren Z, Zhang Y, Han M, Zhao Q, Gao Y, Mao Y, Wang S. A bioactive nanocomposite integrated specific TAMs target and synergistic TAMs repolarization for effective cancer immunotherapy. Bioact Mater 2024; 38:472-485. [PMID: 38779591 PMCID: PMC11109736 DOI: 10.1016/j.bioactmat.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/10/2024] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Reactive oxygen species (ROS) generated from photosensitizers exhibit great potential for repolarizing immunosuppressive tumor-associated macrophages (TAMs) toward the anti-tumor M1 phenotype, representing a promising cancer immunotherapy strategy. Nevertheless, their effectiveness in eliminating solid tumors is generally limited by the instability and inadequate TAMs-specific targeting of photosensitizers. Here, a novel core-shell integrated nano platform is proposed to achieve a coordinated strategy of repolarizing TAMs for potentiating cancer immunotherapy. Colloidal mesoporous silica nanoparticles (CMSN) are fabricated to encapsulate photosensitizer-Indocyanine Green (ICG) to improve their stability. Then ginseng-derived exosome (GsE) was coated on the surface of ICG/CMSN for targeting TAMs, as well as repolarizing TAMs concurrently, named ICG/CMSN@GsE. As expected, with the synergism of ICG and GsE, ICG/CMSN@GsE exhibited better stability, mild generation of ROS, favorable specificity toward M2-like macrophages, enhancing drug retention in tumors and superior TAMs repolarization potency, then exerted a potent antitumor effect. In vivo, experiment results also confirm the synergistic suppression of tumor growth accompanied by the increased presence of anti-tumor M1-like macrophages and maximal tumor damage. Taken together, by integrating the superiorities of TAMs targeting specificity and synergistic TAMs repolarization effect into a single nanoplatform, ICG/CMSN@GsE can readily serve as a safe and high-performance nanoplatform for enhanced cancer immunotherapy.
Collapse
Affiliation(s)
- Wei Gu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| | - Wen Guo
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| | - Zhishuang Ren
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| | - Yimeng Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| | - Meiqi Han
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| | - Yikun Gao
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, China
| |
Collapse
|
14
|
Ding L, Wu L, Cao Y, Wang H, Li D, Chen W, Huang P, Jiang Z. Modulating tumor-associated macrophage polarization by anti-maRCO mAb exerts anti-osteosarcoma effects through regulating osteosarcoma cell proliferation, migration and apoptosis. J Orthop Surg Res 2024; 19:453. [PMID: 39085912 PMCID: PMC11290128 DOI: 10.1186/s13018-024-04950-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
PURPOSE Osteosarcoma is a primary bone tumor lacking optimal clinical treatment options. Tumor-associated macrophages in the tumor microenvironment are closely associated with tumor development and metastasis. Studies have identified the macrophage receptor with collagenous structure (MARCO) as a specific receptor expressed in macrophages. This study aimed to investigate whether anti-MARCO mAb treatment can induce macrophage polarization in the tumor microenvironment and elicit anti-tumor effects. METHODS THP-1 cells were treated with 20 ng/mL phorbol 12-myristate 13-acetate and 80 ng/mL interleukin-4 for 48 h to induce macrophage polarization to alternatively activated macrophages (M2). Enzyme-linked immunosorbent assay, real-time quantitative polymerase chain reaction, flow cytometry, and bioinformatic analyses were performed to evaluate macrophage polarization. The co-culture groups included a blank group, an M2 macrophage and U2OS co-culture group, and an anti-MARCO mAb-treated M2 macrophage group. Cell viability assays, cell scratch tests, apoptosis, and cell cycle analyses were performed to determine the effects of anti-MARCO mAb-treated macrophages on osteosarcoma cells. RESULTS It was demonstrated that anti-MARCO mAb can drive macrophages toward classically activated macrophage (M1) polarization. Anti-MARCO mAb promoted the secretion of pro-inflammatory factors by macrophages, including tumor necrosis factor-alpha (TNF-α), interleukin-1beta, interleukin-6 and interleukin-23. Studies on in vitro co-culture models have revealed that macrophages treated with anti-MARCO mAb can suppress the growth and migration of osteosarcoma cells, induce cell apoptosis, and inhibit cell cycle progression of osteosarcoma cells through M1 polarization of macrophages in vitro. CONCLUSION Anti-MARCO mAb treatment exerts anti-osteosarcoma effects by affecting macrophage polarization toward M1 macrophages, offering a potential new therapeutic approach for treating osteosarcoma.
Collapse
Affiliation(s)
- Lei Ding
- Department of Orthopedic Surgery, Fudan University Jinshan Hospital, Shanghai, China
| | - Ling Wu
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Linjiang road No.76, Yuzhong District, Chongqing, China
| | - Yuting Cao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, No.600, Yishan Road, Shanghai, China
| | - Hao Wang
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Linjiang road No.76, Yuzhong District, Chongqing, China
| | - Defang Li
- Department of Orthopedic Surgery, Fudan University Jinshan Hospital, Shanghai, China
| | - Weibin Chen
- Department of Orthopedic Surgery, Fudan University Jinshan Hospital, Shanghai, China
| | - Ping Huang
- Center for Joint Surgery, Department of Orthopedic Surgery, The Second Affiliated Hospital of Chongqing Medical University, Linjiang road No.76, Yuzhong District, Chongqing, China.
| | - Zengxin Jiang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital, No.600, Yishan Road, Shanghai, China.
| |
Collapse
|
15
|
Vanmeerbeek I, Naulaerts S, Sprooten J, Laureano RS, Govaerts J, Trotta R, Pretto S, Zhao S, Cafarello ST, Verelst J, Jacquemyn M, Pociupany M, Boon L, Schlenner SM, Tejpar S, Daelemans D, Mazzone M, Garg AD. Targeting conserved TIM3 +VISTA + tumor-associated macrophages overcomes resistance to cancer immunotherapy. SCIENCE ADVANCES 2024; 10:eadm8660. [PMID: 39028818 PMCID: PMC11259173 DOI: 10.1126/sciadv.adm8660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 06/14/2024] [Indexed: 07/21/2024]
Abstract
Despite the success of immunotherapy, overcoming immunoresistance in cancer remains challenging. We identified a unique niche of tumor-associated macrophages (TAMs), coexpressing T cell immunoglobulin and mucin domain-containing 3 (TIM3) and V-domain immunoglobulin suppressor of T cell activation (VISTA), that dominated human and mouse tumors resistant to most of the currently used immunotherapies. TIM3+VISTA+ TAMs were sustained by IL-4-enriching tumors with low (neo)antigenic and T cell-depleted features. TIM3+VISTA+ TAMs showed an anti-inflammatory and protumorigenic phenotype coupled with inability to sense type I interferon (IFN). This was established with cancer cells succumbing to immunogenic cell death (ICD). Dying cancer cells not only triggered autocrine type I IFNs but also exposed HMGB1/VISTA that engaged TIM3/VISTA on TAMs to suppress paracrine IFN-responses. Accordingly, TIM3/VISTA blockade synergized with paclitaxel, an ICD-inducing chemotherapy, to repolarize TIM3+VISTA+ TAMs to proinflammatory TAMs that killed cancer cells via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) signaling. We propose targeting TIM3+VISTA+ TAMs to overcome immunoresistant tumors.
Collapse
Affiliation(s)
- Isaure Vanmeerbeek
- Laboratory of Cell Stress and Immunity, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Stefan Naulaerts
- Laboratory of Cell Stress and Immunity, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Laboratory of Cell Stress and Immunity, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Raquel S. Laureano
- Laboratory of Cell Stress and Immunity, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Laboratory of Cell Stress and Immunity, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Rosa Trotta
- Laboratory of Tumour Inflammation and Angiogenesis, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Tumour Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Samantha Pretto
- Laboratory of Tumour Inflammation and Angiogenesis, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Tumour Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Shikang Zhao
- Laboratory of Tumour Inflammation and Angiogenesis, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Tumour Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sarah Trusso Cafarello
- Laboratory of Tumour Inflammation and Angiogenesis, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Tumour Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Joren Verelst
- Laboratory of Tumour Inflammation and Angiogenesis, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Tumour Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Maarten Jacquemyn
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Leuven, Belgium
| | - Martyna Pociupany
- Laboratory of Cell Stress and Immunity, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | | | - Susan M. Schlenner
- Laboratory of Adaptive Immunity, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Sabine Tejpar
- Laboratory for Molecular Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Dirk Daelemans
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, Leuven, Belgium
| | - Massimiliano Mazzone
- Laboratory of Tumour Inflammation and Angiogenesis, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory of Tumour Inflammation and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Abhishek D. Garg
- Laboratory of Cell Stress and Immunity, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
16
|
ZHU YIWEN, YANG LIU, YU YING, XIONG YING, XIAO PING, FU XIAO, LUO XIN. Hydroxysafflor yellow A induced ferroptosis of Osteosarcoma cancer cells by HIF-1α/HK2 and SLC7A11 pathway. Oncol Res 2024; 32:899-910. [PMID: 38686047 PMCID: PMC11055989 DOI: 10.32604/or.2023.042604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/01/2023] [Indexed: 05/02/2024] Open
Abstract
Osteosarcoma is a very serious primary bone cancer with a high death rate and a dismal prognosis. Since there is no permanent therapy for this condition, it is necessary to develop a cure. Therefore, this investigation was carried out to assess the impacts and biological functions of hydroxysafflor yellow A (HYSA) in osteosarcoma cell lines (MG63). In this investigational study, MG63 cells were utilized. Microarray experiments, quantitative polymerase chain reaction (qPCR), immunofluorescent staining, extracellular acidification rate (ECAR), oxygen consumption rate (OCR), glucose consumption, lactate production, and ATP levels, proliferation assay, 5-Ethynyl-2'-deoxyuridine (EDU) staining, and Western blot were performed. In MG63 cells, HYSA lowered cell proliferation and metastasis rates, suppressed EDU cell number, and enhanced caspase-3/9 activity levels. HYSA reduced the Warburg effect and induced ferroptosis (FPT) in MG63 cells. Inhibiting ferroptosis diminished HYSA's anti-cancer activities in MG63 cells. The stimulation of the HIF-1α/SLC7A11 pathway decreased HYSA's anti-cancer activities in MG63 cells. HIF-1α is one target spot for HYSA in a model of osteosarcoma cancer (OC). HYSA altered HIF-1α's thermophoretic activity; following binding with HYSA, HIF-1α's melting point increased from ~55°C to ~60°C. HYSA significantly enhanced the thermal stability of exogenous WT HIF-1α while not affecting Mut HIF-1α, suggesting that ARG-311, GLY-312, GLN-347, and GLN-387 may be involved in the interaction between HIF-1α and HYSA. Conclusively, our study revealed that HYSA induced FPT and reduced the Warburg effect of OC through mitochondrial damage by HIF-1α/HK2/SLC7A11 pathway. HYSA is a possible therapeutic option for OC or other cancers.
Collapse
Affiliation(s)
- YIWEN ZHU
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - LIU YANG
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - YING YU
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - YING XIONG
- Department of General Practice, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - PING XIAO
- Department of General Practice, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - XIAO FU
- Department of General Practice, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - XIN LUO
- Department of General Practice, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| |
Collapse
|
17
|
Padovani CM, Wilson RM, Rodriguez A, Spur BW, Yin K. Resolvin D2 attenuates LPS-induced macrophage exhaustion. FASEB J 2024; 38:e23569. [PMID: 38551610 DOI: 10.1096/fj.202302521r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 04/02/2024]
Abstract
Early in sepsis, a hyperinflammatory response is dominant, but later, an immunosuppressive phase dominates, and the host is susceptible to opportunistic infections. Anti-inflammatory agents may accelerate the host into immunosuppression, and few agents can reverse immunosuppression without causing inflammation. Specialized pro-resolving mediators (SPMs) such as resolvin D2 (RvD2) have been reported to resolve inflammation without being immunosuppressive, but little work has been conducted to examine their effects on immunosuppression. To assess the effects of RvD2 on immunosuppression, we established a model of macrophage exhaustion using two lipopolysaccharide (LPS) treatments or hits. THP-1 monocyte-derived macrophages were first treated with RvD2 or vehicle for 1 h. One LPS hit increased NF-κB activity 11-fold and TNF-α release 60-fold compared to unstimulated macrophages. RvD2 decreased LPS-induced NF-κB activity and TNF-α production but increased bacterial clearance. Two LPS hits reduced macrophage bacterial clearance and decreased macrophage NF-κB activity (45%) and TNF-α release (75%) compared to one LPS hit, demonstrating exhaustion. RvD2 increased NF-κB activity, TNF-α release, and bacterial clearance following two LPS hits compared to controls. TLR2 inhibition abolished RvD2-mediated changes. In a mouse sepsis model, splenic macrophage response to exogenous LPS was reduced compared to controls and was restored by in vivo administration of RvD2, supporting the in vitro results. If RvD2 was added to monocytes before differentiation into macrophages, however, RvD2 reduced LPS responses and increased bacterial clearance following both one and two LPS hits. The results show that RvD2 attenuated macrophage suppression in vitro and in vivo and that this effect was macrophage-specific.
Collapse
Affiliation(s)
- Cristina M Padovani
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Virtua Health College of Life Sciences of Rowan University, Stratford, New Jersey, USA
| | - Rachael M Wilson
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Virtua Health College of Life Sciences of Rowan University, Stratford, New Jersey, USA
| | - Ana Rodriguez
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Virtua Health College of Life Sciences of Rowan University, Stratford, New Jersey, USA
| | - Bernd W Spur
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Virtua Health College of Life Sciences of Rowan University, Stratford, New Jersey, USA
| | - Kingsley Yin
- Department of Cell Biology and Neuroscience, Rowan-Virtua School of Translational Biomedical Engineering and Sciences, Virtua Health College of Life Sciences of Rowan University, Stratford, New Jersey, USA
| |
Collapse
|
18
|
Wang X, Mijiti W, Jia Q, Yi Z, Ma J, Zhou Z, Xie Z. Exploration of altered miRNA expression and function in MSC-derived extracellular vesicles in response to hydatid antigen stimulation. Front Microbiol 2024; 15:1381012. [PMID: 38601938 PMCID: PMC11004373 DOI: 10.3389/fmicb.2024.1381012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Background Hydatid disease is caused by Echinococcus parasites and can affect various tissues and organs in the body. The disease is characterized by the presence of hydatid cysts, which contain specific antigens that interact with the host's immune system. Mesenchymal stem cells (MSCs) are pluripotent stem cells that can regulate immunity through the secretion of extracellular vesicles (EVs) containing microRNAs (miRNAs). Methods In this study, hydatid antigens were isolated from sheep livers and mice peritoneal cavities. MSCs derived from mouse bone marrow were treated with different hydatid antigens, and EVs were isolated and characterized from the conditioned medium of MSCs. Small RNA library construction, miRNA target prediction, and differential expression analysis were conducted to identify differentially expressed miRNAs. Functional enrichment and network construction were performed to explore the biological functions of the target genes. Real-time PCR and Western blotting were used for miRNA and gene expression verification, while ELISA assays quantified TNF, IL-1, IL-6, IL-4, and IL-10 levels in cell supernatants. Results The study successfully isolated hydatid antigens and characterized MSC-derived EVs, demonstrating the impact of antigen concentration on MSC viability. Key differentially expressed miRNAs, such as miR-146a and miR-9-5p, were identified, with functional analyses revealing significant pathways like Endocytosis and MAPK signaling associated with these miRNAs' target genes. The miRNA-HUB gene regulatory network identified crucial miRNAs and HUB genes, such as Traf1 and Tnf, indicating roles in immune modulation and osteogenic differentiation. Protein-protein interaction (PPI) network analysis highlighted central HUB genes like Akt1 and Bcl2. ALP activity assays confirmed the influence of antigens on osteogenic differentiation, with reduced ALP activity observed. Expression analysis validated altered miRNA and chemokine expression post-antigen stimulation, with ELISA analysis showing a significant reduction in CXCL1 expression in response to antigen exposure. Conclusion This study provides insights into the role of MSC-derived EVs in regulating parasite immunity. The findings suggest that hydatid antigens can modulate the expression of miRNAs in MSC-derived EVs, leading to changes in chemokine expression and osteogenic capacity. These findings contribute to a better understanding of the immunomodulatory mechanisms involved in hydatid disease and provide potential therapeutic targets for the development of new treatment strategies.
Collapse
Affiliation(s)
- Xin Wang
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Wubulikasimu Mijiti
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Qiyu Jia
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Zhifei Yi
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Junchao Ma
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Ziyu Zhou
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Zengru Xie
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
- Key Laboratory of High Incidence Disease Research in Xingjiang (Xinjiang Medical University), Ministry of Education, Ürümqi, Xinjiang, China
- Xinjiang Clinical Research Center for Orthopedics, Xinjiang Medical University, Ürümqi, Xinjiang, China
| |
Collapse
|
19
|
Liu Z, Li C, Cao Y, Xu X, Zhou Z, Du J, Yang S, Yang H. Manganese(III) Phthalocyanine Complex Nanoparticle-Loaded Glucose Oxidase to Enhance Tumor Inhibition through Energy Metabolism and Macrophage Polarization. ACS APPLIED BIO MATERIALS 2024; 7:1862-1877. [PMID: 38450575 DOI: 10.1021/acsabm.3c01251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Elevated levels of reactive oxygen species (ROS) have demonstrated efficacy in eliminating tumor cells by modifying the tumor microenvironment and inducing the polarization of tumor-associated macrophages (TAMs). Nevertheless, the transient nature and limited diffusion distance inherent in ROS present significant challenges in cancer treatment. In response to these limitations, we have developed a nanoparticle (MnClPc-HSA@GOx) that not only inhibits tumor energy metabolism but also facilitates the transition of TAMs from the M2 type (anti-inflammatory type) to the M1 type (proinflammatory type). MnClPc-HSA@GOx comprises a manganese phthalocyanine complex (MnClPc) enveloped in human serum albumin (HSA), with glucose oxidase (GOx) loaded onto MnClPc@HSA nanoparticles. GOx was employed to catalyze the decomposition of glucose to produce H2O2 and gluconic acid. Additionally, in the presence of MnClPc, it catalyzes the conversion of H2O2 into •O2- and 1O2. Results indicate that the nanoparticle effectively impedes the glucose supply to tumor cells and suppresses their energy metabolism. Simultaneously, the ROS-mediated polarization of TAMs induces a shift from M2 to M1 macrophages, resulting in a potent inhibitory effect on tumors. This dual-action strategy holds promising clinical inhibition applications in the treatment of cancer.
Collapse
Affiliation(s)
- Zhaoyang Liu
- Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Chao Li
- Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Yushi Cao
- Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Xin Xu
- Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Zhiguo Zhou
- Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Jing Du
- Department of Ultrasound, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Shiping Yang
- Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| | - Hong Yang
- Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
20
|
Jürgens DC, Winkeljann B, Kolog Gulko M, Jin Y, Möller J, Winkeljann J, Sheshachala S, Anger A, Hörner A, Adams NBP, Urbanetz N, Merkel OM. Efficient and Targeted siRNA Delivery to M2 Macrophages by Smart Polymer Blends for M1 Macrophage Repolarization as a Promising Strategy for Future Cancer Treatment. ACS Biomater Sci Eng 2024; 10:166-177. [PMID: 37978912 DOI: 10.1021/acsbiomaterials.3c01595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Cancer remains an issue on a global scale. It is estimated that nearly 10 million people succumbed to cancer worldwide in 2020. New treatment options are urgently needed. A promising approach is a conversion of tumor-promoting M2 tumor-associated macrophages (TAMs) as part of the tumor microenvironment to tumor-suppressive M1 TAMs by small interfering RNA (siRNA). In this work, we present a well-characterized polymeric nanocarrier system capable of targeting M2 TAMs by a ligand-receptor interaction. Therefore, we developed a blended PEI-based polymeric nanoparticle system conjugated with mannose, which is internalized after interaction with macrophage mannose receptors (MMRs), showing low cytotoxicity and negligible IL-6 activation. The PEI-PCL-PEI (5 kDa-5 kDa-5 kDa) and Man-PEG-PCL (2 kDa-2 kDa) blended siRNA delivery system was optimized for maximum targeting capability and efficient endosomal escape by evaluation of different polymer and N/P ratios. The nanoparticles were formulated by surface acoustic wave-assisted microfluidics, achieving a size of ∼80 nm and a zeta potential of approximately +10 mV. Special attention was given to the endosomal escape as the so-called bottleneck of RNA drug delivery. To estimate the endosomal escape capability of the nanocarrier system, we developed a prediction method by evaluating the particle stability via the inflection temperature. Our predictions were then verified in an in vitro setting by applying confocal microscopy. For cellular experiments, however, human THP-1 cells were polarized to M2 macrophages by cytokine treatment and validated through MMR expression. To show the efficiency of the nanoparticle system, GAPDH and IκBα knockdown was performed in the presence or absence of an MMR blocking excess of mannan. Cellular uptake, GAPDH knockdown, and NF-κB western blot confirmed efficient mannose targeting. Herein, we presented a well-characterized nanoparticle delivery system and a promising approach for targeting M2 macrophages by a mannose-MMR interaction.
Collapse
Affiliation(s)
- David C Jürgens
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, Munich 81377, Germany
| | - Benjamin Winkeljann
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, Munich 81377, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-University Munich, Munich 80799, Germany
| | | | - Yao Jin
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, Munich 81377, Germany
| | - Judith Möller
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, Munich 81377, Germany
| | - Joshua Winkeljann
- Department of Experimental Physics, University of Augsburg, Universitätsstraße 1, Augsburg 86159, Germany
| | | | - Alina Anger
- Nanotemper Technologies GmbH, Flößergasse 4, Munich 81369, Germany
| | - Andreas Hörner
- Department of Experimental Physics, University of Augsburg, Universitätsstraße 1, Augsburg 86159, Germany
| | - Nathan B P Adams
- Nanotemper Technologies GmbH, Flößergasse 4, Munich 81369, Germany
| | - Nora Urbanetz
- Daiichi Sankyo Europe GmbH, Pfaffenhofen an der Ilm 85276, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, Haus B, Munich 81377, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-University Munich, Munich 80799, Germany
| |
Collapse
|
21
|
Zając AE, Czarnecka AM, Rutkowski P. The Role of Macrophages in Sarcoma Tumor Microenvironment and Treatment. Cancers (Basel) 2023; 15:5294. [PMID: 37958467 PMCID: PMC10648209 DOI: 10.3390/cancers15215294] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Sarcomas are a heterogeneous group of malignant mesenchymal tumors, including soft tissue and bone sarcomas. Macrophages in the tumor microenvironment, involved in immunosuppression and leading to tumor development, are called tumor-associated macrophages (TAMs). TAMs are very important in modulating the microenvironment of sarcomas by expressing specific markers and secreting factors that influence immune and tumor cells. They are involved in many signaling pathways, such as p-STAT3/p-Erk1/2, PI3K/Akt, JAK/MAPK, and JAK/STAT3. TAMs also significantly impact the clinical outcomes of patients suffering from sarcomas and are mainly related to poor overall survival rates among bone and soft tissue sarcomas, for example, chondrosarcoma, osteosarcoma, liposarcoma, synovial sarcoma, and undifferentiated pleomorphic sarcoma. This review summarizes the current knowledge on TAMs in sarcomas, focusing on specific markers on sarcoma cells, cell-cell interactions, and the possibly involved molecular pathways. Furthermore, we discuss the clinical significance of macrophages in sarcomas as a potential target for new therapies, presenting clinical relevance, possible new treatment options, and ongoing clinical trials using TAMs in sarcoma treatment.
Collapse
Affiliation(s)
- Agnieszka E. Zając
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.E.Z.); (P.R.)
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.E.Z.); (P.R.)
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-176 Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.E.Z.); (P.R.)
| |
Collapse
|
22
|
Nirala BK, Yamamichi T, Petrescu DI, Shafin TN, Yustein JT. Decoding the Impact of Tumor Microenvironment in Osteosarcoma Progression and Metastasis. Cancers (Basel) 2023; 15:5108. [PMID: 37894474 PMCID: PMC10605493 DOI: 10.3390/cancers15205108] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Osteosarcoma (OS) is a heterogeneous, highly metastatic bone malignancy in children and adolescents. Despite advancements in multimodal treatment strategies, the prognosis for patients with metastatic or recurrent disease has not improved significantly in the last four decades. OS is a highly heterogeneous tumor; its genetic background and the mechanism of oncogenesis are not well defined. Unfortunately, no effective molecular targeted therapy is currently available for this disease. Understanding osteosarcoma's tumor microenvironment (TME) has recently gained much interest among scientists hoping to provide valuable insights into tumor heterogeneity, progression, metastasis, and the identification of novel therapeutic avenues. Here, we review the current understanding of the TME of OS, including different cellular and noncellular components, their crosstalk with OS tumor cells, and their involvement in tumor progression and metastasis. We also highlight past/current clinical trials targeting the TME of OS for effective therapies and potential future therapeutic strategies with negligible adverse effects.
Collapse
Affiliation(s)
| | | | | | | | - Jason T. Yustein
- Aflac Cancer and Blood Disorders Center, Emory University, Atlanta, GA 30322, USA; (B.K.N.); (T.Y.); (D.I.P.); (T.N.S.)
| |
Collapse
|
23
|
Chen P, Shen J. A Disulfidptosis-Related Gene Signature Associated with Prognosis and Immune Cell Infiltration in Osteosarcoma. Bioengineering (Basel) 2023; 10:1121. [PMID: 37892851 PMCID: PMC10603950 DOI: 10.3390/bioengineering10101121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/17/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Osteosarcoma (OS) stands as a leading aggressive bone malignancy that primarily affects children and adolescents worldwide. A recently identified form of programmed cell death, termed Disulfidptosis, may have implications for cancer progression. Yet, its role in OS remains elusive. To elucidate this, we undertook a thorough examination of Disulfidptosis-related genes (DRGs) within OS. This involved parsing expression data, clinical attributes, and survival metrics from the TARGET and GEO databases. Our analysis unveiled a pronounced association between the expression of specific DRGs, particularly MYH9 and LRPPRC, and OS outcome. Subsequent to this, we crafted a risk model and a nomogram, both honed for precise prognostication of OS prognosis. Intriguingly, risks associated with DRGs strongly resonated with immune cell infiltration levels, myriad immune checkpoints, genes tethered to immunotherapy, and sensitivities to systematic treatments. To conclude, our study posits that DRGs, especially MYH9 and LRPPRC, hold potential as pivotal architects of the tumor immune milieu in OS. Moreover, they may offer predictive insights into treatment responses and serve as reliable prognostic markers for those diagnosed with OS.
Collapse
Affiliation(s)
| | - Jingnan Shen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
24
|
Bukkuri A, Adler FR. Mathematical Modeling of Field Cancerization through the Lens of Cancer Behavioral Ecology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552382. [PMID: 37609179 PMCID: PMC10441298 DOI: 10.1101/2023.08.07.552382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Field cancerization is a process in which a normal tissue is replaced with pre-cancerous but histologically normal tissue. This transformed field can give rise to malignancy and contribute to tumor relapse. In this paper, we create a mathematical model of field cancerization from the perspective of cancer behavioral ecology. In our model, field cancerization arises from a breakdown in signaling integrity and control, and investigate implications for acute wounding, chronic wounding, aging, and therapeutic interventions. We find that restoration of communication networks can lead to cancer regression in the context of acute injury. Conversely, long term loss of controls, such as through chronic wounding or aging, can promote oncogenesis. These results are paralleled in therapeutic interventions: those that simply target cells in cancerous states may be less effective than those that reestablish signaling integrity. Viewing cancer as a corruption of communication systems rather than as a corruption of individual cells may lead to novel approaches for understanding and treating this disease.
Collapse
Affiliation(s)
- Anuraag Bukkuri
- Cancer Biology and Evolution Program and Department of Integrated Mathematical Oncology, Moffitt Cancer Center
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| | - Frederick R Adler
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
- Department of Mathematics, University of Utah, Salt Lake City, UT, United States
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
25
|
Wang T, Chen Y, Gao R, Shui J, Xie B. Overexpression of AXL on macrophages associates with disease severity and recurrence in chronic rhinosinusitis with nasal polyps. Int Immunopharmacol 2023; 121:110449. [PMID: 37302367 DOI: 10.1016/j.intimp.2023.110449] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/20/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND Chronic rhinosinusitis with nasal polyps (CRSwNP) is characterized by high tissue heterogeneity and risk of postoperative recurrence, but the underlying mechanisms are poorly elucidated. This study aims to explore the expressions of AXL on macrophages and their roles in the pathogenesis of CRSwNP, and evaluate their associations with disease severity and recurrence. METHODS Healthy controls (HCs), chronic rhinosinusitis without nasal polyps (CRSsNP) and CRSwNP patients were recruited in this study. Protein and mRNA levels of AXL and macrophage markers were detected in tissue samples, and their relationships with clinical variables and risk of postoperative recurrence were assessed. Immunofluorescence staining was conducted to confirm the location of AXL and its co-expression with macrophages. Regulated AXL in THP-1 and peripheral blood mononuclear cells (PBMC)-derived macrophages, and evaluated their polarization and cytokine secretion. RESULTS We found that AXL was enhanced in the mucosa and serum samples of CRSwNP patients, especially in recurrent cases. Tissue AXL levels were positively correlated with peripheral eosinophil count and percentage, Lund-Mackay score, Lund-Kennedy score, and macrophage M2 markers levels. Immunofluorescence staining results demonstrated that AXL was augmented and predominantly expressed on M2 macrophages in the tissues of CRSwNP, particularly in recurrent cases. In vitro experiment, overexpression of AXL promoted the M2 polarization of THP-1 and PBMC-derived macrophages, and facilitated the production of TGF-β1 and CCL-24. CONCLUSIONS AXL driving the M2 macrophage polarization exacerbated the disease severity and contributed to the postoperative recurrence in CRSwNP patients. Our findings supported AXL-targeted prevention and treatment of recurrent CRSwNP.
Collapse
Affiliation(s)
- Tiansheng Wang
- Department of Otolaryngology Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yu Chen
- Department of Otolaryngology Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Ru Gao
- Department of Otolaryngology Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jian Shui
- Clinical Laboratory, Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, People's Republic of China
| | - Bin Xie
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|