1
|
Dick JK, Sangala JA, Krishna VD, Khaimraj A, Hamel L, Erickson SM, Hicks D, Soigner Y, Covill LE, Johnson AK, Ehrhardt MJ, Ernste K, Brodin P, Koup RA, Khaitan A, Baehr C, Thielen BK, Henzler CM, Skipper C, Miller JS, Bryceson YT, Wu J, John CC, Panoskaltsis-Mortari A, Orioles A, Steiner ME, Cheeran MCJ, Pravetoni M, Hart GT. NK Cell and Monocyte Dysfunction in Multisystem Inflammatory Syndrome in Children. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1452-1466. [PMID: 39392378 PMCID: PMC11533154 DOI: 10.4049/jimmunol.2400395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024]
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a severe complication of SARS-CoV-2 infection characterized by multiorgan involvement and inflammation. Testing of cellular function ex vivo to understand the aberrant immune response in MIS-C is limited. Despite strong Ab production in MIS-C, SARS-CoV-2 nucleic acid testing can remain positive for 4-6 wk postinfection. Therefore, we hypothesized that dysfunctional cell-mediated Ab responses downstream of Ab production may be responsible for delayed clearance of viral products in MIS-C. In MIS-C, monocytes were hyperfunctional for phagocytosis and cytokine production, whereas NK cells were hypofunctional for both killing and cytokine production. The decreased NK cell cytotoxicity correlated with an NK exhaustion marker signature and systemic IL-6 levels. Potentially providing a therapeutic option, cellular engagers of CD16 and SARS-CoV-2 proteins were found to rescue NK cell function in vitro. Taken together, our results reveal dysregulation in Ab-mediated cellular responses of myeloid and NK cells that likely contribute to the immune pathology of this disease.
Collapse
Affiliation(s)
- Jenna K. Dick
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
- Center for Immunology, University of Minnesota, Minneapolis, MN
| | - Jules A. Sangala
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
- Center for Immunology, University of Minnesota, Minneapolis, MN
| | | | - Aaron Khaimraj
- Department of Pharmacology, University of Minnesota, Minneapolis, MN
| | - Lydia Hamel
- Division of Critical Care, Children’s Hospital and Clinics of Minnesota, Minneapolis, MN
| | - Spencer M. Erickson
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Dustin Hicks
- Department of Pharmacology, University of Minnesota, Minneapolis, MN
| | - Yvette Soigner
- Division of Hematology, Oncology, and Transplant, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Laura E. Covill
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Alexander K. Johnson
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| | - Michael J. Ehrhardt
- Division of Bone Marrow Transplantation and Cellular Therapy, Department of Pediatrics, M Health Fairview Masonic Children’s Hospital, Minneapolis, MN
| | - Keenan Ernste
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Petter Brodin
- Unit for Clinical Pediatrics, Department of Women’s and Children’s Health, Karolinska Institute, Solna, Sweden
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Richard A. Koup
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Alka Khaitan
- Ryan White Center for Pediatric Infectious Diseases & Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Carly Baehr
- Department of Pharmacology, University of Minnesota, Minneapolis, MN
| | - Beth K. Thielen
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| | | | - Caleb Skipper
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Jeffrey S. Miller
- Center for Immunology, University of Minnesota, Minneapolis, MN
- Division of Hematology, Oncology, and Transplant, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Yenan T. Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Broegelmann Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Jianming Wu
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - Chandy C. John
- Ryan White Center for Pediatric Infectious Diseases & Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Angela Panoskaltsis-Mortari
- Division of Bone Marrow Transplantation and Cellular Therapy, Department of Pediatrics, M Health Fairview Masonic Children’s Hospital, Minneapolis, MN
| | - Alberto Orioles
- Division of Critical Care, Children’s Hospital and Clinics of Minnesota, Minneapolis, MN
| | - Marie E. Steiner
- Divisions of Pediatric Critical Care and Pediatric Hematology/Oncology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| | - Maxim C. J. Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota, Minneapolis, MN
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA
| | - Geoffrey T. Hart
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
- Center for Immunology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
2
|
Ozen S, Aksentijevich I. The past 25 years in paediatric rheumatology: insights from monogenic diseases. Nat Rev Rheumatol 2024; 20:585-593. [PMID: 39112602 DOI: 10.1038/s41584-024-01145-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/29/2024]
Abstract
The past 25 years have seen major novel developments in the field of paediatric rheumatology. The concept of autoinflammation was introduced to this field, and medicine more broadly, with studies of familial Mediterranean fever, the most common autoinflammatory disease globally. New data on the positive evolutionary selection of familial Mediterranean fever-associated genetic variants might be pertinent to mild gain-of-function variants reported in other disease-associated genes. Genetic studies have unveiled the complexity of human heritability to inflammation and flourishing data from rare monogenic disorders have contributed to a better understanding of general disease mechanisms in paediatric rheumatic conditions. Beyond genomics, the application of other 'omics' technologies, including transcriptomics, proteomics and metabolomics, has generated an enormous dataset that can be applied to the development of new therapies and in the practice of precision medicine. Novel biomarkers for monitoring disease activity and progression have also emerged. A surge in the development of targeted biologic therapies has led to durable remission and improved prognosis for many diseases that in the past caused major complications. Last but not least, the COVID-19 pandemic has affected paediatric rheumatology practice and has sparked new investigations into the link between viral infections and unregulated inflammatory responses in children.
Collapse
Affiliation(s)
- Seza Ozen
- Department of Paediatric Rheumatology, Hacettepe University, Ankara, Turkey.
| | | |
Collapse
|
3
|
Calcaterra V, Loretelli C, Biganzoli D, Abdelsalam A, Marano G, Carelli S, Fiori L, Mannarino S, D'Auria E, Verduci E, De Santis R, Dilillo D, Fabiano V, Carlucci P, Maghraby E, Messa L, Cereda C, Fiorina P, Biganzoli E, Zuccotti G. Long-term cytokine profile in multisystem inflammatory disease among children. Cytokine 2024; 183:156744. [PMID: 39205361 DOI: 10.1016/j.cyto.2024.156744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Multisystem inflammatory disease in children (MIS-C) is a post-infectious condition following coronavirus disease-19 infection. Long-term follow-up data suggests that initial clinical severity does not necessarily correlate with long-term outcomes. The long-term immunological response in children with MIS-C remains poorly understood. We analyzed cytokine profiles at diagnosis and during follow-up, in pediatric patients with MIS-C, exploring correlations among cytokine expressions and standard biochemical and hormonal test results. METHODS Twenty-five MIS-C patients (mean 9.4 ± 3.9) with complete test results at diagnosis and at 6- and 12-months follow-up were included in the study. Selected cytokines, such as IL-9, eotaxin, IP-10, MIP-1β, RANTES, MCP-1(MCAF), TNF-α, PDGF-B, IL-4, and MIP-1α, were included in the analysis. RESULTS IP-10, MCP-1 (MCAF), and MIP-1α levels normalized or nearly normalized at 6-12 months, the remaining cytokines, including IL-9, eotaxin, MIP-1β, RANTES, TNF-α, PDGF-B, IL-4, remained higher in MIS-C than in controls at our last follow-up time. At 6 months post-diagnosis, a mild negative correlation between triglycerides and HOMA-IR with MCP-1 (MCAF), IL-4, and Eotaxin was noted. At the 12-month follow-up we found a mild positive correlation of cortisol and ACTH levels with PDGF-B, MIP-1α, and TNF-α. Conversely, a negative correlation between these cytokines with fasting glucose and HOMA-IR was observed. CONCLUSIONS Our study findings highlight a notable cytokine-mediated inflammatory response in pediatric patients with MIS-C, characterized by sustained elevated levels over a 12-month monitoring period compared to the control group. We have identified various interrelationships among different cytokines, as well as correlations between heightened cytokine levels and metabolic and hormonal patterns. The pronounced inflammatory response underscores its involvement in acute organ damage, while its persistence suggests potential implications for long-term metabolic disorders.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy; Pediatric Department, Buzzi Children's Hospital, Milano, Italy
| | - Cristian Loretelli
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science, Università di Milano, Milano, Italy
| | - Davide Biganzoli
- Center of Functional Genomics and Rare Diseases, Buzzi Children's Hospital, Milano, Italy
| | - Ahmed Abdelsalam
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science, Università di Milano, Milano, Italy
| | - Giuseppe Marano
- Medical Statistics Unit, Department of Biomedical and Clinical Sciences, "Luigi Sacco" University Hospital, University of Milano, Data Science Research Center, Milano, Italy
| | - Stephana Carelli
- Center of Functional Genomics and Rare Diseases, Buzzi Children's Hospital, Milano, Italy
| | - Laura Fiori
- Pediatric Department, Buzzi Children's Hospital, Milano, Italy
| | | | - Enza D'Auria
- Pediatric Department, Buzzi Children's Hospital, Milano, Italy
| | - Elvira Verduci
- Pediatric Department, Buzzi Children's Hospital, Milano, Italy
| | | | - Dario Dilillo
- Pediatric Department, Buzzi Children's Hospital, Milano, Italy
| | - Valentina Fabiano
- Pediatric Department, Buzzi Children's Hospital, Milano, Italy; Department of Biomedical and Clinical Sciences, University of Milano, Milano, Italy.
| | | | - Erika Maghraby
- Center of Functional Genomics and Rare Diseases, Buzzi Children's Hospital, Milano, Italy; Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Sciences, University of Milano, Milano, Italy; Department of Biology and Biotechnology "L. Spallanzani" (DBB), University of Pavia, Pavia, Italy; Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milano, Italy
| | - Letizia Messa
- Center of Functional Genomics and Rare Diseases, Buzzi Children's Hospital, Milano, Italy
| | - Cristina Cereda
- Center of Functional Genomics and Rare Diseases, Buzzi Children's Hospital, Milano, Italy
| | - Paolo Fiorina
- International Center for T1D, Pediatric Clinical Research Center Romeo ed Enrica Invernizzi, Department of Biomedical and Clinical Science, Università di Milano, Milano, Italy
| | - Elia Biganzoli
- Medical Statistics Unit, Department of Biomedical and Clinical Sciences, "Luigi Sacco" University Hospital, University of Milano, Data Science Research Center, Milano, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Department, Buzzi Children's Hospital, Milano, Italy; Department of Biomedical and Clinical Sciences, University of Milano, Milano, Italy
| |
Collapse
|
4
|
Fernández-Sarmiento J, Acevedo L, Niño-Serna LF, Boza R, García-Silva J, Yock-Corrales A, Yamazaki-Nakashimada MA, Faugier-Fuentes E, Del Águila O, Camacho-Moreno G, Estripeaut D, Gutiérrez IF, Luciani K, Espada G, Álvarez-Olmos MI, Pérez-Camacho P, Duarte-Passos S, Cervi MC, Cantillano EM, Llamas-Guillén BA, Saltigeral-Simental P, Criales J, Chacon-Cruz E, García-Domínguez M, Aguilar KLB, Jarovsky D, Ivankovich-Escoto G, Tremoulet AH, Ulloa-Gutierrez R. Risk Factors Associated with Intensive Care Admission in Children with Severe Acute Respiratory Syndrome Coronavirus 2-Related Multisystem Inflammatory Syndrome (MIS-C) in Latin America: A Multicenter Observational Study of the REKAMLATINA Network. J Intensive Care Med 2024; 39:785-793. [PMID: 38414438 DOI: 10.1177/08850666241233189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Background: Multisystem inflammatory syndrome in children (MIS-C) associated with coronavirus disease 2019 varies widely in its presentation and severity, with low mortality in high-income countries. In this study in 16 Latin American countries, we sought to characterize patients with MIS-C in the pediatric intensive care unit (PICU) compared with those hospitalized on the general wards and analyze the factors associated with severity, outcomes, and treatment received. Study Design: An observational ambispective cohort study was conducted including children 1 month to 18 years old in 84 hospitals from the REKAMLATINA network from January 2020 to June 2022. Results: A total of 1239 children with MIS-C were included. The median age was 6.5 years (IQR 2.5-10.1). Eighty-four percent (1043/1239) were previously healthy. Forty-eight percent (590/1239) were admitted to the PICU. These patients had more myocardial dysfunction (20% vs 4%; P < 0.01) with no difference in the frequency of coronary abnormalities (P = 0.77) when compared to general ward subjects. Of the children in the PICU, 83.4% (494/589) required vasoactive drugs, and 43.4% (256/589) invasive mechanical ventilation, due to respiratory failure and pneumonia (57% vs 32%; P = 0.01). On multivariate analysis, the factors associated with the need for PICU transfer were age over 6 years (aOR 1.76 95% CI 1.25-2.49), shock (aOR 7.06 95% CI 5.14-9.80), seizures (aOR 2.44 95% CI 1.14-5.36), thrombocytopenia (aOR 2.43 95% CI 1.77-3.34), elevated C-reactive protein (aOR 1.89 95% CI 1.29-2.79), and chest x-ray abnormalities (aOR 2.29 95% CI 1.67-3.13). The overall mortality was 4.8%. Conclusions: Children with MIS-C who have the highest risk of being admitted to a PICU in Latin American countries are those over age six, with shock, seizures, a more robust inflammatory response, and chest x-ray abnormalities. The mortality rate is five times greater when compared with high-income countries, despite a high proportion of patients receiving adequate treatment.
Collapse
Affiliation(s)
- Jaime Fernández-Sarmiento
- Department of Pediatrics and Intensive Care, Fundación Cardioinfantil-Instituto de Cardiología, Universidad de La Sabana, Bogotá, Colombia
| | - Lorena Acevedo
- Department of Pediatrics and Intensive Care, Fundación Cardioinfantil-Instituto de Cardiología, Universidad de La Sabana, Bogotá, Colombia
| | | | - Raquel Boza
- Unidad de Cuidados Intensivos Pediátricos, Hospital Nacional de Niños "Dr Carlos Sáenz Herrera," Caja Costarricense de Seguro Social (CCSS), San José, Costa Rica
| | | | - Adriana Yock-Corrales
- Servicio de Emergencias, Hospital Nacional de Niños "Dr Carlos Sáenz Herrera," Caja Costarricense de Seguro Social (CCSS), San José, Costa Rica
| | | | - Enrique Faugier-Fuentes
- Servicio de Reumatología, Hospital Infantil de México Federico Gómez, Ciudad de México, México
| | - Olguita Del Águila
- Unidad de Infectología Pediátrica, Hospital Nacional Edgardo Rebagliati Martins, Lima, Perú
| | - German Camacho-Moreno
- Unidad de Infectología Pediátrica, Fundación Hospital Pediátrico La Misericordia (HOMI), Bogotá, Colombia
| | - Dora Estripeaut
- Servicio de Infectología, Hospital del Niño Dr José Renán Esquivel, Ciudad de Panamá, Panamá
| | - Iván F Gutiérrez
- Servicio de Infectología, Clínica Infantil Colsubsidio, Bogotá, Colombia
| | - Kathia Luciani
- Servicio de Infectología, Hospital de Especialidades Pediátricas Omar Torrijos Herrera, Ciudad de Panamá, Panamá
| | - Graciela Espada
- Servicio de Reumatología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | | | - Paola Pérez-Camacho
- Servicio de Infectología, Fundación Valle del Lili & Departamento de Pediatría, Facultad de Ciencias de la Salud, Universidad Icesi, Cali, Colombia
| | - Saulo Duarte-Passos
- Hospital Universitario de Faculdade de Medicina de Jundiai, Sao Paolo, Brazil
| | - Maria C Cervi
- Serviço de Infectología, Faculdade de Medicina de Ribeirāo Preto, Universidade de Sāo Paulo, Sao Paulo, Brazil
| | - Edwin M Cantillano
- Unidad de Cuidados Intensivos Pediátricos, Hospital Regional del Norte, Instituto Hondureño de Seguridad Social, San Pedro de Sula, Honduras
| | | | - Patricia Saltigeral-Simental
- Servicio de Infectología, Star Médica Hospital Infantil Privado e Instituto Nacional de Pediatría, Ciudad de México, México
| | | | - Enrique Chacon-Cruz
- Servicio de Infectología. Hospital General de Tijuana, Tijuana, México
- Think Vaccines LLC, Houston, Texas, USA
| | - Miguel García-Domínguez
- Servicio de Alergología e Inmunología, Hospital Pediátrico de Sinaloa "Dr Rigoberto Aguilar Pico," Sinaloa, México
| | - Karla L Borjas Aguilar
- Servicio de Inmunología, Hospital María, Especialidades Pediátricas e Instituto Hondureño de Seguridad Social, Hospital de Especialidades, Tegucigalpa, Honduras
| | - Daniel Jarovsky
- Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Gabriela Ivankovich-Escoto
- Servicio de Inmunología y Reumatología Pediátrica, Hospital Nacional de Niños "Dr Carlos Sáenz Herrera," Caja Costarricense de Seguro Social (CCSS), San José, Costa Rica
| | - Adriana H Tremoulet
- Department of Pediatrics, University of California San Diego (UCSD) & Rady Children's Hospital, San Diego, California, USA
| | - Rolando Ulloa-Gutierrez
- Servicio de Infectología Pediátrica, Hospital Nacional de Niños "Dr Carlos Sáenz Herrera," Caja Costarricense de Seguro Social (CCSS), San José, Costa Rica
- Facultad de Medicina, Universidad de Ciencias Médicas (UCIMED), San José, Costa Rica
- Instituto de Investigación en Ciencias Médicas UCIMED (IICIMED), San José, Costa Rica
| |
Collapse
|
5
|
Stasiak A, Kędziora P, Smolewska E. Complications of Multisystem Inflammatory Syndrome Associated with SARS-CoV-2 Infection-Many Facets of One Disease-A Literature Review Based on a Case Report. J Clin Med 2024; 13:4146. [PMID: 39064185 PMCID: PMC11278001 DOI: 10.3390/jcm13144146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a disease that made its mark in the early days of the COVID-19 pandemic due to the diverse course and symptoms affecting multiple body systems. It is a condition that develops in pediatric patients about 2-6 weeks after contact with a person infected with the SARS-CoV-2 virus. In many instances, MIS-C has caused multiple organ failure, with particularly severe complications involving the cardiovascular system and manifesting as hypotension, various cardiac arrhythmias, myocarditis or coronary artery lesions resembling those seen in Kawasaki disease. Currently, the incidence of MIS-C is about 1-3 per 1000 children, with a decreasing trend in recent years due to the introduction of immunization against the SARS-CoV-2 virus for children as young as 6 months. In our paper, we present the case of a patient with a severe course of MIS-C with numerous cardiovascular and neurological complications, in whom the symptoms of the disease were managed by administering biological treatment. We also present a review of the literature on the subject, which shows how many different facets this disease can have and that physicians still need to remain alert, as there are cases of severe MIS-C, especially in unvaccinated patients.
Collapse
Affiliation(s)
- Aleksandra Stasiak
- Department of Pediatric Cardiology and Rheumatology, Medical University of Lodz, Sporna 36/50 Street, 91-738 Lodz, Poland; (P.K.); (E.S.)
| | | | | |
Collapse
|
6
|
Butters C, Benede N, Moyo-Gwete T, Richardson SI, Rohlwink U, Shey M, Ayres F, Manamela NP, Makhado Z, Balla SR, Madzivhandila M, Ngomti A, Baguma R, Facey-Thomas H, Spracklen TF, Day J, van der Ross H, Riou C, Burgers WA, Scott C, Zühlke L, Moore PL, Keeton RS, Webb K. Comparing the immune abnormalities in MIS-C to healthy children and those with inflammatory disease reveals distinct inflammatory cytokine production and a monofunctional T cell response. Clin Immunol 2024; 259:109877. [PMID: 38141746 DOI: 10.1016/j.clim.2023.109877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a severe, hyperinflammatory disease that occurs after exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The underlying immune pathology of MIS-C is incompletely understood, with limited data comparing MIS-C to clinically similar paediatric febrile diseases at presentation. SARS-CoV-2-specific T cell responses have not been compared in these groups to assess whether there is a T cell profile unique to MIS-C. In this study, we measured inflammatory cytokine concentration and SARS-CoV-2-specific humoral immunity and T cell responses in children with fever and suspected MIS-C at presentation (n = 83) where MIS-C was ultimately confirmed (n = 58) or another diagnosis was made (n = 25) and healthy children (n = 91). Children with confirmed MIS-C exhibited distinctly elevated serum IL-10, IL-6, and CRP at presentation. No differences were detected in SARS-CoV-2 spike IgG serum concentration, neutralisation capacity, antibody dependant cellular phagocytosis, antibody dependant cellular cytotoxicity or SARS-CoV-2-specific T cell frequency between the groups. Healthy SARS-CoV-2 seropositive children had a higher proportion of polyfunctional SARS-CoV-2-specific CD4+ T cells compared to children with MIS-C and those with other inflammatory or infectious diagnoses, who both presented a largely monofunctional SARS-CoV-2-specific CD4+ T cell profile. Treatment with steroids and/or intravenous immunoglobulins resulted in rapid reduction of inflammatory cytokines but did not affect the SARS-CoV-2-specific IgG or CD4+ T cell responses in MIS-C. In these data, MIS-C had a unique cytokine profile but not a unique SARS-CoV-2 specific humoral or T cell cytokine response.
Collapse
Affiliation(s)
- Claire Butters
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Klipfontein Road, Rondebosch, 7700 Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa.
| | - Ntombi Benede
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa.
| | - Thandeka Moyo-Gwete
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa; National Institute for Communicable Diseases of the National Health Laboratory Services, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa.
| | - Simone I Richardson
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa; National Institute for Communicable Diseases of the National Health Laboratory Services, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa.
| | - Ursula Rohlwink
- Division of Neurosurgery, Department of Surgery, Red Cross War Memorial Children's Hospital, University of Cape Town, Klipfontein Road, Rondebosch, 7700 Cape Town, South Africa; Neuroscience Institute, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Crick African Network, The Francis Crick Institute, Midland Road, London NW1 1AT, United Kingdom.
| | - Muki Shey
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Department of Medicine, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa.
| | - Frances Ayres
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa; National Institute for Communicable Diseases of the National Health Laboratory Services, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa.
| | - Nelia P Manamela
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa; National Institute for Communicable Diseases of the National Health Laboratory Services, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa.
| | - Zanele Makhado
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa; National Institute for Communicable Diseases of the National Health Laboratory Services, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa
| | - Sashkia R Balla
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa; National Institute for Communicable Diseases of the National Health Laboratory Services, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa.
| | - Mashudu Madzivhandila
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa; National Institute for Communicable Diseases of the National Health Laboratory Services, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa
| | - Amkele Ngomti
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa.
| | - Richard Baguma
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa
| | - Heidi Facey-Thomas
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Klipfontein Road, Rondebosch, 7700 Cape Town, South Africa.
| | - Timothy F Spracklen
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Klipfontein Road, Rondebosch, 7700 Cape Town, South Africa; Cape Heart Institute, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa.
| | - Jonathan Day
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Klipfontein Road, Rondebosch, 7700 Cape Town, South Africa
| | - Hamza van der Ross
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Klipfontein Road, Rondebosch, 7700 Cape Town, South Africa.
| | - Catherine Riou
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa.
| | - Wendy A Burgers
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa.
| | - Christiaan Scott
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Klipfontein Road, Rondebosch, 7700 Cape Town, South Africa; Clinical Research Centre, University of Cape Town, Groote Schuur Hospital, Observatory, 7935 Cape Town, South Africa.
| | - Liesl Zühlke
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Klipfontein Road, Rondebosch, 7700 Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Cape Heart Institute, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; South African Medical Research Council, Francie Van Zijl Drive, Parow Valley, 7501 Cape Town, South Africa.
| | - Penny L Moore
- SA MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa; National Institute for Communicable Diseases of the National Health Laboratory Services, Modderfontein Road, Sandringham, 2192 Johannesburg, South Africa; Centre for the AIDS Programme of Research in South Africa, Umbilo Road, 4001 Durban, South Africa.
| | - Roanne S Keeton
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa; Division of Medical Virology, Department of Pathology, University of Cape Town, Anzio Road, Observatory, 7935 Cape Town, South Africa.
| | - Kate Webb
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Klipfontein Road, Rondebosch, 7700 Cape Town, South Africa; Crick African Network, The Francis Crick Institute, Midland Road, London NW1 1AT, United Kingdom.
| |
Collapse
|
7
|
Musat O, Sorop VB, Sorop MI, Lazar V, Marti DT, Susan M, Avram CR, Oprisoni A, Vulcanescu DD, Horhat FG, Bagiu IC, Horhat DI, Diaconu MM. COVID-19 and Laboratory Markers from Romanian Patients-A Narrative Review. Life (Basel) 2023; 13:1837. [PMID: 37763241 PMCID: PMC10532991 DOI: 10.3390/life13091837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
COVID-19 has significantly impacted the whole world, and Romania was no exception. Biomarkers play a crucial role in understanding and managing the disease. However, research regarding laboratory analyses for patients with COVID-19 is fairly limited. For detection, PCR testing is still considered the golden standard, while antibodies are still useful for monitoring both patients and their vaccination status. In our country, biomarkers such as CRP, LDH, transaminases, cardiac, and iron markers have been used to assess the status of patients and even predict illness outcome. CRP, IL-6, LDH, FER, fibrinogen, creatinine, and vitamin D levels have been associated with increased severity, risk of ICU admission, and death. Cardiac markers and D-dimers are also good predictors, but their role seems more important in patients with complications. HDL cholesterol and BUN levels were also suggested as potential biomarkers. Hematological issues in SARS-CoV-2 infections include neutrophilia, lymphopenia and their ratio, while PCT, which is a marker of bacterial infections, is better to be used in patients with co- or supra-infections. The current research is a narrative review that focuses on the laboratory results of Romanian COVID-19 patients. The goal of this article is to provide an update on the research on biomarkers and other laboratory tests conducted inside the borders of Romania and identify gaps in this regard. Secondly, options for further research are discussed and encouraged.
Collapse
Affiliation(s)
- Ovidiu Musat
- Department of Ophthalmology, “Carol Davila” University of Medicine and Pharmacy, Dionisie Lupu Street, No. 37, Sector 2, 020021 Bucharest, Romania;
- Department of Ophthalmology, “Dr Carol Davila” Central Military Emergency University Hospital, Mircea Vulcanescu Street, No. 88, 010825 Bucharest, Romania
| | - Virgiliu Bogdan Sorop
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (V.B.S.); (M.M.D.)
| | - Madalina Ioana Sorop
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (M.I.S.); (D.D.V.)
| | - Viorica Lazar
- Department of General Medicine, “Vasile Goldis” University of Medicine, Liviu Rebreanu Street, No. 86, 310048 Arad, Romania;
- Pediatric Clinic II, Clinical Hospital Emergency of Arad County, Andrényi Károly Street, No. 2-4, 310037 Arad, Romania
| | - Daniela Teodora Marti
- Department of Biology and Life Sciences, “Vasile Goldis” University of Medicine, Liviu Rebreanu Street, No. 86, 310048 Arad, Romania;
- Clinical Analysis Laboratory Clinical Hospital Emergency of Arad County, Andrényi Károly Street, No. 2-4, 310037 Arad, Romania
| | - Monica Susan
- Department of Internal Medicine, Centre for Preventive Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Cecilia Roberta Avram
- Department of Residential Training and Post-University Courses, “Vasile Goldis” Western University, Liviu Rebreanu Street 86, 310414 Arad, Romania;
| | - Andrada Oprisoni
- Department of Pediatrics, Discipline of Pediatric Oncology and Hematology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Dan Dumitru Vulcanescu
- Doctoral School, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania; (M.I.S.); (D.D.V.)
- Department of Microbiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Multidisciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), Microbiology Department, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Clinical Analysis Laboratory, “Louis Turcanu” Emergency Clinical Hospital for Children, Iosif Nemoianu Street 2, 300011 Timisoara, Romania
| | - Florin George Horhat
- Department of Microbiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Multidisciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), Microbiology Department, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Clinical Analysis Laboratory, “Louis Turcanu” Emergency Clinical Hospital for Children, Iosif Nemoianu Street 2, 300011 Timisoara, Romania
| | - Iulia Cristina Bagiu
- Department of Microbiology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
- Multidisciplinary Research Center on Antimicrobial Resistance (MULTI-REZ), Microbiology Department, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
- Clinical Analysis Laboratory, “Louis Turcanu” Emergency Clinical Hospital for Children, Iosif Nemoianu Street 2, 300011 Timisoara, Romania
| | - Delia Ioana Horhat
- Department of ENT, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Mircea Mihai Diaconu
- Department of Obstetrics and Gynecology, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (V.B.S.); (M.M.D.)
| |
Collapse
|