1
|
Cheng L, Chang S, Tan Y, He B. Platelet-rich plasma combined with isometric quadriceps contraction regulates autophagy in chondrocytes via the PI3K/AKT/mTOR pathway to promote cartilage repair in knee osteoarthritis. Regen Ther 2025; 28:81-89. [PMID: 39703816 PMCID: PMC11655694 DOI: 10.1016/j.reth.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/25/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024] Open
Abstract
Background This study investigated the molecular mechanism by which the combination of platelet-rich plasma (PRP) and isometric contraction of the quadriceps (ICQ) intervention regulates autophagy in chondrocytes to prevent and treat knee osteoarthritis (KOA). Methods Thirty Sprague-Dawley rats were divided into a control group (CG, n = 6) and a model group (n = 24). After one week, the model group was randomly divided into a joint intervention group (JIG), a rapamycin group (RAG), an MHY1485 group (MYG), and a model blank group (MBG), with JIG, RAG, and MYG receiving the same combined intervention. Results The trend of cartilage lesions in each group was CG < RAG < JIG < MYG < MBG. Compared with MBG and MYG, JIG and RAG showed downregulation of IL-1β, IL-6, IL-18, MMP-13, and TNF-α mRNA in the cartilage (p < 0.01); mTOR protein expression: compared with JIG, RAG showed downregulation, and MYG showed upregulation. Compared with RAG, MYG showed upregulation (p < 0.01); ATG5 protein expression: compared with RAG, MYG showed downregulation (p < 0.01); Beclin1, LC3-I, and ULK1 protein expression: compared with JIG, RAG showed upregulation, and MYG showed downregulation (p < 0.01). Compared with RAG, MYG showed downregulation (p < 0.01); P62 protein expression: compared with RAG, both MBG and RAG showed upregulation, and MYG showed downregulation (p < 0.05); LC3-II/LC3-I ratio: compared with JIG and RAG, the ratio in MYG was decreased (p < 0.01). Conclusion The combined intervention promotes autophagy in chondrocytes by inhibiting the PI3K/AKT/mTOR pathway, downregulating inflammatory factors and MMP-13 in the cartilage, upregulating autophagy markers, inhibiting matrix degradation, and promoting cartilage repair.
Collapse
Affiliation(s)
- Liang Cheng
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
- Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
- Human Movement Science, Sichuan Sports College, Chengdu, China
| | - Shuwan Chang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yajun Tan
- Affiliated Sport Hospital of Chengdu Sport University, Chengdu, China
| | - Benxiang He
- Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| |
Collapse
|
2
|
Feng Y, Song Q, Yan L, Li R, Yang M, Bu P, Lian J. Predicting breast cancer prognosis using PR and PIK3CA biomarkers: a comparative analysis of diagnostic groups. BMC Cancer 2025; 25:68. [PMID: 39806274 DOI: 10.1186/s12885-025-13449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
PURPOSE To evaluate the prognostic significance of progesterone receptor (PR) expression and the PIK3CA mutation status in HR+/HER2 - breast cancer patients, with the goal of screening patients who may derive the greatest benefit from PI3K-targeted therapy. METHODS A retrospective analysis was conducted on 152 HR+/HER2 - breast cancer patients stratified by PR expression levels and PIK3CA mutation status. The study population was divided into groups on the basis of a median PR threshold of 50% and further subdivided by PIK3CA mutation status. To evaluate the variability of clinicopathologic features among these groups, t tests and ANOVA were employed. The influence of these variables on survival was analyzed via Cox regression. Additionally, a risk prediction model was developed using the PR expression level and PIK3CA mutation status. The prognostic utility of this model was examined via both Kaplan‒Meier (KM) survival curves and receiver operating characteristic (ROC) analyses. These methods have also been utilized to explore the associations between clinicopathologic parameters and clinical outcomes with respect to survival prediction and prognosis. RESULTS Significant differences in age, ER expression, and Ki67, HER2, and PIK3CA mutation status were detected between the groups (P < 0.05). Specifically, elevated PR expression was correlated with lower levels of Ki67 and low HER2 expression. The presence of a PIK3CA mutation was significantly linked to survival outcomes according to both univariate and multivariate Cox regression analyses. Moreover, ROC analysis revealed that models incorporating both PR expression and PIK3CA mutation status achieved the highest level of diagnostic precision (AUC = 0.82). CONCLUSION PR expression and PIK3CA mutation status are significant prognostic markers in HR+/HER2 - breast cancer patients. Assessing these biomarkers in combination can enhance prognostic stratification, potentially guiding more informed clinical decision-making.
Collapse
Affiliation(s)
- Yuting Feng
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi Province, 030013, People's Republic of China
- School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Qingzhen Song
- Department of General Medicine, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi Province, People's Republic of China
| | - Lei Yan
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Ruoqi Li
- Department of Oncology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Mengqin Yang
- School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Peng Bu
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi Province, 030013, People's Republic of China.
| | - Jing Lian
- Department of Pathology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi Province, 030013, People's Republic of China.
| |
Collapse
|
3
|
La Monica G, Alamia F, Bono A, Mingoia F, Martorana A, Lauria A. In Silico Design of Dual Estrogen Receptor and Hsp90 Inhibitors for ER-Positive Breast Cancer Through a Mixed Ligand/Structure-Based Approach. Molecules 2024; 29:6040. [PMID: 39770128 PMCID: PMC11676166 DOI: 10.3390/molecules29246040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/27/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Breast cancer remains one of the most prevalent and lethal malignancies in women, particularly the estrogen receptor-positive (ER+) subtype, which accounts for approximately 70% of cases. Traditional endocrine therapies, including aromatase inhibitors, selective estrogen receptor degraders/antagonists (SERDs), and selective estrogen receptor modulators (SERMs), have improved outcomes for metastatic ER+ breast cancer. However, resistance to these agents presents a significant challenge. This study explores a novel therapeutic strategy involving the simultaneous inhibition of the estrogen receptor (ER) and the chaperone protein Hsp90, which is crucial for the stabilization of various oncoproteins, including ER itself. We employed a hybrid, hierarchical in silico virtual screening approach to identify new dual ER/Hsp90 inhibitors, utilizing the Biotarget Predictor Tool (BPT) for efficient multitarget screening of a large compound library. Subsequent structure-based studies, including molecular docking analyses, were conducted to further evaluate the interaction of the top candidates with both ER and Hsp90. Supporting this, molecular dynamics simulations demonstrate the high stability of the multitarget inhibitor 755435 in complex with ER and Hsp90. Our findings suggest that several small molecules, particularly compound 755435, exhibit promising potential as dual inhibitors, representing a new avenue to overcome resistance in ER+ breast cancer.
Collapse
Affiliation(s)
- Gabriele La Monica
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (G.L.M.); (F.A.); (A.B.); (A.M.)
| | - Federica Alamia
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (G.L.M.); (F.A.); (A.B.); (A.M.)
| | - Alessia Bono
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (G.L.M.); (F.A.); (A.B.); (A.M.)
| | - Francesco Mingoia
- Istituto per lo Studio dei Materiali Nanostrutturati, Consiglio Nazionale delle Ricerche (CNR), 90128 Palermo, Italy;
| | - Annamaria Martorana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (G.L.M.); (F.A.); (A.B.); (A.M.)
| | - Antonino Lauria
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche “STEBICEF”, University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy; (G.L.M.); (F.A.); (A.B.); (A.M.)
- NBFC—National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| |
Collapse
|
4
|
Celik EG, Eroglu O. Combined treatment with ruxolitinib and MK-2206 inhibits ERα activity by inhibiting MAPK signaling in BT474 breast cancer cells. J Investig Med 2024:10815589241298184. [PMID: 39460579 DOI: 10.1177/10815589241298184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Triple-positive breast cancer (TPBC) is a type of breast cancer that overexpresses estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2). Dysregulation of ER signaling has been implicated in the pathogenesis of breast cancer. ERα activation triggers the production of second messengers, including cAMP, leading to the activation of signals such as PI3K/AKT or Ras/MAPK. Ruxolitinib is a specific inhibitor of JAK1/JAK2. MK-2206 is an allosteric inhibitor of the Akt. The limitations of the use of ruxolitinib and MK-2206 as single agents necessitate the development of combination therapies with other drugs. This study is the first to investigate the effects of combining ruxolitinib with MK-2206 on MAPK and PI3K/AKT signaling in BT474 breast cancer cells. In addition, this work aimed to increase the anticancer effects of cotreatment with MK-2206 and ruxolitinib. Ruxolitinib, MK-2206, and their combination reduced cell viability in a dose- and time-dependent manner, as determined by MTT assays after 48 h of treatment. Colony formation and wound healing assays demonstrated that MK-2206 exhibited a synergistic anti-proliferative effect. The effects of ruxolitinib, MK-2206, and their combination on PI3K/AKT and MAPK signaling were assessed via western blotting. Ruxolitinib and MK-2206 combined treatment inhibit cell death in BT474 cells by downregulating ERα, Src-1, ERK1/2, SAPK/JNK, and c-Jun. Our results revealed the relationships among the ERα, PI3K/AKT, and MAPK signaling pathways in ER+ breast cancer cells. Understanding the interactions among ERα, PI3K-AKT-mTOR, and MAPK could lead to novel combination therapies.
Collapse
Affiliation(s)
- Esin Guvenir Celik
- Department of Molecular Biology and Genetics, Faculty of Science, Bilecik Şeyh Edebali University, Bilecik, Turkey
- Department of Molecular Biology and Genetics, Institute of Graduate Education, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Onur Eroglu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|
5
|
Jalise SZ, Habibi S, Fath-Bayati L, Habibi MA, Ababzadeh S, Hosseinzadeh F. Role and Interplay of Different Signaling Pathways Involved in Sciatic Nerve Regeneration. J Mol Neurosci 2024; 74:108. [PMID: 39531101 DOI: 10.1007/s12031-024-02286-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Regeneration of the sciatic nerve is a sophisticated process that involves the interplay of several signaling pathways that orchestrate the cellular responses critical to regeneration. Among the key pathways are the mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/AKT, cyclic adenosine monophosphate (cAMP), and Janus kinase/signal transducers and transcription activators (JAK/STAT) pathways. In particular, the cAMP pathway modulates neuronal survival and axonal regrowth. It influences various cellular behaviors and gene expression that are essential for nerve regeneration. MAPK is indispensable for Schwann cell differentiation and myelination, whereas PI3K/AKT is integral to the transcription, translation, and cell survival processes that are vital for nerve regeneration. Furthermore, GTP-binding proteins, including those of the Ras homolog gene family (Rho), regulate neural cell adhesion, migration, and survival. Notch signaling also appears to be effective in the early stages of nerve regeneration and in preventing skeletal muscle fibrosis after injury. Understanding the intricate mechanisms and interactions of these pathways is vital for the development of effective therapeutic strategies for sciatic nerve injuries. This review underscores the need for further research to fill existing knowledge gaps and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Saeedeh Zare Jalise
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran
| | - Sina Habibi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leyla Fath-Bayati
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran
| | - Mohammad Amin Habibi
- Clinical Research Development Center, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
| | - Shima Ababzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran.
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran.
| | - Faezeh Hosseinzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran.
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran.
- Clinical Trial Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
6
|
Lukoseviciute M, Need E, Birgersson M, Dalianis T, Kostopoulou ON. Enhancing targeted therapy by combining PI3K and AKT inhibitors with or without cisplatin or vincristine in medulloblastoma cell lines in vitro. Biomed Pharmacother 2024; 180:117500. [PMID: 39326108 DOI: 10.1016/j.biopha.2024.117500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024] Open
Abstract
AIM Despite current intensive therapy, survival rates of medulloblastoma (MB) greatly vary according to molecular subgroup, so new therapies are needed. Recently, we showed that combining phosphoinositide 3-kinase (PI3K), fibroblast growth factor receptor and cyclin-dependent-kinase-4/6 inhibitors (BYL719, JNJ-42756493 and PD-0332991, respectively) or poly (ADP-ribose) polymerase (PARP) and WEE-1 inhibitors (BMN673 and MK1775 respectively) had synergistic effects on MB. Here, in continuation, we investigated the effects of single and combined administrations of PI3K and AKT inhibitors, with/without cisplatin or vincristine on adherent or suspension cultures of different MB subgroups as well as in a spheroid culture of one MB line. MATERIAL AND METHODS MB cell lines DAOY, UW228-3, D425, Med8A, and D283 were treated with single and combined administrations of BYL719, AZD5363, cisplatin or vincristine and followed for viability, cell confluence, cytotoxicity, and cell migration. DAOY was also tested as a spheroid culture. KEY FINDINGS Single BYL719, AZD5363, cisplatin, or vincristine administrations gave dose-dependent responses with regard to inhibition of viability and cell confluence. Combining AZD5363 with BYL719, cisplatin or vincristine resulted in synergistic effects with regard to inhibition of viability in all cell lines, and confluence and migration in all tested cell lines. The administration of single and combined treatments to DAOY spheroids produced largely similar effects. SIGNIFICANCE This study provides pre-clinical evidence that AKT inhibitors combined with PI3K inhibitors, cisplatin, or vincristine exhibit additive/synergistic anti-MB activity, and lower doses could be used. The latter also applied to one MB line grown as spheroids, further supporting their future potential use.
Collapse
Affiliation(s)
- Monika Lukoseviciute
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 64, Sweden
| | - Emma Need
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 64, Sweden
| | - Madeleine Birgersson
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 64, Sweden
| | - Tina Dalianis
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 64, Sweden
| | - Ourania N Kostopoulou
- Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm 171 64, Sweden.
| |
Collapse
|
7
|
Sreekumar S, Montaudon E, Klein D, Gonzalez ME, Painsec P, Derrien H, Sourd L, Smeal T, Marangoni E, Ridinger M. PLK1 Inhibitor Onvansertib Enhances the Efficacy of Alpelisib in PIK3CA-Mutated HR-Positive Breast Cancer Resistant to Palbociclib and Endocrine Therapy: Preclinical Insights. Cancers (Basel) 2024; 16:3259. [PMID: 39409880 PMCID: PMC11476299 DOI: 10.3390/cancers16193259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
BACKGROUND Endocrine therapy (ET) combined with cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) is the preferred first-line treatment for hormone receptor-positive (HR+)/HER2- metastatic breast cancer. Although this is beneficial, acquired resistance leads to disease progression, and patients harboring PIK3CA mutations are treated with targeted therapies such as the PI3Kα inhibitor, alpelisib, alongside ET. Drug-associated resistance mechanisms limit the efficacy of alpelisib, highlighting the need for better combination therapies. This study aimed to evaluate the efficacy of combining alpelisib with a highly specific PLK1 inhibitor, onvansertib, in PIK3CA-mutant HR+ breast cancer preclinical models. METHODS We assessed the effect of the alpelisib and onvansertib combination on cell viability, PI3K signaling pathway, cell cycle phase distribution and apoptosis in PI3K-activated HR+ breast cancer cell lines. The antitumor activity of the combination was evaluated in three PIK3CA-mutant HR+ breast cancer patient-derived xenograft (PDX) models, resistant to ET and CDK4/6 inhibitor palbociclib. Pharmacodynamics studies were performed using immunohistochemistry and Simple Western analyses in tumor tissues. RESULTS The combination synergistically inhibited cell viability, suppressed PI3K signaling, induced G2/M arrest and apoptosis in PI3K-activated cell lines. In the three PDX models, the combination demonstrated superior anti-tumor activity compared to the single agents. Pharmacodynamic studies confirmed the inhibition of both PLK1 and PI3K activity and pronounced apoptosis in the combination-treated tumors. CONCLUSIONS Our findings support that targeting PLK1 and PI3Kα with onvansertib and alpelisib, respectively, may be a promising strategy for patients with PIK3CA-mutant HR+ breast cancer failing ET + CDK4/6i therapies and warrant clinical evaluation.
Collapse
Affiliation(s)
- Sreeja Sreekumar
- Cardiff Oncology Incorporated, San Diego, CA 92121, USA; (S.S.); (D.K.); (M.E.G.); (T.S.)
| | - Elodie Montaudon
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, 75005 Paris, France; (E.M.); (P.P.); (H.D.); (L.S.); (E.M.)
| | - Davis Klein
- Cardiff Oncology Incorporated, San Diego, CA 92121, USA; (S.S.); (D.K.); (M.E.G.); (T.S.)
| | - Migdalia E. Gonzalez
- Cardiff Oncology Incorporated, San Diego, CA 92121, USA; (S.S.); (D.K.); (M.E.G.); (T.S.)
| | - Pierre Painsec
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, 75005 Paris, France; (E.M.); (P.P.); (H.D.); (L.S.); (E.M.)
| | - Héloise Derrien
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, 75005 Paris, France; (E.M.); (P.P.); (H.D.); (L.S.); (E.M.)
| | - Laura Sourd
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, 75005 Paris, France; (E.M.); (P.P.); (H.D.); (L.S.); (E.M.)
| | - Tod Smeal
- Cardiff Oncology Incorporated, San Diego, CA 92121, USA; (S.S.); (D.K.); (M.E.G.); (T.S.)
| | - Elisabetta Marangoni
- Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, 75005 Paris, France; (E.M.); (P.P.); (H.D.); (L.S.); (E.M.)
| | - Maya Ridinger
- Cardiff Oncology Incorporated, San Diego, CA 92121, USA; (S.S.); (D.K.); (M.E.G.); (T.S.)
| |
Collapse
|
8
|
Duan ZW, Liu Y, Zhang PP, Hu JY, Mo ZX, Liu WQ, Ma X, Zhou XH, Wang XH, Hu XH, Wei SL. Da-Chai-Hu-Tang Formula inhibits the progression and metastasis in HepG2 cells through modulation of the PI3K/AKT/STAT3-induced cell cycle arrest and apoptosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118293. [PMID: 38705430 DOI: 10.1016/j.jep.2024.118293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Da-Chai-Hu-Tang (DCHT), a Chinese traditional herbal compound, has been utilized for the treatment of Hepatic diseases in China for over 1800 years. The DCHT formula contains eight herbals: Bupleurum chinense DC. (chaihu), Scutellaria baicalensis Georgi (huangqin), Paeonia lactiflora Pall. (baishao), Pinellia ternata (Thunb.) Makino (banxia), Rheum officinale Baill. (dahuang), Citrus × aurantium L. (zhishi), Zingiber officinale Roscoe (shengjiang), Ziziphus jujuba Mill. (dazao). Clinical studies have demonstrated the effectiveness of DCHT in hepatocellular carcinoma (HCC) and its ability to enhance the immunity of patients with hepatocellular carcinoma. A total of 20 Chinese articles have been published on the use of DCHT in treating HCC. AIM OF THE STUDY The study aimed to validate the effect of DCHT in HCC cells and to identify related targets (TP53, AKT1, BCL2, STAT3) in treating HCC by DCHT in vitro experiments. MATERIALS AND METHODS Cell proliferation and migration were investigated in vitro. Flow cytometry analysis was used to evaluate the cell cycle and apoptosis. Apoptotic bodies in HepG2 cells were observed using a confocal microscope. Biochemical detection was employed to analyze LDH release, MDA levels, and SOD levels. Bioinformatics analysis was used to predict core targets between DCHT and HCC, as well as potential signaling pathways. The protein levels of metastasis-associated, apoptosis, and PI3K, AKT, p-AKT, and STAT3 were further determined through Western blotting. RESULTS Following treatment with DCHT, the inhibition of viability, migration, and G2/M arrest was observed in HepG2 cells. Flow cytometry analysis and Morphological apoptosis studies provided evidence that DCHT could induce apoptosis in HepG2 cells. Biochemical detection revealed that DCHT could increase LDH release and the level of MDA, and inhibit the viability of the SOD. Bioinformatics analysis identified key targets such as TP53, AKT1, BCL2, STAT3. The PI3K/AKT/STAT3 signaling pathway emerged as a critical pathway in the KEGG enrichment analysis. Western blotting results indicated that DCHT could enhance the expression of E-cadherin, p53, and Bax, while reducing the content of N-cadherin, Bcl-2, PI3K, p-AKT, AKT1, and STAT3. CONCLUSIONS The results proved that DCHT could inhibit the progression and metastasis of HCC by regulating the expression of E-cadherin, N-cadherin, p53, Bax, Bcl-2, PI3K, p-AKT, AKT, and STAT3 through the PI3K/AKT/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Zi-Wei Duan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Yong Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Pei-Pei Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Jing-Yan Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Zhi-Xin Mo
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Wen-Qing Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Xin Ma
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Xiao-Hui Zhou
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Xiao-Hui Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Engineering Research Center of Good Agricultural Practice for Chinese Crude Drugs, Ministry of Education, Beijing, 100102, China.
| | - Xiu-Hua Hu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, 102488, China; Engineering Research Center of Good Agricultural Practice for Chinese Crude Drugs, Ministry of Education, Beijing, 100102, China.
| | - Sheng-Li Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Engineering Research Center of Good Agricultural Practice for Chinese Crude Drugs, Ministry of Education, Beijing, 100102, China.
| |
Collapse
|
9
|
Wang Y, Li X, Zhang S, Liang L, Xu L, Liu Y, Li T. Analysis of PIK3CA mutations in the primary and recurrent tumors of hormone receptor positive/human epidermal growth factor receptor 2 negative breast cancer. Jpn J Clin Oncol 2024; 54:1024-1031. [PMID: 38884134 DOI: 10.1093/jjco/hyae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/02/2024] [Indexed: 06/18/2024] Open
Abstract
OBJECTIVE Our aim was to compare the PIK3CA mutation status in matched primary and recurrent tumors of hormone receptor positive/human epidermal growth factor receptor 2 negative (HR+/HER2-) breast cancer (BC) to gain insight into the optimization of patient selection and detection time for PIK3CA-targeted therapy. METHODS The data were from 3035 patients with BC diagnosed at the Breast Disease Center, Peking University First Hospital, between January 2008 and December 2017. Matched primary and recurrent samples were profiled using amplification-refractory mutation system-polymerase chain reaction covering 11 mutational hotspots in PIK3CA. RESULTS PIK3CA mutations were detected in 54.3% primary tumors and 48.6% corresponding recurrences. PIK3CA mutation was detected in 37.5% cases in the locoregional recurrent group and 40.0% of distant metastasis, without a statistical difference. Besides, PIK3CA mutations were concordant in 88.6% of the matched pairs. For patients treated with neoadjuvant chemotherapy, 100% concordance was observed. However, PIK3CA mutation was neither correlated with clinicopathological features nor associated with clinical outcomes. CONCLUSIONS Mutations in PIK3CA in HR+/HER2- BC generally progressed to recurrent tumors. The high concordance rate of PIK3CA mutation status between primary tumors and corresponding recurrences suggests that the detection of primary tumors could be a substitute approach when recurrent samples are not easily obtainable.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pathology, Peking University First Hospital, Beijing 100034, China
| | - Xin Li
- Department of Pathology, Peking University First Hospital, Beijing 100034, China
| | - Shuang Zhang
- Department of Pathology, Peking University First Hospital, Beijing 100034, China
| | - Li Liang
- Department of Pathology, Peking University First Hospital, Beijing 100034, China
| | - Ling Xu
- Breast Disease Center, Peking University First Hospital, Beijing 100034, China
| | - Yinhua Liu
- Breast Disease Center, Peking University First Hospital, Beijing 100034, China
| | - Ting Li
- Department of Pathology, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
10
|
He R, Zhou W. Application and research progress of cordycepin in the treatment of tumours (Review). Mol Med Rep 2024; 30:161. [PMID: 38994776 PMCID: PMC11258602 DOI: 10.3892/mmr.2024.13285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Cordycepin is a nucleoside molecule found in Cordyceps sinensis and can be obtained through chemical synthesis and biotransformation. Cordycepin has been extensively studied and has been shown to have antitumour activity. This activity includes effects on the autophagy process and inhibition of the MAPK/ERK and Hedgehog pathways. Ultimately, the inhibitory effect of cordycepin on tumour cells is due to the interplay of these effects. Cordycepin was shown to enhance the therapeutic effects of radiotherapy. There is increasing evidence indicating that cordycepin plays an anticancer role in the treatment of various cancers. The present review aims to provide a clear understanding of the antitumour mechanisms of cordycepin and discuss its present application in the treatment of tumours. This information can be an important theoretical basis and provide clinical guidance for the further development of cordycepin as an antitumour drug.
Collapse
Affiliation(s)
- Ru He
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wence Zhou
- The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
11
|
Yu Y, Cao WM, Cheng F, Shi Z, Han L, Yi J, da Silva EM, Dopeso H, Chen H, Yang J, Wang X, Zhang C, Zhang H. FOXK2 amplification promotes breast cancer development and chemoresistance. Cancer Lett 2024; 597:217074. [PMID: 38901667 PMCID: PMC11290987 DOI: 10.1016/j.canlet.2024.217074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 05/22/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
Oncogene activation through DNA amplification or overexpression is a crucial driver of cancer initiation and progression. The FOXK2 gene, located on chromosome 17q25, encodes a transcription factor with a forkhead DNA-binding domain. Analysis of genomic datasets reveals that FOXK2 is frequently amplified and overexpressed in breast cancer, correlating with poor patient survival. Knockdown of FOXK2 significantly inhibited breast cancer cell proliferation, migration, anchorage-independent growth, and delayed tumor growth in a xenograft mouse model. Additionally, inhibiting FOXK2 sensitized breast cancer cells to chemotherapy. Co-overexpression of FOXK2 and mutant PI3KCA transformed non-tumorigenic MCF-10A cells, suggesting a role for FOXK2 in PI3KCA-driven tumorigenesis. CCNE2, PDK1, and ESR1 were identified as transcriptional targets of FOXK2 in MCF-7 cells. Small-molecule inhibitors of CCNE2/CDK2 (dinaciclib) and PDK1 (dichloroacetate) exhibited synergistic anti-tumor effects with PI3KCA inhibitor (alpelisib) in vitro. Inhibition of FOXK2 by dinaciclib synergistically enhanced the anti-tumor effects of alpelisib in a xenograft mouse model. Collectively, these findings highlight the oncogenic function of FOXK2 and suggest that FOXK2 and its downstream genes represent potential therapeutic targets in breast cancer.
Collapse
Affiliation(s)
- Yang Yu
- Center for Cancer and Immunology Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20010, USA
| | - Wen-Ming Cao
- Department of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Feng Cheng
- Center for Cancer and Immunology Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20010, USA
| | - Zhongcheng Shi
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lili Han
- Department of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jinling Yi
- Texas Children's Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Edaise M da Silva
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Higinio Dopeso
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Hui Chen
- Department of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jianhua Yang
- Center for Cancer and Immunology Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20010, USA; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20010, USA
| | - Xiaosong Wang
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Chunchao Zhang
- Center for Cancer and Immunology Research, Children's National Research Institute, Children's National Hospital, Washington, DC, 20010, USA; Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, 20010, USA.
| | - Hong Zhang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
12
|
Guo W, Yang H, He W. Paeonol alleviates ox-LDL-induced endothelial cell injury by targeting the heme oxygenase-1/phosphoinositide 3-kinase/protein kinase B pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03307-0. [PMID: 39037459 DOI: 10.1007/s00210-024-03307-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Atherosclerosis is a leading cause of vascular disease worldwide. Paeonol has been reported to have therapeutical potential in atherosclerosis. The aim of this study is to explore the effect of paeonol on oxidized low-density lipoprotein (ox-LDL)-induced endothelial cells injury and the underlying mechanism. Human umbilical vein endothelial cells (HUVECs) were treated with ox-LDL (100 μg/ml) to mimic atherosclerosis in vitro. The cell viability, proliferation, and apoptosis were assessed by cell counting kit-8 (CCK8), 5-ethynyl-2'-deoxyuridine (EdU), and flow cytometry, respectively. The angiogenesis was detected by tube formation assay. The levels of inflammatory factor were measured by enzyme-linked immunosorbent assay (ELISA). In addition, the levels of Fe2+, reactive oxygen species (ROS), and glutathione (GSH) were detected to assess ferroptosis. The western blot was used to detect the protein expression. Ox-LDL inhibited cell viability, proliferation, and angiogenesis, but induced apoptosis and inflammation in HUVECs, and paeonol (75 μM) relieves ox-LDL-induced HUVEC injury. Also, paeonol inhibited ox-LDL-induced ferroptosis of HUVECs. Interestingly, heme oxygenase-1 (HMOX1) knockdown alleviated ox-LDL-induced HUVECs injury and ferroptosis. Paeonol affected ox-LDL-induced HUVECs via regulating HMOX1. In addition, paeonol regulated PI3K/AKT pathway via HMOX1, and the inhibitor of phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway reversed the effects of HMOX1 knockdown on ox-LDL-induced HUVECs. Paeonol alleviated ox-LDL-induced HUVEC injury by regulating the PI3K/AKT pathway via targeting HMOX1.
Collapse
Affiliation(s)
- Weichong Guo
- Department of Cardiovascular Medicine, Nanyang First People's Hospital, Nanyang, 473000, China
| | - Han Yang
- Department of Geriatrics, Nanshi Hospital of Nanyang, Nanyang, 473065, China
| | - Wenguang He
- Department of Thyroid and Breast Surgery, The Fourth Affiliated Hospital, Guangzhou Medical University, No. 1, Guangming East Road, Zengjiang Street, Zengcheng District, Guangzhou, 511300, China.
| |
Collapse
|
13
|
Lin X, Fang Y, Mi X, Fu J, Chen S, Wu M, Jin N. Asiatic acid inhibits cervical cancer cell proliferation and migration via PI3K/AKT/mTOR signaling pathway. Heliyon 2024; 10:e34047. [PMID: 39055791 PMCID: PMC11269897 DOI: 10.1016/j.heliyon.2024.e34047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/15/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024] Open
Abstract
Cervical cancer (CC) is a malignant tumor of the female reproductive system that typically occurs in cervical cells and has high incidence and mortality rates, strong metastatic ability, and poor prognosis. Asiatic acid (AA) exhibits anti-inflammatory, anti-depressant, and anti-tumor effects. However, the molecular targets and mechanisms underlying AA-mediated inhibition of CC metastasis remain unclear. AA affects the proliferation, metastasis, and epithelial-mesenchymal transition (EMT) process of CC cell lines. MTT experiments verified that AA inhibited the proliferation ability of CC cells, and the effect of AA on the lateral and longitudinal migration ability of CC was evaluated through wound healing and Transwell assays. Western blotting was used to explore whether AA inhibits EMT process in HeLa and C33a cells. Currently, targeting the PI3K/AKT/mTOR pathway as a strategy for cancer treatment remains an evolving field. However, the molecular mechanism by which AA inhibits CC via the PI3K/AKT/mTOR pathway remains unclear and requires further investigation.
Collapse
Affiliation(s)
- Xiuying Lin
- Medical College, Yanbian University, Yanji, China
- Reproductive Medicine Center, Jilin Province People's Hospital, Changchun, China
| | - Yanqiu Fang
- Reproductive Medicine Center, Jilin Province People's Hospital, Changchun, China
| | - Xuguang Mi
- Reproductive Medicine Center, Jilin Province People's Hospital, Changchun, China
| | - jianhua Fu
- Reproductive Medicine Center, Jilin Province People's Hospital, Changchun, China
| | - Shiling Chen
- Reproductive Medicine Center, Jilin Province People's Hospital, Changchun, China
| | - Mengxue Wu
- Reproductive Medicine Center, Jilin Province People's Hospital, Changchun, China
| | - Ningyi Jin
- Medical College, Yanbian University, Yanji, China
| |
Collapse
|
14
|
Rossetti S, Broege A, Sen A, Khan S, MacNeil I, Molden J, Kopher R, Schulz S, Laing L. Gedatolisib shows superior potency and efficacy versus single-node PI3K/AKT/mTOR inhibitors in breast cancer models. NPJ Breast Cancer 2024; 10:40. [PMID: 38839777 PMCID: PMC11153628 DOI: 10.1038/s41523-024-00648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
The PI3K, AKT, and mTOR (PAM) pathway is frequently dysregulated in breast cancer (BC) to accommodate high catabolic and anabolic activities driving tumor growth. Current therapeutic options for patients with hormone receptor (HR) + / HER2- advanced BC (ABC) include PAM inhibitors that selectively inhibit only one PAM pathway node, which can lead to drug resistance as cells rapidly adapt to maintain viability. We hypothesized that gedatolisib, which potently inhibits all Class I PI3K isoforms, as well as mTORC1 and mTORC2, may be more effective in BC cells than single-node PAM inhibitors by limiting adaptive resistances. By using multiple functional assays, a panel of BC cell lines was evaluated for their sensitivity to four different PAM inhibitors: gedatolisib (pan-PI3K/mTOR inhibitor), alpelisib (PI3Kα inhibitor), capivasertib (AKT inhibitor), and everolimus (mTORC1 inhibitor). Gedatolisib exhibited more potent and efficacious anti-proliferative and cytotoxic effects regardless of the PAM pathway mutational status of the cell lines compared to the single-node PAM inhibitors. The higher efficacy of gedatolisib was confirmed in three-dimensional culture and in BC PDX models. Mechanistically, gedatolisib decreased cell survival, DNA replication, cell migration and invasion, protein synthesis, glucose consumption, lactate production, and oxygen consumption more effectively than the other PAM inhibitors tested. These results indicate that inhibition of multiple PAM pathway nodes by a pan-PI3K/mTOR inhibitor like gedatolisib may be more effective at inducing anti-tumor activity than single-node PAM inhibitors. A global Phase 3 study is currently evaluating gedatolisib plus fulvestrant with and without palbociclib in patients with HR+/HER2- ABC.
Collapse
Affiliation(s)
- Stefano Rossetti
- Celcuity, Inc. 16305 36th Ave N, Suite 100, Minneapolis, MN, 55446, USA
| | - Aaron Broege
- Celcuity, Inc. 16305 36th Ave N, Suite 100, Minneapolis, MN, 55446, USA
| | - Adrish Sen
- Celcuity, Inc. 16305 36th Ave N, Suite 100, Minneapolis, MN, 55446, USA
| | - Salmaan Khan
- Celcuity, Inc. 16305 36th Ave N, Suite 100, Minneapolis, MN, 55446, USA
| | - Ian MacNeil
- Celcuity, Inc. 16305 36th Ave N, Suite 100, Minneapolis, MN, 55446, USA
| | - Jhomary Molden
- Celcuity, Inc. 16305 36th Ave N, Suite 100, Minneapolis, MN, 55446, USA
| | - Ross Kopher
- Celcuity, Inc. 16305 36th Ave N, Suite 100, Minneapolis, MN, 55446, USA
| | - Stephen Schulz
- Celcuity, Inc. 16305 36th Ave N, Suite 100, Minneapolis, MN, 55446, USA
| | - Lance Laing
- Celcuity, Inc. 16305 36th Ave N, Suite 100, Minneapolis, MN, 55446, USA.
| |
Collapse
|
15
|
Tufail M, Wan WD, Jiang C, Li N. Targeting PI3K/AKT/mTOR signaling to overcome drug resistance in cancer. Chem Biol Interact 2024; 396:111055. [PMID: 38763348 DOI: 10.1016/j.cbi.2024.111055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/21/2024]
Abstract
This review comprehensively explores the challenge of drug resistance in cancer by focusing on the pivotal PI3K/AKT/mTOR pathway, elucidating its role in oncogenesis and resistance mechanisms across various cancer types. It meticulously examines the diverse mechanisms underlying resistance, including genetic mutations, feedback loops, and microenvironmental factors, while also discussing the associated resistance patterns. Evaluating current therapeutic strategies targeting this pathway, the article highlights the hurdles encountered in drug development and clinical trials. Innovative approaches to overcome resistance, such as combination therapies and precision medicine, are critically analyzed, alongside discussions on emerging therapies like immunotherapy and molecularly targeted agents. Overall, this comprehensive review not only sheds light on the complexities of resistance in cancer but also provides a roadmap for advancing cancer treatment.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Dong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Canhua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China; Institute of Oral Precancerous Lesions, Central South University, Changsha, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China; Institute of Oral Precancerous Lesions, Central South University, Changsha, China; Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
16
|
Layman RM, Han HS, Rugo HS, Stringer-Reasor EM, Specht JM, Dees EC, Kabos P, Suzuki S, Mutka SC, Sullivan BF, Gorbatchevsky I, Wesolowski R. Gedatolisib in combination with palbociclib and endocrine therapy in women with hormone receptor-positive, HER2-negative advanced breast cancer: results from the dose expansion groups of an open-label, phase 1b study. Lancet Oncol 2024; 25:474-487. [PMID: 38547892 DOI: 10.1016/s1470-2045(24)00034-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND The PI3K-mTOR pathway is frequently dysregulated in breast cancer. Combining an inhibitor targeting all class I PI3K isoforms and mTOR complex 1 (mTORC1)-mTOR complex 2 (mTORC2) with endocrine therapy and a CDK4/6 inhibitor might provide more effective tumour control than standard-of-care therapy. To evaluate this hypothesis, gedatolisib, a pan-PI3K-mTOR inhibitor, was assessed in a phase 1b trial combined with palbociclib and endocrine therapy in patients with hormone receptor-positive, HER2-negative, advanced breast cancer. Results from the dose expansion portion of this trial are reported herein. METHODS This multicentre, open-label, phase 1b study recruited female patients aged at least 18 years from 17 sites across the USA with hormone-receptor-positive, HER2-negative, advanced breast cancer and an Eastern Cooperative Oncology Group performance status of 0-1. Four patient groups were studied in the dose expansion portion of the study: treatment-naive in the advanced setting (first line; group A), progression on 1-2 lines of endocrine therapy but CDK4/6 inhibitor-naive (group B); and one or more previous lines (second-line and higher) of therapy, including a CDK4/6 inhibitor (groups C and D). Gedatolisib 180 mg was administered intravenously weekly in 28-day treatment cycles for groups A-C, and on days 1, 8, and 15 for group D. Letrozole (group A), fulvestrant (groups B-D), and palbociclib (all groups) were administered at standard doses and schedules. The primary endpoint was investigator-assessed objective response rate per RECIST version 1.1 in the evaluable analysis set. This trial is completed and registered with ClinicalTrials.gov, NCT02684032. FINDINGS Between Dec 19, 2017, and June 19, 2019, 103 female participants were enrolled in the dose expansion groups A (n=31), B (n=13), C (n=32), and D (n=27). Median follow-up was 16·6 months (IQR 5·7-48·4) for group A, 11·0 months (7·6-16·9) for group B, 3·6 months (1·8-7·5) for group C, and 9·4 months (5·3-16·7) for group D for the primary endpoint. Gedatolisib, palbociclib, and endocrine therapy induced an objective response in 23 (85·2%; 90% CI 69·2-94·8) of 27 evaluable first-line participants (group A). In the second-line and higher setting, an objective response was observed in eight (61·5%; 90% CI 35·5-83·4) of 13 evaluable group B participants, seven (25·0%; 12·4-41·9) of 28 evaluable group C participants, and 15 (55·6%; 38·2-72·0) of 27 evaluable group D participants; this included participants with both wild-type and mutated PIK3CA tumours. The most common grade 3-4 treatment-related adverse events were neutropenia (65 [63%] of 103), stomatitis (28 [27%]), and rash (21 [20%]). Grade 3-4 hyperglycaemia was reported in six (6%) participants. 23 (22%) of 103 participants had a treatment-related serious adverse event, and there were no treatment-related deaths. Nine (9%) participants discontinued treatment because of a treatment-emergent adverse event. INTERPRETATION Gedatolisib plus palbociclib and endocrine therapy showed a promising objective response rate compared with the published results for standard-of-care therapies and had an acceptable safety profile. FUNDING Pfizer and Celcuity.
Collapse
Affiliation(s)
- Rachel M Layman
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Hyo S Han
- Moffit Cancer Center, Tampa, FL, USA
| | - Hope S Rugo
- Division of Hematology and Oncology, University of California, San Francisco Comprehensive Cancer Center, San Francisco, CA, USA
| | - Erica M Stringer-Reasor
- Division of Hematology Oncology, Department of Medicine, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer M Specht
- Division of Hematology and Oncology, Fred Hutch Cancer Center, University of Washington, Seattle, WA, USA
| | - E Claire Dees
- Division of Oncology, University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Peter Kabos
- Division of Medical Oncology, University of Colorado Hospital, Aurora, CO, USA
| | | | | | | | | | - Robert Wesolowski
- Department. of Internal Medicine, Division of Medical Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| |
Collapse
|
17
|
Dasari N, Guntuku GS, Pindiprolu SKSS. Targeting triple negative breast cancer stem cells using nanocarriers. DISCOVER NANO 2024; 19:41. [PMID: 38453756 PMCID: PMC10920615 DOI: 10.1186/s11671-024-03985-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Breast cancer is a complex and heterogeneous disease, encompassing various subtypes characterized by distinct molecular features, clinical behaviors, and treatment responses. Categorization of subtypes is based on the presence or absence of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), leading to subtypes such as luminal A, luminal B, HER2-positive, and triple-negative breast cancer (TNBC). TNBC, comprising around 20% of all breast cancers, lacks expression of ER, PR, and HER2 receptors, rendering it unresponsive to targeted therapies and presenting significant challenges in treatment. TNBC is associated with aggressive behavior, high rates of recurrence, and resistance to chemotherapy. Tumor initiation, progression, and treatment resistance in TNBC are attributed to breast cancer stem cells (BCSCs), which possess self-renewal, differentiation, and tumorigenic potential. Surface markers, self-renewal pathways (Notch, Wnt, Hedgehog signaling), apoptotic protein (Bcl-2), angiogenesis inhibition (VEGF inhibitors), and immune modulation (cytokines, immune checkpoint inhibitors) are among the key targets discussed in this review. However, targeting the BCSC subpopulation in TNBC presents challenges, including off-target effects, low solubility, and bioavailability of anti-BCSC agents. Nanoparticle-based therapies offer a promising approach to target various molecular pathways and cellular processes implicated in survival of BSCS in TNBC. In this review, we explore various nanocarrier-based approaches for targeting BCSCs in TNBC, aiming to overcome these challenges and improve treatment outcomes for TNBC patients. These nanoparticle-based therapeutic strategies hold promise for addressing the therapeutic gap in TNBC treatment by delivering targeted therapies to BCSCs while minimizing systemic toxicity and enhancing treatment efficacy.
Collapse
Affiliation(s)
- Nagasen Dasari
- Andhra University College of Pharmaceutical Sciences, Andhra University, Vishakhapatnam, Andhra Pradesh, India.
- Aditya Pharmacy College, Surampalem, Andhra Pradesh, India.
- Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh, India.
| | - Girija Sankar Guntuku
- Andhra University College of Pharmaceutical Sciences, Andhra University, Vishakhapatnam, Andhra Pradesh, India
| | - Sai Kiran S S Pindiprolu
- Aditya Pharmacy College, Surampalem, Andhra Pradesh, India
- Jawaharlal Nehru Technological University, Kakinada, Andhra Pradesh, India
| |
Collapse
|
18
|
Morgos DT, Stefani C, Miricescu D, Greabu M, Stanciu S, Nica S, Stanescu-Spinu II, Balan DG, Balcangiu-Stroescu AE, Coculescu EC, Georgescu DE, Nica RI. Targeting PI3K/AKT/mTOR and MAPK Signaling Pathways in Gastric Cancer. Int J Mol Sci 2024; 25:1848. [PMID: 38339127 PMCID: PMC10856016 DOI: 10.3390/ijms25031848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
Gastric cancer (GC) is the fourth leading cause of death worldwide, with more than 1 million cases diagnosed every year. Helicobacter pylori represents the main risk factor, being responsible for 78% of the cases. Increased amounts of salt, pickled food, red meat, alcohol, smoked food, and refined sugars negatively affect the stomach wall, contributing to GC development. Several gene mutations, including PIK3CA, TP53, ARID1A, CDH1, Ras, Raf, and ERBB3 are encountered in GC pathogenesis, leading to phosphatidylinositol 3-kinase (PI3K) protein kinase B (AKT)/mammalian target of rapamycin (mTOR)-PI3K/AKT/mTOR-and mitogen-activated protein kinase (MAPK) signaling pathway activation and promoting tumoral activity. Helicobacter pylori, growth factors, cytokines, hormones, and oxidative stress also activate both pathways, enhancing GC development. In clinical trials, promising results have come from monoclonal antibodies such as trastuzumab and ramucirumab. Dual inhibitors targeting the PI3K/AKT/mTOR and MAPK signaling pathways were used in vitro studies, also with promising results. The main aim of this review is to present GC incidence and risk factors and the dysregulations of the two protein kinase complexes together with their specific inhibitors.
Collapse
Affiliation(s)
- Diana-Theodora Morgos
- Discipline of Anatomy, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Constantin Stefani
- Department I of Family Medicine and Clinical Base, “Dr. Carol Davila” Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Daniela Miricescu
- Discipline of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Maria Greabu
- Discipline of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Silviu Stanciu
- Department of Internal Medicine and Gastroenterology, Carol Davila University of Medicine and Pharmacy, Central Military Emergency University Hospital, 010825 Bucharest, Romania;
| | - Silvia Nica
- Emergency Discipline, University Hospital of Bucharest, 050098 Bucharest, Romania;
| | - Iulia-Ioana Stanescu-Spinu
- Discipline of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (I.-I.S.-S.); (D.G.B.); (A.-E.B.-S.)
| | - Daniela Gabriela Balan
- Discipline of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (I.-I.S.-S.); (D.G.B.); (A.-E.B.-S.)
| | - Andra-Elena Balcangiu-Stroescu
- Discipline of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (I.-I.S.-S.); (D.G.B.); (A.-E.B.-S.)
| | - Elena-Claudia Coculescu
- Discipline of Oral Pathology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Dragos-Eugen Georgescu
- Department of General Surgery, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 50474 Bucharest, Romania;
- Department of General Surgery, “Dr. Ion Cantacuzino” Clinical Hospital, 020475 Bucharest, Romania
| | - Remus Iulian Nica
- Central Military Emergency University Hospital “Dr. Carol Davila”, 010825 Bucharest, Romania;
- Discipline of General Surgery, Faculty of Midwifery and Nursing, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
19
|
Roskoski R. Properties of FDA-approved small molecule protein kinase inhibitors: A 2024 update. Pharmacol Res 2024; 200:107059. [PMID: 38216005 DOI: 10.1016/j.phrs.2024.107059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/14/2024]
Abstract
Owing to the dysregulation of protein kinase activity in many diseases including cancer, this enzyme family has become one of the most important drug targets in the 21st century. There are 80 FDA-approved therapeutic agents that target about two dozen different protein kinases and seven of these drugs were approved in 2023. Of the approved drugs, thirteen target protein-serine/threonine protein kinases, four are directed against dual specificity protein kinases (MEK1/2), twenty block nonreceptor protein-tyrosine kinases, and 43 inhibit receptor protein-tyrosine kinases. The data indicate that 69 of these drugs are prescribed for the treatment of neoplasms. Six drugs (abrocitinib, baricitinib, deucravacitinib, ritlecitinib, tofacitinib, upadacitinib) are used for the treatment of inflammatory diseases (atopic dermatitis, rheumatoid arthritis, psoriasis, alopecia areata, and ulcerative colitis). Of the 80 approved drugs, nearly two dozen are used in the treatment of multiple diseases. The following seven drugs received FDA approval in 2023: capivasertib (HER2-positive breast cancer), fruquintinib (metastatic colorectal cancer), momelotinib (myelofibrosis), pirtobrutinib (mantle cell lymphoma, chronic lymphocytic leukemia, small lymphocytic lymphoma), quizartinib (Flt3-mutant acute myelogenous leukemia), repotrectinib (ROS1-positive lung cancer), and ritlecitinib (alopecia areata). All of the FDA-approved drugs are orally effective with the exception of netarsudil, temsirolimus, and trilaciclib. This review summarizes the physicochemical properties of all 80 FDA-approved small molecule protein kinase inhibitors including the molecular weight, number of hydrogen bond donors/acceptors, polar surface area, potency, solubility, lipophilic efficiency, and ligand efficiency.
Collapse
Affiliation(s)
- Robert Roskoski
- Blue Ridge Institute for Medical Research, 221 Haywood Knolls Drive, Hendersonville, NC 28791, United States.
| |
Collapse
|
20
|
Pepe F, Venetis K, Cursano G, Frascarelli C, Pisapia P, Vacirca D, Scimone C, Rappa A, Russo G, Mane E, Pagni F, Castellano I, Troncone G, Angelis CD, Curigliano G, Guerini-Rocco E, Malapelle U, Fusco N. PIK3CA testing in hormone receptor-positive/HER2-negative metastatic breast cancer: real-world data from Italian molecular pathology laboratories. Pharmacogenomics 2024; 25:161-169. [PMID: 38440825 DOI: 10.2217/pgs-2023-0238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Introduction: PIK3CA gene mutations occur in approximately 40% of hormone receptor-positive/HER2-negative (HR+/HER2-) metastatic breast cancers (MBCs), electing them to targeted therapy. Testing PIK3CA status is complex due to selection of biological specimen and testing method. Materials & methods: This work investigates real-life experience on PIK3CA testing in HR+/HER2- MBC. Clinical, technical and molecular data on PIK3CA testing were collected from two referral laboratories. Additionally, the results of a nationwide PIK3CA survey involving 116 institutions were assessed. Results: Overall, n = 35 MBCs were PIK3CA-mutated, with mutations mostly occurring in exons 9 (n = 19; 51.4%) and 20 (n = 15; 40.5%). The nationwide survey revealed significant variability across laboratories in terms of sampling methodology, technical assessment and clinical report signing healthcare figures for PIK3CA molecular testing in diagnostic routine practice. Conclusion: This study provides insights into the real-world routine of PIK3CA testing in HR+/HER2- MBC and highlights the need for standardization and networking in predictive pathology.
Collapse
Affiliation(s)
- Francesco Pepe
- Department of Public Health, Federico II University of Naples, 80131, Naples, Italy
| | - Konstantinos Venetis
- Division of Pathology, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Giulia Cursano
- Division of Pathology, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Chiara Frascarelli
- Division of Pathology, European Institute of Oncology IRCCS, 20141, Milan, Italy
- Department of Oncology & Hemato-Oncology, University of Milan, 20122, Milan, Italy
| | - Pasquale Pisapia
- Department of Public Health, Federico II University of Naples, 80131, Naples, Italy
| | - Davide Vacirca
- Division of Pathology, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Claudia Scimone
- Department of Public Health, Federico II University of Naples, 80131, Naples, Italy
| | - Alessandra Rappa
- Division of Pathology, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Gianluca Russo
- Department of Public Health, Federico II University of Naples, 80131, Naples, Italy
| | - Eltjona Mane
- Division of Pathology, European Institute of Oncology IRCCS, 20141, Milan, Italy
| | - Fabio Pagni
- Center for Digital Medicine, Department of Medicine & Surgery, University Milan Bicocca, Monza (MB), Italy
- Molecular Pathology & Predictive Medicine PMMP Group, Italian Society of Pathology, SIAPeC, Italy
| | - Isabella Castellano
- Pathology Unit, Department of Medical Sciences, City of Health and Science University Hospital, University of Turin, 10126, Turin, Italy
- Breast Pathology GIPaM Group, Italian Society of Pathology, SIAPeC, Italy
| | - Giancarlo Troncone
- Department of Public Health, Federico II University of Naples, 80131, Naples, Italy
| | - Carmine De Angelis
- Department of Clinical Medicine & Surgery, University Federico II, 80131, Naples, Italy
| | - Giuseppe Curigliano
- Department of Oncology & Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Division of New Drugs & Early Drug Development, European Institute of Oncology, IRCCS, 20141, Milan, Italy
| | - Elena Guerini-Rocco
- Division of Pathology, European Institute of Oncology IRCCS, 20141, Milan, Italy
- Department of Oncology & Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Molecular Pathology & Predictive Medicine PMMP Group, Italian Society of Pathology, SIAPeC, Italy
| | - Umberto Malapelle
- Department of Public Health, Federico II University of Naples, 80131, Naples, Italy
- Molecular Pathology & Predictive Medicine PMMP Group, Italian Society of Pathology, SIAPeC, Italy
| | - Nicola Fusco
- Division of Pathology, European Institute of Oncology IRCCS, 20141, Milan, Italy
- Department of Oncology & Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Molecular Pathology & Predictive Medicine PMMP Group, Italian Society of Pathology, SIAPeC, Italy
- Breast Pathology GIPaM Group, Italian Society of Pathology, SIAPeC, Italy
| |
Collapse
|
21
|
Cao LQ, Sun H, Xie Y, Patel H, Bo L, Lin H, Chen ZS. Therapeutic evolution in HR+/HER2- breast cancer: from targeted therapy to endocrine therapy. Front Pharmacol 2024; 15:1340764. [PMID: 38327984 PMCID: PMC10847323 DOI: 10.3389/fphar.2024.1340764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Breast cancer, a complex and varied disease, has four distinct subtypes based on estrogen receptor and human epidermal growth factor receptor 2 (HER2) levels, among which a significant subtype known as HR+/HER2-breast cancer that has spurred numerous research. The prevalence of breast cancer and breast cancer-related death are the most serious threats to women's health worldwide. Current progress in treatment strategies for HR+/HER2-breast cancer encompasses targeted therapy, endocrine therapy, genomic immunotherapy, and supplementing traditional methods like surgical resection and radiotherapy. This review article summarizes the current epidemiology of HR+/HER2-breast cancer, introduces the classification of HR+/HER2-breast cancer and the commonly used treatment methods. The mechanisms of action of various drugs, including targeted therapy drugs and endocrine hormone therapy drugs, and their potential synergistic effects are deeply discussed. In addition, clinical trials of these drugs that have been completed or are still in progress are included.
Collapse
Affiliation(s)
- Lu-Qi Cao
- Institute for Biotechnology, St. John’s University, Queens, NY, United States
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Haidong Sun
- Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yuhao Xie
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Harsh Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Letao Bo
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Hanli Lin
- Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhe-Sheng Chen
- Institute for Biotechnology, St. John’s University, Queens, NY, United States
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| |
Collapse
|
22
|
Tufail M, Hu JJ, Liang J, He CY, Wan WD, Huang YQ, Jiang CH, Wu H, Li N. Predictive, preventive, and personalized medicine in breast cancer: targeting the PI3K pathway. J Transl Med 2024; 22:15. [PMID: 38172946 PMCID: PMC10765967 DOI: 10.1186/s12967-023-04841-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024] Open
Abstract
Breast cancer (BC) is a multifaceted disease characterized by distinct molecular subtypes and varying responses to treatment. In BC, the phosphatidylinositol 3-kinase (PI3K) pathway has emerged as a crucial contributor to the development, advancement, and resistance to treatment. This review article explores the implications of the PI3K pathway in predictive, preventive, and personalized medicine for BC. It emphasizes the identification of predictive biomarkers, such as PIK3CA mutations, and the utility of molecular profiling in guiding treatment decisions. The review also discusses the potential of targeting the PI3K pathway for preventive strategies and the customization of therapy based on tumor stage, molecular subtypes, and genetic alterations. Overcoming resistance to PI3K inhibitors and exploring combination therapies are addressed as important considerations. While this field holds promise in improving patient outcomes, further research and clinical trials are needed to validate these approaches and translate them into clinical practice.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Ju Hu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Liang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Cai-Yun He
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Dong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu-Qi Huang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China.
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
23
|
De SK. Novel Pyrazino[2,3-b] Pyrazines as mTOR Kinase Inhibitors for Treating Cancer and other Diseases. Curr Med Chem 2024; 31:5657-5659. [PMID: 37493157 DOI: 10.2174/0929867331666230726112328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/18/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023]
Abstract
This paper describes the synthesis of some heteroaryl compounds and compositions comprising an effective amount of one or more such compounds and methods for treating or preventing cancer, inflammatory conditions, immunological conditions, metabolic conditions and conditions treatable or preventable by inhibition of a kinase pathway, comprising administering an adequate amount of a heteroaryl compound to a patient in need thereof. These compounds are mTOR/PI3K/Akt pathway inhibitors.
Collapse
Affiliation(s)
- Surya K De
- Department of Chemistry, Conju-Probe, San Diego, California, USA
- Bharath University, Chennai, Tamil Nadu, 600126, India
| |
Collapse
|
24
|
Mohite R, Doshi G. Elucidation of the Role of the Epigenetic Regulatory Mechanisms of PI3K/Akt/mTOR Signaling Pathway in Human Malignancies. Curr Cancer Drug Targets 2024; 24:231-244. [PMID: 37526459 DOI: 10.2174/1568009623666230801094826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/28/2023] [Accepted: 06/26/2023] [Indexed: 08/02/2023]
Abstract
The PI3K/Akt/mTOR pathway modulates cell growth, proliferation, metabolism, and movement. Moreover, significant studies have shown that the genes involved in this pathway are frequently activated in human cancer. Observational and computational modeling of the PI3K/AKt/ mTOR pathway inhibitors has been explored in clinical trials. It has been observed that the effectiveness and safety evidence from clinical studies and various inhibitors of this route have been given FDA approval. In this review article, we focused on the processes behind the overactivation of PI3K/Akt/mTOR signaling in cancer and provided an overview of PI3K/Akt/mTOR inhibitors as either individual drugs or a combination of different doses of drugs for different types of cancer. Furthermore, the review discusses the biological function and activation of the PI3K/AKt/mTOR signaling and their role in the development of cancers. Additionally, we discussed the potential challenges and corresponding prediction biomarkers of response and resistance for PI3K/Akt/m- TOR inhibitor development. The article focuses on the most current breakthroughs in using the PI3K/Akt/mTOR pathway to target certain molecules.
Collapse
Affiliation(s)
- Rupali Mohite
- Department of Pharmacology, Toxicology and Therapeutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India
| | - Gaurav Doshi
- Department of Pharmacology, Toxicology and Therapeutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.M. Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
25
|
Wylaź M, Kaczmarska A, Pajor D, Hryniewicki M, Gil D, Dulińska-Litewka J. Exploring the role of PI3K/AKT/mTOR inhibitors in hormone-related cancers: A focus on breast and prostate cancer. Biomed Pharmacother 2023; 168:115676. [PMID: 37832401 DOI: 10.1016/j.biopha.2023.115676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
Breast cancer (BC) and prostate cancer (PC) are at the top of the list when it comes to the most common types of cancers worldwide. The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway is important, in that it strongly influences the development and progression of these tumors. Previous studies have emphasized the key role of inhibitors of the PIK3/AKT/mTOR signaling pathway in the treatment of BC and PC, and it remains to be a crucial method of treatment. In this review, the inhibitors of these signaling pathways are compared, as well as their effectiveness in therapy and potential as therapeutic agents. The use of these inhibitors as polytherapy is evaluated, especially with the use of hormonal therapy, which has shown promising results.
Collapse
Affiliation(s)
- Mateusz Wylaź
- Student Scientific Group at Jagiellonian University Medical College, Faculty of Medicine, Medical Biochemistry, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland
| | - Anna Kaczmarska
- Student Scientific Group at Jagiellonian University Medical College, Faculty of Medicine, Medical Biochemistry, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland
| | - Dawid Pajor
- Student Scientific Group at Jagiellonian University Medical College, Faculty of Medicine, Medical Biochemistry, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland
| | - Matthew Hryniewicki
- Student Scientific Group at Jagiellonian University Medical College, Faculty of Medicine, Medical Biochemistry, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland
| | - Dorota Gil
- Chair of Medical Biochemistry, Jagiellonian University Medical College, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland
| | - Joanna Dulińska-Litewka
- Chair of Medical Biochemistry, Jagiellonian University Medical College, ul. Mikołaja Kopernika Street 7C, 31-034 Krakow, Poland.
| |
Collapse
|
26
|
Li H, Liu J, Qin X, Sun J, Liu Y, Jin F. Function of Long Noncoding RNAs in Glioma Progression and Treatment Based on the Wnt/β-Catenin and PI3K/AKT Signaling Pathways. Cell Mol Neurobiol 2023; 43:3929-3942. [PMID: 37747595 DOI: 10.1007/s10571-023-01414-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/09/2023] [Indexed: 09/26/2023]
Abstract
Gliomas are a deadly primary malignant tumor of the central nervous system, with glioblastoma (GBM) representing the most aggressive type. The clinical prognosis of GBM patients remains bleak despite the availability of multiple options for therapy, which has needed us to explore new therapeutic methods to face the rapid progression, short survival, and therapy resistance of glioblastomas. As the Human Genome Project advances, long noncoding RNAs (lncRNAs) have attracted the attention of researchers and clinicians in cancer research. Numerous studies have found aberrant expression of signaling pathways in glioma cells. For example, lncRNAs not only play an integral role in the drug resistance process by regulating the Wnt/β-catenin or PI3K/Akt signaling but are also involved in a variety of malignant biological behaviors such as glioma proliferation, migration, invasion, and tumor apoptosis. Therefore, the present review systematically assesses the existing research evidence on the malignant progression and drug resistance of glioma, focusing on the critical role and potential function of lncRNAs in the Wnt/β-catenin and PI3K/Akt classical pathways to promote and encourage further research in this field.
Collapse
Affiliation(s)
- Hanyun Li
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jilan Liu
- Department of Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China
| | - Xianyun Qin
- Department of Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China
| | - Jikui Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan, 250014, China.
| | - Yan Liu
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- School of Mental Health, Jining Medical University, Jining, 272013, China.
| | - Feng Jin
- The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042, China.
| |
Collapse
|
27
|
Thapa R, Afzal O, Gupta G, Bhat AA, Almalki WH, Alzarea SI, Kazmi I, Altamimi ASA, Subramaniyan V, Thangavelu L, Singh SK, Dua K. Unveiling the connection: Long-chain non-coding RNAs and critical signaling pathways in breast cancer. Pathol Res Pract 2023; 249:154736. [PMID: 37579591 DOI: 10.1016/j.prp.2023.154736] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/16/2023]
Abstract
Breast cancer is a complex and diverse condition that disrupts multiple signaling pathways essential for cell proliferation, survival, and differentiation. Recently, the significant involvement of long-chain non-coding RNAs (lncRNAs) in controlling key signaling pathways associated with breast cancer development has been discovered. This review aims to explore the interaction between lncRNAs and various pathways, including the AKT/PI3K/mTOR, Wnt/β-catenin, Notch, DNA damage response, TGF-β, Hedgehog, and NF-κB signaling pathways, to gain a comprehensive understanding of their roles in breast cancer. The AKT/PI3K/mTOR pathway regulates cell growth, survival, and metabolic function. Recent data suggests that specific lncRNAs can influence the functioning of this pathway, acting as either oncogenes or tumor suppressors. Dysregulation of this pathway is commonly observed in breast cancer cases. Moreover, breast cancer development has been associated with other pathways such as Wnt/β-catenin, Notch, TGF-β, Hedgehog, and NF-κB. Emerging studies have identified lncRNAs that modulate breast cancer's growth, progression, and metastasis by interacting with these pathways. To advance the development of innovative diagnostic tools and targeted treatment options, it is crucial to comprehend the intricate relationship between lncRNAs and vital signaling pathways in breast cancer. By fully harnessing the therapeutic potential of lncRNAs, there is a possibility of developing more effective and personalized therapy choices for breast cancer patients. Further investigation is necessary to comprehensively understand the role of lncRNAs within breast cancer signaling pathways and fully exploit their therapeutic potential.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Vetriselvan Subramaniyan
- Department of Pharmacology, Jeffrey Cheah School of Medicine and Health Sciences, MONASH University, Malaysia
| | - Lakshmi Thangavelu
- Center for Global Health Research , Saveetha Medical College , Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW 2007, Australia
| |
Collapse
|
28
|
Zhu S, Wu Y, Song B, Yi M, Yan Y, Mei Q, Wu K. Recent advances in targeted strategies for triple-negative breast cancer. J Hematol Oncol 2023; 16:100. [PMID: 37641116 PMCID: PMC10464091 DOI: 10.1186/s13045-023-01497-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Triple-negative breast cancer (TNBC), a highly aggressive subtype of breast cancer, negatively expresses estrogen receptor, progesterone receptor, and the human epidermal growth factor receptor 2 (HER2). Although chemotherapy is the main form of treatment for patients with TNBC, the effectiveness of chemotherapy for TNBC is still limited. The search for more effective therapies is urgent. Multiple targeted therapeutic strategies have emerged according to the specific molecules and signaling pathways expressed in TNBC. These include PI3K/AKT/mTOR inhibitors, epidermal growth factor receptor inhibitors, Notch inhibitors, poly ADP-ribose polymerase inhibitors, and antibody-drug conjugates. Moreover, immune checkpoint inhibitors, for example, pembrolizumab, atezolizumab, and durvalumab, are widely explored in the clinic. We summarize recent advances in targeted therapy and immunotherapy in TNBC, with the aim of serving as a reference for the development of individualized treatment of patients with TNBC in the future.
Collapse
Affiliation(s)
- Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Song
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Yuheng Yan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qi Mei
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
- Cancer Center, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
29
|
Glaviano A, Foo ASC, Lam HY, Yap KCH, Jacot W, Jones RH, Eng H, Nair MG, Makvandi P, Geoerger B, Kulke MH, Baird RD, Prabhu JS, Carbone D, Pecoraro C, Teh DBL, Sethi G, Cavalieri V, Lin KH, Javidi-Sharifi NR, Toska E, Davids MS, Brown JR, Diana P, Stebbing J, Fruman DA, Kumar AP. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer 2023; 22:138. [PMID: 37596643 PMCID: PMC10436543 DOI: 10.1186/s12943-023-01827-6] [Citation(s) in RCA: 357] [Impact Index Per Article: 178.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023] Open
Abstract
The PI3K/AKT/mTOR (PAM) signaling pathway is a highly conserved signal transduction network in eukaryotic cells that promotes cell survival, cell growth, and cell cycle progression. Growth factor signalling to transcription factors in the PAM axis is highly regulated by multiple cross-interactions with several other signaling pathways, and dysregulation of signal transduction can predispose to cancer development. The PAM axis is the most frequently activated signaling pathway in human cancer and is often implicated in resistance to anticancer therapies. Dysfunction of components of this pathway such as hyperactivity of PI3K, loss of function of PTEN, and gain-of-function of AKT, are notorious drivers of treatment resistance and disease progression in cancer. In this review we highlight the major dysregulations in the PAM signaling pathway in cancer, and discuss the results of PI3K, AKT and mTOR inhibitors as monotherapy and in co-administation with other antineoplastic agents in clinical trials as a strategy for overcoming treatment resistance. Finally, the major mechanisms of resistance to PAM signaling targeted therapies, including PAM signaling in immunology and immunotherapies are also discussed.
Collapse
Affiliation(s)
- Antonino Glaviano
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Aaron S C Foo
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore
| | - Hiu Y Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - Kenneth C H Yap
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore
| | - William Jacot
- Department of Medical Oncology, Institut du Cancer de Montpellier, Inserm U1194, Montpellier University, Montpellier, France
| | - Robert H Jones
- Cardiff University and Velindre Cancer Centre, Museum Avenue, Cardiff, CF10 3AX, UK
| | - Huiyan Eng
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Madhumathy G Nair
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, 560034, India
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, 324000, Zhejiang, China
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Center, Inserm U1015, Université Paris-Saclay, Paris, France
| | - Matthew H Kulke
- Section of Hematology and Medical Oncology, Boston University and Boston Medical Center, Boston, MA, USA
| | - Richard D Baird
- Cancer Research UK Cambridge Centre, Hills Road, Cambridge, CB2 0QQ, UK
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, 560034, India
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Camilla Pecoraro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Daniel B L Teh
- Departments of Ophthalmology and Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, and Neurobiology Programme, National University of Singapore, Singapore, Singapore
| | - Gautam Sethi
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Vincenzo Cavalieri
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Kevin H Lin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Eneda Toska
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Matthew S Davids
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Brown
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123, Palermo, Italy
| | - Justin Stebbing
- Division of Cancer, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0NN, UK
| | - David A Fruman
- Department of Molecular Biology and Biochemistry, University of California, 216 Sprague Hall, Irvine, CA, USA
| | - Alan P Kumar
- Department of Surgery, National University Hospital Singapore, National University of Singapore, Singapore, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
30
|
Lux MP, Hartkopf AD, Fehm TN, Welslau M, Müller V, Schütz F, Fasching PA, Janni W, Witzel I, Thomssen C, Beierlein M, Belleville E, Untch M, Thill M, Tesch H, Ditsch N, Aktas B, Banys-Paluchowski M, Kolberg-Liedtke C, Wöckel A, Kolberg HC, Harbeck N, Bartsch R, Schneeweiss A, Ettl J, Würstlein R, Krug D, Taran FA, Lüftner D, Stickeler E. Update Breast Cancer 2023 Part 2 - Advanced-Stage Breast Cancer. Geburtshilfe Frauenheilkd 2023; 83:664-672. [PMID: 37916184 PMCID: PMC10617389 DOI: 10.1055/a-2074-0125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 11/03/2023] Open
Abstract
In recent years, a number of new therapies have led to advances in the treatment of patients with advanced breast carcinoma. These substances are mainly CDK4/6 inhibitors and other substances that can overcome endocrine resistance, oral selective estrogen receptor degraders, antibody drug conjugates (ADCs), and PARP inhibitors. This review summarizes and evaluates the latest study results that have been published in recent months. This includes the overall survival data of the Destiny-Breast03 study, the first analysis of the CAPItello-291 study, the comparison of CDK4/6 inhibitor treatment with chemotherapy in the first line of therapy (RIGHT Choice study), the first analysis of the Destiny-Breast02 study in the treatment setting after T-DM1 treatment, and the first analysis of the Serena-2 study. Most of these studies have the potential to significantly change the therapeutic landscape for patients with advanced breast carcinoma and show that the continued rapid development of new therapies is always producing new results.
Collapse
Affiliation(s)
- Michael P. Lux
- Klinik für Gynäkologie und Geburtshilfe, Frauenklinik St. Louise, Paderborn, St. Josefs-Krankenhaus, Salzkotten, St. Vincenz Krankenhaus GmbH, Paderborn, Germany
| | - Andreas D. Hartkopf
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Tanja N. Fehm
- Department of Gynecology and Obstetrics, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | - Volkmar Müller
- Department of Gynecology, Hamburg-Eppendorf University Medical Center, Hamburg, Germany
| | - Florian Schütz
- Gynäkologie und Geburtshilfe, Diakonissen-Stiftungs-Krankenhaus Speyer, Speyer, Germany
| | - Peter A. Fasching
- Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg,
Erlangen, Germany
| | - Wolfgang Janni
- Department of Gynecology and Obstetrics, Ulm University Hospital, Ulm, Germany
| | - Isabell Witzel
- Klinik für Gynäkologie, Universitätsspital Zürich, Zürich, Switzerland
| | - Christoph Thomssen
- Department of Gynaecology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Milena Beierlein
- Erlangen University Hospital, Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg,
Erlangen, Germany
| | | | - Michael Untch
- Clinic for Gynecology and Obstetrics, Breast Cancer Center, Gynecologic Oncology Center, Helios Klinikum Berlin Buch, Berlin, Germany
| | - Marc Thill
- Department of Gynecology and Gynecological Oncology, Agaplesion Markus Krankenhaus, Frankfurt am Main, Germany
| | - Hans Tesch
- Oncology Practice at Bethanien Hospital, Frankfurt am Main, Germany
| | - Nina Ditsch
- Department of Gynecology and Obstetrics, University Hospital Augsburg, Augsburg, Germany
| | - Bahriye Aktas
- Department of Gynecology, University of Leipzig Medical Center, Leipzig, Germany
| | - Maggie Banys-Paluchowski
- Department of Gynecology and Obstetrics, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | | | - Achim Wöckel
- Department of Gynecology and Obstetrics, University Hospital Würzburg, Würzburg, Germany
| | | | - Nadia Harbeck
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich LMU, LMU University Hospital, München, Germany
| | - Rupert Bartsch
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Andreas Schneeweiss
- National Center for Tumor Diseases, University Hospital and German Cancer Research Center, Heidelberg, Germany
| | - Johannes Ettl
- Klinik für Frauenheilkunde und Gynäkologie, Klinikum Kempten, Klinikverbund Allgäu, Kempten, Germany
| | - Rachel Würstlein
- Breast Center, Department of Gynecology and Obstetrics and CCC Munich LMU, LMU University Hospital, München, Germany
| | - David Krug
- Klinik für Strahlentherapie, Universitätsklinkum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Florin-Andrei Taran
- Department of Gynecology and Obstetrics, University Hospital Freiburg, Freiburg, Germany
| | - Diana Lüftner
- Medical University of Brandenburg Theodor-Fontane, Immanuel Hospital Märkische Schweiz, Buckow, Germany
| | - Elmar Stickeler
- Department of Obstetrics and Gynecology, Center for Integrated Oncology (CIO Aachen, Bonn, Cologne, Düsseldorf), University Hospital of RWTH Aachen, Aachen, Germany
| |
Collapse
|
31
|
Yu Y, Cao WM, Cheng F, Shi Z, Han L, Yi JL, da Silva EM, Dopeso H, Chen H, Yang J, Wang X, Zhang C, Zhang H. FOXK2 amplification and overexpression promotes breast cancer development and chemoresistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.28.542643. [PMID: 37398114 PMCID: PMC10312425 DOI: 10.1101/2023.05.28.542643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Activation of oncogenes through DNA amplification/overexpression plays an important role in cancer initiation and progression. Chromosome 17 has many cancer-associated genetic anomalies. This cytogenetic anomaly is strongly associated with poor prognosis of breast cancer. FOXK2 gene is located on 17q25 and encodes a transcriptional factor with a forkhead DNA binding domain. By integrative analysis of public genomic datasets of breast cancers, we found that FOXK2 is frequently amplified and overexpressed in breast cancers. FOXK2 overexpression in breast cancer patients is associated with poor overall survival. FOXK2 knockdown significantly inhibits cell proliferation, invasion and metastasis, and anchorage-independent growth, as well as causes G0/G1 cell cycle arrest in breast cancer cells. Moreover, inhibition of FOXK2 expression sensitizes breast cancer cells to frontline anti-tumor chemotherapies. More importantly, co-overexpression of FOXK2 and PI3KCA with oncogenic mutations (E545K or H1047R) induces cellular transformation in non-tumorigenic MCF10A cells, suggesting that FOXK2 is an oncogene in breast cancer and is involved in PI3KCA-driven tumorigenesis. Our study identified CCNE2, PDK1, and Estrogen receptor alpha (ESR1) as direct transcriptional targets of FOXK2 in MCF-7 cells. Blocking CCNE2- and PDK1-mediated signaling by using small molecule inhibitors has synergistic anti-tumor effects in breast cancer cells. Furthermore, FOXK2 inhibition by gene knockdown or inhibitors for its transcriptional targets (CCNE2 and PDK1) in combination with PI3KCA inhibitor, Alpelisib, showed synergistic anti-tumor effects on breast cancer cells with PI3KCA oncogenic mutations. In summary, we provide compelling evidence that FOXK2 plays an oncogenic role in breast tumorigenesis and targeting FOXK2-mediated pathways may be a potential therapeutic strategy in breast cancer.
Collapse
Affiliation(s)
- Yang Yu
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC, USA
| | - Wen-Ming Cao
- Department of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Feng Cheng
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC, USA
| | - Zhongcheng Shi
- Advanced Technology Cores, Baylor College of Medicine, Houston, USA
| | - Lili Han
- Department of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jin-Ling Yi
- Texas Children’s Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Edaise M da Silva
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Higinio Dopeso
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hui Chen
- Department of Pathology & Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jianhua Yang
- Center for Cancer and Immunology Research, Children’s National Research Institute, Children’s National Hospital, Washington, DC, USA
- Department of Pediatrics, The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Xiaosong Wang
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chunchao Zhang
- Texas Children’s Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Hong Zhang
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|