1
|
Wu Z, Liu X, Wang Y, Zeng Z, Chen W, Li H. Pseudogene Lamr1-ps1 Aggravates Early Spatial Learning Memory Deficits in Alzheimer's Disease Model Mice. Neurosci Bull 2025; 41:600-614. [PMID: 39746896 DOI: 10.1007/s12264-024-01336-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/15/2024] [Indexed: 01/04/2025] Open
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder with complex etiologies, manifests through a cascade of pathological changes before clinical symptoms become apparent. Among these early changes, alterations in the expression of non-coding RNAs (ncRNAs) have emerged as pivotal events. In this study, we focused on the aberrant expression of ncRNAs and revealed that Lamr1-ps1, a pseudogene of the laminin receptor, significantly exacerbates early spatial learning and memory deficits in APP/PS1 mice. Through a combination of bioinformatics prediction and experimental validation, we identified the miR-29c/Bace1 pathway as a potential regulatory mechanism by which Lamr1-ps1 influences AD pathology. Importantly, augmenting the miR-29c-3p levels in mice ameliorated memory deficits, underscoring the therapeutic potential of targeting miR-29c-3p in early AD intervention. This study not only provides new insights into the role of pseudogenes in AD but also consolidates a foundational basis for considering miR-29c as a viable therapeutic target, offering a novel avenue for AD research and treatment strategies.
Collapse
Affiliation(s)
- Zhuoze Wu
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Xiaojie Liu
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Yuntai Wang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China
- School of Clinical Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Zimeng Zeng
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Wei Chen
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, 637100, China
| | - Hao Li
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Yang X, Xiao R, Liu B, Xie B, Yang Z. The causal relationship of inflammation-related factors with osteoporosis: A Mendelian Randomization Analysis. Exp Gerontol 2025; 202:112715. [PMID: 39983802 DOI: 10.1016/j.exger.2025.112715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/10/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025]
Abstract
BACKGROUND We used Mendelian randomization (MR) approach to examine whether genetically determined inflammation-related risk factors play a role in the onset of osteoporosis (OP) in the European population. METHODS Genome-wide association studies (GWASs) summary statistics of estimated bone mineral density (eBMD) obtained from the public database GEnetic Factors for OSteoporosis Consortium (GEFOS) including 142,487 European people. For exposures, we utilized GWAS data of 9 risk factors including diseases chronic kidney disease (CKD) (41,395 cases and 439,303 controls), type 2 diabetes (T2D) (88,427 cases and 566,778 controls), Alzheimer's disease (AD) (71,880 cases, 383,378 controls) and major depression disorder (MDD) (9240 cases and 9519 controls) and lifestyle behaviors are from different consortiums. Inverse variance weighted (IVW) analysis was principal method in this study and random effect model was applied; MR-Egger method and weighted median method were also performed for reliable results. Cochran's Q test and MR-Egger regression were used to detect heterogeneity and pleiotropy and leave-one-out analysis was performed to find out whether there are influential SNPs. RESULTS We found that T2D (IVW: β = 0.05, P = 0.0014), FI (IVW: β = -0.22, P < 0.001), CKD (IVW: β = 0.02, P = 0.009), ALZ (IVW: β = 0.06, P = 0.005), Coffee consumption (IVW: β = 0.11, P = 0.003) were causally associated with OP (P<0.006after Bonferroni correction). CONCLUSIONS Our study revealed that T2D, FI, CKD, ALZ and coffee consumption are causally associated with OP. Future interventions targeting factors above could provide new clinical strategies for the personalized prevention and treatment of osteoporosis.
Collapse
Affiliation(s)
- Xinyue Yang
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing Medical University, China
| | - Rui Xiao
- Department of General Practice, Yongchuan Hospital of Chongqing Medical University, Chongqing Medical University, China
| | - Beizhong Liu
- Central Laboratory of Yongchuan Hospital, Chongqing Medical University, China
| | - Bo Xie
- Department of General Practice, Yongchuan Hospital of Chongqing Medical University, Chongqing Medical University, China.
| | - Zhao Yang
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing Medical University, China.
| |
Collapse
|
3
|
Li Z, Li X, Su L, Zhang Z, Guo H, Ge Y, Dong F, Zhang F. From genes to drugs: targeting Alzheimer's with circadian insights. Front Aging Neurosci 2025; 17:1527636. [PMID: 40207046 PMCID: PMC11979290 DOI: 10.3389/fnagi.2025.1527636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/03/2025] [Indexed: 04/11/2025] Open
Abstract
Background Alzheimer's disease (AD) is a typical neurodegenerative disease that presents challenges due to the lack of biomarkers to identify AD. A growing body of evidence highlights the critical role of circadian rhythms in AD. Methods The differentially expressed clock genes (DECGs) were identified between AD and ND groups (non-demented controls). Functional enrichment analysis was executed on the DECGs. Candidate diagnostic biomarkers for AD were screened by machine learning. ROC and nomograms were constructed to evaluate candidate biomarkers. In addition, therapeutics targeting predictive biomarkers were screened through the DGIdb website. Finally, the mRNA-miRNA network was constructed. Results Nine genes were identified through the DECG analysis between the AD and ND groups. Enrichment analysis of nine genes indicated that the pathways were enriched in long-term potentiation and circadian entrainment. Four clock genes (GSTM3, ERC2, PRKCG, and HLA-DMA) of AD were screened using Lasso regression, random forest, SVM, and GMM. The diagnostic performance of four genes was evaluated by the ROC curve. Furthermore, the nomogram indicated that ERC2, PRKCG, and HLA-DMA are good biomarkers in diagnosing AD. Single-gene GSEA indicated that the main enrichment pathways were oxidative phosphorylation, pathways of neurodegeneration-multiple diseases, etc. The results of immune cell infiltration analysis indicated that there were significant differences in 15 immune cell subsets between AD and ND groups. Moreover, 23 drugs targeting HLA-DMA and 8 drugs targeting PRKCG were identified through the DGIdb website. Conclusion We identified three predictive biomarkers for AD associated with clock genes, thus providing promising therapeutic targets for AD.
Collapse
Affiliation(s)
- Zekun Li
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaohan Li
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lei Su
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding, China
| | - Zibo Zhang
- Metabolic Diseases and Cancer Research Center, Hebei Medical University, Shijiazhuang, China
| | - Hongmin Guo
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yihao Ge
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
4
|
Li J, Shan X, Gao Y, Zhu H, Cheng H, Xing C, Zhou L, Tao W, Li Y, Yin B, Zhang C. Acori Tatarinowii Rhizoma regulates OCT3/OATP2 and P-gp/MRP1 to "guide medicines upwards" in Kai-Xin-San to treat Alzheimer's disease. JOURNAL OF ETHNOPHARMACOLOGY 2025; 343:119484. [PMID: 39947370 DOI: 10.1016/j.jep.2025.119484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kai-Xin-San (KXS) has a significant effect therapeutic on Alzheimer's disease (AD) in clinical practice. According to the compatibility theory of traditional Chinese medicine, Acori Tatarinowii Rhizoma (ATR) serves as the guiding drug in the KXS formulation and is believed to enhance the bioavailability and brain tissue distribution of the other drugs. However, the mechanism underlying the "guiding medicine upwards" effect of ATR in KXS remains unexplored. AIM OF THE STUDY The aim of this study is to investigate the role of ATR in the efficacy of KXS on amyloid precursor protein/presenilin 1 (APP/PS1) mice, as well as its impact on the brain tissue distribution of other active ingredients in the KXS formula, and to elucidate the mechanism of ATR's "guiding medicine upwards" effect in KXS. MATERIALS AND METHODS The pharmacodynamic effects of ATR in KXS were assessed through behavioral tests, immunohistochemical staining, and Nissl staining. Additionally, the levels of inflammatory factors, as well as the activities of malondialdehyde, superoxide dismutase, and acetylcholinesterase, were measured using enzyme-linked immunosorbent assay kits. Subsequently, the effect of ATR on the ultrastructure of the blood-brain barrier (BBB) in APP/PS1 mice was observed using transmission electron microscopy (TEM), and the pharmacodynamic components of KXS in cerebrospinal fluid were quantified by ultra-high-performance liquid chromatography-triple quadrupole mass spectrometry (UPLC-MS/MS). Furthermore, Western blot (WB) analysis was used to quantitatively assess the expression of tight junction proteins (Claudin-5, Occludin, and ZO-1) and transporters (OCT3, OATP2, P-gp, and MRP1) in the BBB. Finally, bEND.3 cells and astrocyte cells were co-cultured to validate the effect of ATR on KXS. The expressions of OCT3/OATP2 and P-gp/MRP1 in BBB cell model were determined by WB and the content of pharmacodynamic components in the lower chamber of the transwell were also analyzed by UPLC-MS/MS. RESULTS Behavioral test results suggest that KXS significantly improved the learning and memory capacities of APP/PS1 mice compared to the ATR-free KXS group. Furthermore, KXS was more effective in reducing amyloid-β protein deposition in the brain and repairing damaged neurons in the CA1 and CA3 regions than ATR-free KXS. Notably, KXS significantly reversed the pathological biochemical indices compared to the ATR-free KXS group. These results indicate that ATR has a positive effect on the pharmacodynamics of KXS in treating AD. Most importantly, TEM results revealed that KXS repaired the damaged BBB in AD mice, and ATR contributed to the improvement of BBB integrity. Furthermore, KXS and ATR increased the expression levels of Claudin-5, Occludin, and ZO-1 proteins in AD mice. Meanwhile, the levels of ginsenoside Rg1, ginsenoside Rb1, and polygalaxanthone III in the cerebrospinal fluid of the KXS group were 1.47, 1.39, and 2.02 times higher than those in the ATR-free KXS group, respectively. WB results showed that ATR and KXS significantly upregulated the expression of OCT3/OATP2 uptake transporters and downregulated the expression of P-gp/MRP1 efflux transporters compared to ATR-free KXS. Concurrently, in vitro BBB cell experimental results suggest that ATR promoted the transport of ginsenoside Rg1, ginsenoside Rb1, and polygalaxanthone III across BBB cells in KXS, and the regulation of OCT3/OATP2 and P-gp/MRP1 expression was consistent with the in vivo trends observed in AD mice. CONCLUSIONS ATR plays a critical role in enhancing the efficacy of KXS in treating AD and facilitates the entry of other pharmacodynamic components into the brain. The mechanism underlying the "guiding medicine upwards" effect of ATR may involve the regulation of OCT3/OATP2 and P-gp/MRP1 transporters.
Collapse
Affiliation(s)
- Junying Li
- Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China.
| | - Xiaoxiao Shan
- Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China.
| | - Yu Gao
- Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China.
| | - Haizhou Zhu
- University of Cincinnati, Department of Chemistry, Cincinnati, OH, 45221, USA.
| | - Hongyan Cheng
- Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China.
| | - Chengjie Xing
- Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China.
| | - Lele Zhou
- Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China.
| | - Wenkang Tao
- Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China.
| | - Yangyang Li
- Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China.
| | - Baoqi Yin
- Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China.
| | - Caiyun Zhang
- Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei, 230012, Anhui, China; School of Pharmacy, Institute of Pharmacokinetics, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China; Anhui Academy of Chinese Medicine, Anhui Genuine Chinese Medicinal Materials Quality Improvement Collaborative Innovation Center, Hefei, 230012, Anhui, China.
| |
Collapse
|
5
|
Zhang W, Wang R, Guo R, Yi Z, Wang Y, Wang H, Li Y, Li X, Song J. The multiple biological activities of hyperoside: from molecular mechanisms to therapeutic perspectives in neoplastic and non-neoplastic diseases. Front Pharmacol 2025; 16:1538601. [PMID: 40098612 PMCID: PMC11911483 DOI: 10.3389/fphar.2025.1538601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
In recent years, hyperoside (quercetin 3-O-β-D-galactopyranoside) has garnered significant attention due to its diverse biological effects, which include vasoprotective, antioxidant, anti-inflammatory, and anti-tumor properties. Notably, hyperoside has shown remarkable potential in cancer therapy by targeting multiple mechanisms; it induces apoptosis, inhibits proliferation, blocks angiogenesis, and reduces the metastatic potential of cancer cells. Furthermore, hyperoside enhances the sensitivity of cancer cells to chemotherapy by modulating key signaling pathways. Beyond neoplastic diseases, hyperoside also presents promising therapeutic applications in managing non-cancerous conditions such as diabetes, Alzheimer's disease, and pulmonary fibrosis. This review comprehensively examines the molecular mechanisms underlying hyperoside's anti-cancer effects and highlights its role in the treatment of cancers, including lung and colorectal cancers. Additionally, it explores the latest research on hyperoside's potential in addressing non-neoplastic conditions, such as pulmonary fibrosis, diabetes, and Parkinson's disease. By summarizing current findings, this review underscores the unique therapeutic value of hyperoside and its potential as a multifunctional treatment in both neoplastic and non-neoplastic contexts.
Collapse
Affiliation(s)
- Weisong Zhang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
- Medical School of Nantong University, Nantong, China
| | - Rui Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
- Medical School of Nantong University, Nantong, China
| | - Rongqi Guo
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
- Medical School of Nantong University, Nantong, China
| | - Zhongquan Yi
- Central Laboratory, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Yihao Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
- Medical School of Nantong University, Nantong, China
| | - Hao Wang
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
- Medical School of Nantong University, Nantong, China
| | - Yangyang Li
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
- Medical School of Nantong University, Nantong, China
| | - Xia Li
- Department of General Medicine, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Jianxiang Song
- Department of Thoracic Surgery, Affiliated Hospital 6 of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| |
Collapse
|
6
|
Gonul CP, Kiser C, Yaka EC, Oz D, Hunerli D, Yerlikaya D, Olcum M, Keskinoglu P, Yener G, Genc S. Microglia-like cells from patient monocytes demonstrate increased phagocytic activity in probable Alzheimer's disease. Mol Cell Neurosci 2025; 132:103990. [PMID: 39732446 DOI: 10.1016/j.mcn.2024.103990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is characterized by the accumulation of amyloid plaques, phosphorylated tau tangles and microglia toxicity, resulting in neuronal death and cognitive decline. Since microglia are recognized as one of the key players in the disease, it is crucial to understand how microglia operate in disease conditions and incorporate them into models. The studies on human microglia functions are thought to reflect the post-symptomatic stage of the disease. Recently developed methods involve induced microglia-like cells (iMGs) generated from patients' blood monocytes or induced pluripotent stem cells (iPSCs) as an alternative to studying the microglia cells in vitro. In this research, we aimed to investigate the phenotype and inflammatory responses of iMGs from AD patients. Monocytes derived from blood using density gradient centrifugation were differentiated into iMGs using a cytokine cocktail, including granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-34 (IL-34). After differentiation, cells were assessed by morphological analysis and a microglia surface marker, TMEM119. We used stimulants, lipopolysaccharide (LPS) and beta-amyloid, to examine iMGs' functions. Results showed that iMGs derived from AD patients exhibited increased secretion of pro-inflammatory cytokines upon LPS stimulation. Furthermore, their phagocytic ability was also heightened in stimulated and unstimulated conditions, with cells derived from patients showing increased phagocytic activity compared to healthy controls. Overall, these findings suggest that iMGs derived from patients using the direct conversion method possess characteristics of human microglia, making them an easy and promising model for studying microglia function in AD.
Collapse
Affiliation(s)
- Ceren Perihan Gonul
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Türkiye; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye
| | - Cagla Kiser
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Türkiye; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye
| | - Emis Cansu Yaka
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Türkiye; Department of Neurology, Izmir City Hospital, Izmir, Türkiye
| | - Didem Oz
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Türkiye; Department of Neurology, Dokuz Eylul University Hospital, Izmir, Türkiye; Global Brain Health Institute, University of California, San Francisco, USA
| | - Duygu Hunerli
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Türkiye
| | - Deniz Yerlikaya
- Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Türkiye
| | - Melis Olcum
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Türkiye
| | - Pembe Keskinoglu
- Department of Biostatistics and Medical Informatics, Basic Medical Sciences, Faculty of Medicine, Dokuz Eylul University, Izmir, Türkiye
| | - Gorsev Yener
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Türkiye; Department of Neurology, Dokuz Eylul University Hospital, Izmir, Türkiye
| | - Sermin Genc
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Izmir, Türkiye; Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Türkiye; Department of Neuroscience, Institute of Health Sciences, Dokuz Eylul University, Izmir, Türkiye.
| |
Collapse
|
7
|
Zeng J, Zhang R, Xu H, Zhang C, Lu L. Integrative single-cell RNA sequencing and mendelian randomization analysis reveal the potential role of synaptic vesicle cycling-related genes in Alzheimer's disease. J Prev Alzheimers Dis 2025:100097. [PMID: 40021385 DOI: 10.1016/j.tjpad.2025.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 03/03/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) involves alterations in synaptic vesicle cycling (SVC), which significantly affect neuronal communication and function. Therefore, a thorough investigation into the potential roles of SVC-related genes (SVCRGs) in AD can enhance the identification of critical biomarkers that may influence disease progression and treatment responses. METHODS The datasets used in this study were sourced exclusively from public databases. By integrating differential expression analysis with Mendelian randomization (MR), we identified SVCRGs as biomarkers for AD. Functional characterization of these biomarkers was performed, followed by integration into a nomogram. Further investigation of immune infiltration in AD patients and healthy individuals was carried out. Ultimately, the potential cellular mechanisms of AD were explored through single-cell RNA sequencing (scRNA-seq) analysis. RESULTS ATP6V1D, ATP6V1G2, CLTB, and NSF were identified as biomarkers, exhibiting a positive correlation with each other and a downregulated expression in AD. These markers were pinpointed as protective factors for AD [odds ratio (OR) < 1, P < 0.05], with potential to reduce the risk of the disease. Integrated into a nomogram, they demonstrated satisfactory diagnostic performance and clinical utility, surpassing the use of single gene. They were collectively enriched in pathways related to "interferon gamma response", "inflammatory response", and "TNFα signaling via NFκB". Additionally, an increase in infiltration of 17 immune cell types in AD was noted, particularly cells associated with neuroinflammation such as activated CD8 T cells and various dendritic cells (DCs), suggesting an inflammatory milieu in AD while also displaying a negative correlation with the biomarkers. The cell types were further annotated, revealing specific expressions of biomarkers and uncovering the heterogeneity of excitatory neurons. A significant reduction in the overall number of excitatory neurons under AD conditions was observed, alongside consistent expression of biomarkers during the developmental stages of excitatory neurons. CONCLUSION By using MR, we firstly identified four SVCRGs as protective factors for AD, functioning through pathways associated with mitochondrial dysfunction, chronic inflammation, immune dysregulation, and neuronal damage. These genes had the potential to modulate immune cell infiltration activated in AD patients and exhibited cell-type-specific expression profiles within AD-related cellular contexts. Their findings provide novel insights and valuable references for future research on AD pathogenesis and therapeutic strategies.
Collapse
Affiliation(s)
- Junfeng Zeng
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Ruihua Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Huihua Xu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Chengwu Zhang
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| | - Li Lu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China; Key Laboratory of Cellular Physiology of Chinese Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| |
Collapse
|
8
|
Huang S, Lu Y, Fang W, Huang Y, Li Q, Xu Z. Neurodegenerative diseases and neuroinflammation-induced apoptosis. Open Life Sci 2025; 20:20221051. [PMID: 40026360 PMCID: PMC11868719 DOI: 10.1515/biol-2022-1051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/30/2024] [Accepted: 12/27/2024] [Indexed: 03/05/2025] Open
Abstract
Neuroinflammation represents a critical pathway in the brain for the clearance of foreign bodies and the maintenance of homeostasis. When the neuroinflammatory process is dysregulate, such as the over-activation of microglia, which results in the excessive accumulation of free oxygen and inflammatory factors in the brain, among other factors, it can lead to an imbalance in homeostasis and the development of various diseases. Recent research has indicated that the development of numerous neurodegenerative diseases is closely associated with neuroinflammation. The pathogenesis of neuroinflammation in the brain is intricate, involving alterations in numerous genes and proteins, as well as the activation and inhibition of signaling pathways. Furthermore, excessive inflammation can result in neuronal cell apoptosis, which can further exacerbate the extent of the disease. This article presents a summary of recent studies on the relationship between neuronal apoptosis caused by excessive neuroinflammation and neurodegenerative diseases. The aim is to identify the link between the two and to provide new ideas and targets for exploring the pathogenesis, as well as the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shi Huang
- School of Clinical Medicine, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Yaxin Lu
- School of Pharmaceutical Sciences, Wannan Medical College,
241002, Wuhu, Anhui, China
| | - Wanzhen Fang
- School of Stomatology, Wannan Medical College,
241002, Wuhu, Anhui, China
| | - Yanjiao Huang
- Human Anatomy Experimental Training Center, School of Basic Medical Science, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Qiang Li
- Human Anatomy Experimental Training Center, School of Basic Medical Science, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Zhiliang Xu
- Department of Human Anatomy, School of Basic Medical Science, Wannan Medical College, 241002, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Basic Research and Translation of Aging-Related Diseases, Wannan Medical College, Wuhu, 241002, Anhui, China
| |
Collapse
|
9
|
Yin H, Wang Y, Ren Z, Xiao Z, Zhang Y, Wang Y, Guo Z, Chen L, Bao X, Bei Y, Fu X, Zeng L. TDP43 is a newly identified substrate for PS1, enhancing the expression of APP following cleavage. Cell Death Discov 2025; 11:76. [PMID: 39988698 PMCID: PMC11847911 DOI: 10.1038/s41420-025-02340-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/17/2025] [Accepted: 02/05/2025] [Indexed: 02/25/2025] Open
Abstract
Alzheimer's disease (AD) has been comprehensively studied; however, most research has focused on Aβ plaque deposition and Tau protein phosphorylation. Emerging evidence suggests that TDP43 may be significantly involved AD and potentially worsening its pathology. To investigate the role of TDP43 in the pathological development of AD, we employed the STRING protein network interaction tool to identify potential relationships between TDP43 and other proteins, including PS1 and APP. Subsequent co-immunoprecipitation experiments were conducted, and the results indicated that TDP43 could interact with PS1. Further studies have shown that the interaction between the two would also lead to the loss of nuclear localization of TDP43. We also found that overexpression or knockdown of PS1 in both primary cells, HeLa and NSC34 cells indicated that TDP43 is likely to be a substrate of PS1. Subsequent use of the L685,458 and z-VAD, the PS1 mutant plasmids D257A and D385A, and bioinformatics approaches demonstrated that PS1 is dependent on γ-secretase and caspase activity to cleave TDP43, and that the cleavage site is at amino acid 315 of TDP43. Besides, our study demonstrated that the interaction of TDP43 with PS1 in primary cells, HeLa and NSC34 cells can promote APP expression, resulting in elevated Aβ levels. Finally, we investigated whether the interaction between TDP43 and PS1 affects the expression of other PS1 substrates, Notch and E-cadherin. Our results demonstrated that TDP43 cleaved by PS1 only promoted APP expression and had no effect on other PS1 substrates. In conclusion, these results suggest that TDP43 is a new substrate of PS1 and that TDP43 cleaved by PS1 promotes APP expression, which leads to increased Aβ content, which may explain why TDP43 promotes AD development. These insights enhance our understanding of TDP43's role in AD development.
Collapse
Affiliation(s)
- Hanlan Yin
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Yuxiang Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Zhichao Ren
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Zixuan Xiao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Yan Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Yibo Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Zining Guo
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Lu Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Xinlu Bao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Yingshuo Bei
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Xueqi Fu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Linlin Zeng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China.
| |
Collapse
|
10
|
Jia C, Chai J, Zhang S, Sun Y, He L, Sang Z, Chen D, Zheng X. The Advancements of Marine Natural Products in the Treatment of Alzheimer's Disease: A Study Based on Cell and Animal Experiments. Mar Drugs 2025; 23:91. [PMID: 40137277 PMCID: PMC11943648 DOI: 10.3390/md23030091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
As life expectancy rises and the aging population grows, Alzheimer's disease (AD) has become a significant global health concern. AD is a complex neurodegenerative disorder with an unclear etiology. Current hypotheses primarily focus on β-amyloid (Aβ) aggregation, tau protein hyperphosphorylation, and neuroinflammation as key pathological processes. Given the limited efficacy of existing therapeutic strategies, there is an urgent need to explore novel treatment options. Marine natural products have garnered significant attention due to their unique chemical structures and diverse bioactivities, demonstrating potential for multi-target interventions in AD. This review systematically summarizes the roles of marine-derived compounds, including polysaccharides, carotenoids, and polyphenols, in modulating Aβ aggregation, mitigating tau protein pathology, and regulating gut-brain axis dysfunction. Furthermore, the challenges of current research are discussed, with an emphasis on improving blood-brain barrier permeability and optimizing drug delivery systems to facilitate clinical translation.
Collapse
Affiliation(s)
- Chunbo Jia
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Jiaxin Chai
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Shenyun Zhang
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Yining Sun
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Liheng He
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Zhipei Sang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, China
| | - Dapeng Chen
- Department of Comparative Medicine, Dalian Medical University, Dalian 116044, China
| | - Xu Zheng
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
11
|
Meng T, Zhang Y, Ye Y, Li H, He Y. Bioinformatics insights into mitochondrial and immune gene regulation in Alzheimer's disease. Eur J Med Res 2025; 30:89. [PMID: 39920860 PMCID: PMC11806906 DOI: 10.1186/s40001-025-02297-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 01/13/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND There is growing evidence that the pathogenesis of Alzheimer's disease is closely linked to the resident innate immune cells of the central nervous system, including microglia and astrocytes. Mitochondrial dysfunction in microglia has also been reported to play an essential role in the pathogenesis of AD and other neurological diseases. Therefore, finding the mitochondrial and immune-related gene (MIRG) signatures in AD can be significant in diagnosing and treating AD. METHODS In this study, the intersection of the differentially expressed genes (DEGs) from the GSE109887 cohort, immune-related genes (IRGs) obtained from WGCNA analysis, and mitochondria-related genes (MRGs) was taken to identify mitochondria-immune-related genes (MIRGs). Then, using machine learning algorithms, biomarkers with good diagnostic value were selected, and a nomogram was constructed. Subsequently, we further analyzed the signaling pathways and potential biological mechanisms of the biomarkers through gene set enrichment analysis, prediction of transcription factors (TFs), miRNAs, and drug prediction. RESULTS Using machine learning algorithms, five biomarkers (TSPO, HIGD1A, NDUFAB1, NT5DC3, and MRPS30) were successfully identified, and a nomogram model with strong diagnostic ability and accuracy (AUC > 0.9) was constructed. In addition, single-gene enrichment analysis revealed that NDUFAB1 was significantly enriched in pathways associated with diseases, such as Alzheimer's and Parkinson's, providing valuable insights for future clinical research on Alzheimer's in the context of mitochondrial-immune interactions. Interestingly, brain tissue pathology showed neuronal atrophy and demyelination in AD mice, along with a reduction in Nissl bodies. Furthermore, the escape latency of AD mice was significantly longer than that of the control group. After platform removal, there was a notable increase in the path complexity and time required to reach the target quadrant, suggesting a reduction in spatial memory capacity in AD mice. Moreover, qRT-PCR validation confirmed that the mRNA expression of the five biomarkers was consistent with bioinformatics results. In AD mice, TSPO expression was increased, while HIGD1A, NDUFAB1, NT5DC3, and MRPS30 expressions were decreased. However, peripheral blood samples did not show expression of HIGD1A or MRPS30. These findings provide new insights for research on Alzheimer's disease in the context of mitochondrial-immune interactions, further exploring the pathogenesis of Alzheimer's disease and offering new perspectives for the clinical development of novel drugs. CONCLUSIONS Five mitochondrial and immune biomarkers, i.e., TSPO, HIGD1A, NDUFAB1, NT5DC3, and MRPS30, with diagnostic value in Alzheimer's disease, were screened by machine-learning algorithmic models, which will be a guide for future clinical research of Alzheimer's disease in the mitochondria-immunity-related direction.
Collapse
Affiliation(s)
- Tian Meng
- Yunnan Yunke Institute of Biotechnology, No. 871 Longquan Rd, Kunming, 650500, China
| | - Yazhou Zhang
- Department of Geriatrics, The Second People's Hospital of Kunming, No. 338Guangming Rd, Kunming, 650233, Yunnan, China
| | - Yuan Ye
- Department of Geriatrics, The Second People's Hospital of Kunming, No. 338Guangming Rd, Kunming, 650233, Yunnan, China
| | - Hui Li
- Yunnan Labreal Biotechnology Co., LTD, No. 871 Longquan Rd, Kunming, 650500, China
| | - Yongsheng He
- Yunnan Yunke Institute of Biotechnology, No. 871 Longquan Rd, Kunming, 650500, China.
- Yunnan Labreal Biotechnology Co., LTD, No. 871 Longquan Rd, Kunming, 650500, China.
| |
Collapse
|
12
|
Linzhu, Zhang J, Fan W, Su C, Jin Z. Influence of immune cells and inflammatory factors on Alzheimer's disease axis: evidence from mediation Mendelian randomization study. BMC Neurol 2025; 25:49. [PMID: 39910474 PMCID: PMC11796147 DOI: 10.1186/s12883-025-04057-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 01/28/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the most common forms of dementia in the elderly, characterized by progressive neurodegeneration. While the exact etiology of AD remains unclear, immune inflammation is known to play a significant role in the disease. METHODS This study utilized a two-sample Mendelian randomization (MR) approach to assess the causal relationship between different types of immune cells and AD, while considering inflammatory factors as intermediate variables. Data were collected from three sources: immune cell data (731 phenotypes), inflammatory factors (48 cytokines from 8,293 individuals), and AD data (35,274 cases, 59,163 controls). Multiple MR methods were employed to minimize bias, and detailed descriptions of instrumental variable selection and statistical methods were provided. RESULTS The study findings suggest potential causal relationships between six different types of immune cells and AD, as well as causal relationships between 13 immune cells and inflammatory factors. Additionally, two statistically significant inflammatory factors were found to have potential causal relationships with AD. Specifically, immune cells CD33-HLA DR + and CD45 on CD33-HLA DR + may further influence AD by regulating Interleukin-2 levels. CONCLUSION This study provides valuable insights into the immunoinflammatory pathogenesis of AD and offers partial guidance for the development of relevant interventions, thereby contributing beneficial information for the prevention and treatment of related diseases.
Collapse
Affiliation(s)
- Linzhu
- Department of Traditional Chinese Medicine, the Second Hospital of Shandong University, Jinan, 250014, China
| | - Jianxin Zhang
- Department of Traditional Chinese Medicine, the Second Hospital of Shandong University, Jinan, 250014, China
| | - Wenhui Fan
- Department of Traditional Chinese Medicine, the Second Hospital of Shandong University, Jinan, 250014, China
| | - Chen Su
- Department of Traditional Chinese Medicine, the Second Hospital of Shandong University, Jinan, 250014, China
| | - Zhi Jin
- Department of Traditional Chinese Medicine, the Second Hospital of Shandong University, Jinan, 250014, China.
| |
Collapse
|
13
|
Yang C, Li Y, Chen C, Sun Z, Liu E, Wei N, Liu X, Shu J, Zhao N, Sun M. Long Non-Coding RNAs: Crucial Regulators in Alzheimer's Disease Pathogenesis and Prospects for Precision Medicine. Mol Neurobiol 2025:10.1007/s12035-025-04729-4. [PMID: 39907902 DOI: 10.1007/s12035-025-04729-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025]
Abstract
Long non-coding RNAs (LncRNAs) have emerged as pivotal regulators in the pathogenesis of Alzheimer's disease (AD), a progressive neurodegenerative disorder characterized by cognitive decline and memory loss. With the capacity to modulate gene expression at various levels, LncRNAs are implicated in multiple pathological mechanisms of AD, including amyloid-beta (Aβ) accumulation, tau protein phosphorylation, neuroinflammation, and neuronal apoptosis. Recent studies have highlighted the potential of LncRNAs as diagnostic biomarkers and therapeutic targets due to their differential expression patterns in AD patients. This review synthesizes current knowledge on the role of LncRNAs in AD, focusing on their involvement in key molecular pathways and their promise as indicators for early diagnosis and prognosis. We discuss the regulatory networks of LncRNAs in the context of AD, their interaction with miRNAs, and the implications for developing novel therapeutic strategies. Despite the complexity and variability in LncRNA function, the prospect of harnessing these molecules for precision medicine in AD is gaining momentum. The translational potential of LncRNA-based interventions offers a new frontier in the quest for effective treatments and a deeper understanding of the molecular underpinnings of AD.
Collapse
Affiliation(s)
- Chenbo Yang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yiwei Li
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Chao Chen
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zexin Sun
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Na Wei
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiaonan Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jiao Shu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Na Zhao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Miaomiao Sun
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China.
- Henan Key Laboratory of Tumor Pathology, Zhengzhou University, Zhengzhou, People's Republic of China.
| |
Collapse
|
14
|
Wang J, Meng X, Yang J, Tang Y, Zeng F, Wang Y, Chen Z, Chen D, Zou R, Liu W. Improvements in Exercise for Alzheimer's Disease: Highlighting FGF21-Induced Cerebrovascular Protection. Neurochem Res 2025; 50:95. [PMID: 39903342 DOI: 10.1007/s11064-025-04350-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/13/2025] [Accepted: 01/27/2025] [Indexed: 02/06/2025]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. Currently, it has shown a trend of earlier onset, with most patients experiencing a progressive decline in cognitive function following the disease's onset, which places a heavy burden on society and family. Since no drug cure for AD exists, exploring new ways for its treatment and prevention has become critical. Early vascular damage is an initial trigger for neuronal injury in AD, underscoring the importance of vascular health in the early stages of the disease. Patients with early AD experience abnormal blood-brain barrier transport of amyloid-β (Aβ) peptides, with excess Aβ being deposited in the cerebral vasculature. The toxic effects of Aβ lead to abnormalities in cerebrovascular structure and function. Fibroblast growth factor21 (FGF21) is an endocrine factor that positively regulates energy homeostasis and glucose-lipid metabolism. Notably, it is one of the effective targets for metabolic disease prevention and treatment. Recent studies have found that FGF21 has anti-aging and vasoprotective effects, with receptors for FGF21 present in the brain. Exercise stimulates the liver to produce large amounts of FGF21, which enters the blood-brain barrier with the blood to exert neurovascular protection. Therefore, we review the biological properties of FGF21, its role in the cerebrovascular structure and function in AD, and the mechanism of exercise-regulated FGF21 action on AD-related cerebrovascular changes, aiming to provide a new theoretical basis for using exercise to ameliorate degenerative neurological diseases.
Collapse
Affiliation(s)
- Juan Wang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Xiangyuan Meng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Jialun Yang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Yingzhe Tang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Fanqi Zeng
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Yiyang Wang
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Zeyu Chen
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Dandan Chen
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Ruihan Zou
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China
| | - Wenfeng Liu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, No. 437, Lushan South Road, Changsha, Hunan Province, 410012, China.
- Key Laboratory of Protein Chemistry and Developmental Biology, Ministry of Education, Hunan Normal University, Changsha, Hunan Province, 410081, China.
- Physical Education College, Yuelu District, Hunan Normal University, Changsha, Hunan Province, 410081, China.
| |
Collapse
|
15
|
Hao M, Chu J, Zhang T, Yin T, Gu Y, Liang W, Ji W, Zhuang J, Liu Y, Gao J, Yin Y. Nanomaterials-mediated lysosomal regulation: a robust protein-clearance approach for the treatment of Alzheimer's disease. Neural Regen Res 2025; 20:424-439. [PMID: 38819046 PMCID: PMC11317947 DOI: 10.4103/nrr.nrr-d-23-01736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/04/2024] [Accepted: 02/20/2024] [Indexed: 06/01/2024] Open
Abstract
Alzheimer's disease is a debilitating, progressive neurodegenerative disorder characterized by the progressive accumulation of abnormal proteins, including amyloid plaques and intracellular tau tangles, primarily within the brain. Lysosomes, crucial intracellular organelles responsible for protein degradation, play a key role in maintaining cellular homeostasis. Some studies have suggested a link between the dysregulation of the lysosomal system and pathogenesis of neurodegenerative diseases, including Alzheimer's disease. Restoring the normal physiological function of lysosomes hold the potential to reduce the pathological burden and improve the symptoms of Alzheimer's disease. Currently, the efficacy of drugs in treating Alzheimer's disease is limited, with major challenges in drug delivery efficiency and targeting. Recently, nanomaterials have gained widespread use in Alzheimer's disease drug research owing to their favorable physical and chemical properties. This review aims to provide a comprehensive overview of recent advances in using nanomaterials (polymeric nanomaterials, nanoemulsions, and carbon-based nanomaterials) to enhance lysosomal function in treating Alzheimer's disease. This review also explores new concepts and potential therapeutic strategies for Alzheimer's disease through the integration of nanomaterials and modulation of lysosomal function. In conclusion, this review emphasizes the potential of nanomaterials in modulating lysosomal function to improve the pathological features of Alzheimer's disease. The application of nanotechnology to the development of Alzheimer's disease drugs brings new ideas and approaches for future treatment of this disease.
Collapse
Affiliation(s)
- Mengqi Hao
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jianjian Chu
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Tong Yin
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Yuankai Gu
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Wendanqi Liang
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenbo Ji
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Jianhua Zhuang
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - You Yin
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
16
|
Feng Y, Wang H, Hu Y, Zhang X, Miao X, Li Z, Jia J. Hederagenin ameliorates ferroptosis-induced damage by regulating PPARα/Nrf2/GPX4 signaling pathway in HT22 cells: An in vitro and in silico study. Bioorg Chem 2025; 155:108119. [PMID: 39755103 DOI: 10.1016/j.bioorg.2024.108119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/16/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND Hederagenin (HG), derived from ivy seeds, is known to offer protection against Alzheimer's disease (AD). However, the specific molecular pathways through which it counters ferroptosis-induced neurotoxicity are not fully elucidated. This investigation seeks to delineate the processes by which HG mitigates neurotoxic effects in HT22 cells subjected to glutamate (Glu)-induced ferroptosis. METHODS HT22 cell ferroptosis was prompted by Glu exposure. Cell viability was assessed using CCK-8 and LDH assays, while Fe2+ fluorescence and assays of iron-related proteins served to gauge intracellular Fe2+ concentrations. Evaluations of mitochondrial structure and functionality employed JC-1 staining and transmission electron microscopy. Assessments of ROS, lipid peroxidation, MDA, 4-HNE, and the GSSG/GSH ratio were conducted to ascertain HG's antioxidative efficacy. The expression of proteins within the PPARα/Nrf2/GPX4 pathway was quantified via western blotting, with molecular docking (MD), and molecular dynamics simulations (MDS) used to explore protein interactions. RESULTS HG diminished the cellular toxicity triggered by Glu in HT22 cells, lowered Fe2+ within cells, and rejuvenated mitochondrial morphology and performance. Concurrently, it modulated proteins critical to Fe2+ metabolism, diminished ROS and lipid peroxidation, and elevated GSH/GSSG ratios. Enhanced PPARα/Nrf2/GPX4 protein levels were corroborated by western blot results. Furthermore, molecular docking revealed favorable binding of HG to the proteins PPARα, Nrf2, and GPX4, with binding energies of -7.751, -7.535, and -7.414 kcal/mol, respectively. MDS confirmed robust interactions between HG and these pivotal targets. CONCLUSION The evidence suggests that HG effectively mitigates Glu-induced ferroptosis in HT22 cells by activating the PPARα/Nrf2/GPX4 signaling pathway. These findings endorse HG's potential as a nutritional adjunct for AD management.
Collapse
Affiliation(s)
- Yuxin Feng
- Medical School of Chinese People's Liberation Army, Beijing, China
| | - Heran Wang
- Institute of Geriatrics, The 2nd Medical Center, China National Clinical Research Center for Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yazhuo Hu
- Institute of Geriatrics, The 2nd Medical Center, China National Clinical Research Center for Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xiaoxue Zhang
- Medical School of Chinese People's Liberation Army, Beijing, China
| | - XiuLing Miao
- Medical School of Chinese People's Liberation Army, Beijing, China
| | - Zihan Li
- Medical School of Chinese People's Liberation Army, Beijing, China
| | - JianJun Jia
- Institute of Geriatrics, The 2nd Medical Center, China National Clinical Research Center for Geriatric Disease, Chinese People's Liberation Army General Hospital, Beijing, China.
| |
Collapse
|
17
|
Li X, Pan J, Liu X, Li M, Zhuang L, Jiang P, Wang S, Guan W, Xue S, Chen Q, Zhang L, Kuang H, Yang B, Liu Y. The total withanolides from the leaves of Datura stramonium L. Improves Alzheimer's disease pathology by restraining neuroinflammation through NLRP3/IL-1β/IL1R1/TOM 1 pathway. Int Immunopharmacol 2025; 146:113893. [PMID: 39721456 DOI: 10.1016/j.intimp.2024.113893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the deposition of beta-amyloid (Aβ) peptides. Microglia-mediated neuroinflammation is one of the primary contributors to the pathogenesis of AD. Withanolides, the main constituents in the leaves of Datura stramonium L., exhibit anti-neuroinflammatory activity. It is unknown if total withanolide from Datura stramonium L. leaves (TWD) reduces nerve inflammation and potentially mitigates the pathogenic elements of AD. This study examined the potential effects of TWD on neuroinflammation in triple transgenic AD (3 × Tg-AD) mice and LPS-induced BV-2, as well as associated signaling pathways. HPLC-Q-TOF-MS/MS was used in this study to examine the main chemical components of the TWD extract. 3 × Tg-AD as in vivo AD models and LPS induce BV-2 cells in vitro AD models. The molecular process was investigated by ELISA, WB, IHC, and IF. In 3 × Tg-AD mice, TWD dramatically ameliorates cognitive impairment. Treatment with TWD can counteract the increased activation of microglia and Aβ deposits observed in 3 × Tg-AD mice. Further research indicates that TWD can enhance TOM 1 and mitigate inflammatory responses by reducing the levels of IL-1β, TNF-α, IL-6, IL1R1, and IL-18. Additionally, TWD may inhibit neuroinflammation through the pathways of IL1R1/MyD88/NF-κB and NLRP3/IL-1β/IL1R1. In summary, this study reveals for the first time that TWD effectively improves cognitive deficits in 3 × Tg-AD mice by modulating the IL1R1/MyD88/NF-κB and NLRP3/IL-1β/IL1R1 pathways. It also alleviates excessive activation of microglia and suppresses Aβ accumulation. Therefore, TWD has the potential as a therapeutic agent for AD.
Collapse
Affiliation(s)
- Xinyuan Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China
| | - Juan Pan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China
| | - Xiang Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China
| | - Mengmeng Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China
| | - Leixin Zhuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China
| | - Peng Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China
| | - Shuping Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China
| | - Siqi Xue
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Lili Zhang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China.
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, China; Traditional Chinese Medicine (TCM) Biological Genetics (Heilongjiang Province Double First-class Construction Interdiscipline, China.
| |
Collapse
|
18
|
Silva RO, Haddad M, Counil H, Zaouter C, Patten SA, Fulop T, Ramassamy C. Exploring the potential of plasma and adipose mesenchymal stem cell-derived extracellular vesicles as novel platforms for neuroinflammation therapy. J Control Release 2025; 377:880-898. [PMID: 39617173 DOI: 10.1016/j.jconrel.2024.11.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/10/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024]
Abstract
Persistent reactive oxygen species (ROS) and neuroinflammation contribute to the onset and progression of neurodegenerative diseases, underscoring the need for targeted therapeutic strategies to mitigate these effects. Extracellular vesicles (EVs) show promise in drug delivery due to their biocompatibility, ability to cross biological barriers, and specific interactions with cell and tissue receptors. In this study, we demonstrated that human plasma-derived EVs (pEVs) exhibit higher brain-targeting specificity, while adipose-derived mesenchymal stem cells EVs (ADMSC-EVs) offer regenerative and immunomodulatory properties. We further investigated the potential of these EVs as therapeutic carriers for brain-targeted drug delivery, using Donepezil (DNZ) as the model drug. DNZ, a cholinesterase inhibitor commonly used for Alzheimer's disease (AD), also has neuroprotective and anti-inflammatory properties. The size of EVs used ranged from 50 to 300 nm with a surface charge below -30 mV. Both formulations showed rapid cellular internalization, without toxicity, and the ability to cross the blood-brain barrier (BBB) in a zebrafish model. The have analyzed the anti-inflammatory and antioxidant actions of pEVs-DNZ and ADMSC-EVs-DNZ in the presence of lipopolysaccharide (LPS). ADMSC-EVs significantly reduced the inflammatory mediators released by HMC3 microglial cells while treatment with pEVs-DNZ and ADMSC-EVs-DNZ lowered both phagocytic activity and ROS levels in these cells. In vivo experiments using zebrafish larvae revealed that both EV formulations reduced microglial proliferation and exhibited antioxidant effects. Overall, this study highlights the potential of EVs loaded with DNZ as a novel approach for treating neuroinflammation underlying various neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Mohamed Haddad
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
| | - Hermine Counil
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
| | - Charlotte Zaouter
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
| | - Shunmoogum A Patten
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
| | - Tamas Fulop
- Research Center on Aging, Faculty of Medicine and Health Sciences, University Sherbrooke, Sherbrooke, QC J1H 4N4, Canada
| | - Charles Ramassamy
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531 Boul des Prairies, Laval, QC H7V 1B7, Canada.
| |
Collapse
|
19
|
Qin G, Song R, Sun J, Chen B, Liu Z, Han L, Sun B, Li C. Investigating the therapeutic effects of Shenzhiling oral liquid on Alzheimer's disease: a network pharmacology and experimental approach. 3 Biotech 2025; 15:14. [PMID: 39703418 PMCID: PMC11652558 DOI: 10.1007/s13205-024-04181-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024] Open
Abstract
There is currently no effective treatment for Alzheimer's disease (AD). This research explored Shenzhiling Oral Liquid (SZLD) against AD by pinpointing crucial elements and understanding its molecular mechanisms through network pharmacology and in vitro experiment. First, we used network pharmacology to screen the main targets and mechanisms of SZLD to improve AD. Then we conducted experiments with Aβ42-induced SH-SY5Y cells to assess SZLD's impact, focusing particularly on apoptotic pathways, thereby uncovering its mechanism of action in AD. Through our analysis, we discovered a notable link between SZLD's effect on AD and apoptosis processes. Specifically, the critical proteins Casapse3 and BCL-2 showed strong correlations in this context. Through systematic data analysis and experimental verification, we unveiled the healing advantages and the foundational molecular mechanisms of SZLD in AD. These findings underscore the promising and compelling potential of targeting the PI3K/Akt signaling pathway and apoptosis with SZLD as a therapeutic strategy to ameliorate AD.
Collapse
Affiliation(s)
- Gaofeng Qin
- Shandong University of Traditional Chinese Medicine, Jinan, Shangdong China
- Department of Traditional Chinese Medicine, Binzhou Medical University Hospital, Binzhou, 256603 Shandong China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong China
| | - Rongqiang Song
- Department of Traditional Chinese Medicine, Binzhou Medical University Hospital, Binzhou, 256603 Shandong China
| | - Jingyi Sun
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong China
| | - Bing Chen
- Department of Traditional Chinese Medicine, Binzhou Medical University Hospital, Binzhou, 256603 Shandong China
| | - Zhe Liu
- Department of Traditional Chinese Medicine, Binzhou Medical University Hospital, Binzhou, 256603 Shandong China
| | - Lei Han
- Department of Reproductive Medicine, Binzhou Medical University Hospital, Binzhou, Shandong China
| | - Baoliang Sun
- Shandong University of Traditional Chinese Medicine, Jinan, Shangdong China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Second Affiliated Hospital, Taian, 271000 Shandong China
| | - Chen Li
- Department of Traditional Chinese Medicine, Binzhou Medical University Hospital, Binzhou, 256603 Shandong China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong China
| |
Collapse
|
20
|
Karami H, Soltani S, Wolber G, Sadigh-Eteghad S, Nikbakht R, Farrokhi H, Narimani F, Teimuri-Mofrad R, Rashidi MR. Anti-Alzheimer effects of the newly synthesized cationic compounds as multi-target dual hAChE/hBuChE inhibitor: An in silico, in vitro, and in vivo approach. BIOIMPACTS : BI 2024; 15:24196. [PMID: 40161933 PMCID: PMC11954736 DOI: 10.34172/bi.24196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 04/02/2025]
Abstract
Introduction Multi-target anti-Alzheimer's disease (AD) compounds are promising leads for the development of AD modifying agents. Ionic compounds containing quaternary ammonium moiety were synthesized, and their multi-targeted anti-AD effects were examined. Methods Imidazole derivatives containing a quaternary ammonium moiety were synthesized and evaluated for their potential anti-Alzheimer properties using computational (in silico), cellular (in vitro), and animal (in vivo) models. The inhibition kinetics of both human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBuChE) were assessed. Neuroprotective effects in amyloid-beta (Aβ)-exposed PC12 cells were also examined. Furthermore, the compounds' impact on Aβ-induced memory impairment in Wistar rats was evaluated, with a detailed analysis of the underlying mechanisms. Results Compound 5g demonstrated acceptable cytotoxicity against human cells. This compound exhibited non-competitive dual inhibition of both hAChE and hBuChE. Additionally, compound 5g mitigated the morphological changes induced by amyloid-beta (Aβ) in PC12 cells and decreased cell mortality. It exhibited anti-oxidative stress properties, evident by reduction in reactive oxygen species (ROS) production, and inhibition of lipid peroxidation. The compound also down regulated the expression of pro-inflammatory genes IL-1β and TNF-α. In vitro studies validated compound 5g's ability to inhibit lactate dehydrogenase (LDH), attenuate neuroinflammation, and prevent the autophagy-apoptosis cascade. When administered to rats with Aβ-induced memory dysfunction, compound 5g enhanced cognitive function and improved spatial memory. In the hippocampi of treated rats, there was a noted downregulation of TNF-α and NF-kB. Furthermore, compound 5g counteracted the elevated activity of AChE. Molecular modeling validated the binding of compound 5g to both steric and catalytic sites of cholinesterase enzymes. Conclusion The novel quaternary ammonium derivative, compound 5g, demonstrated multi-target anti-AD properties, as evidenced by in silico, in vitro and in vivo studies. Behavioral assessments and molecular analyses further confirmed its therapeutic efficacy in amyloid-beta (Aβ)-challenged rats.
Collapse
Affiliation(s)
- Hosna Karami
- Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Somaieh Soltani
- Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gerhard Wolber
- Molecular Design Group, Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Germany
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghaye Nikbakht
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Hanieh Farrokhi
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Farzaneh Narimani
- Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Teimuri-Mofrad
- Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
- Nanotechnology Research Center and Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Luo L, Pan Y, Chen F, Zhang Z. Exploring the potential mechanism of Polygonatum sibiricum for Alzheimer's disease based on network pharmacology and molecular docking: An observational study. Medicine (Baltimore) 2024; 103:e40726. [PMID: 39969345 PMCID: PMC11688029 DOI: 10.1097/md.0000000000040726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/08/2024] [Indexed: 02/20/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease, and there have been no systematic studies of Polygonatum against Alzheimer's disease. Therefore, our study will elucidate the mechanism of Polygonatum against AD based on network pharmacology and molecular docking. The active ingredients and corresponding targets of Polygonatum were identified using the traditional Chinese medicine systematic pharmacology database and analysis platform. Disease targets of AD were retrieved from the therapeutic target database, Online Mendelian Inheritance in Man, GeneCards, and Disgenet databases. Using the STRING database, we constructed protein interaction networks and performed gene ontology functional enrichment analysis as well as Kyoto encyclopedia of genes and genomes pathway enrichment analysis on common targets. We then drew drug-component-target-pathway-disease network maps using Cytoscape 3.10.1 software and validated the molecular docking using AutoDock4. A total of 10 active ingredients and 108 common targets were screened from Polygonatum, 29 genes (including AKT1 and STAT3) were identified as core genes. According to gene ontology analysis, the core targets were found to be mainly involved in signal transduction, positive regulation of gene expression, negative regulation of the apoptotic process, and so on. The Kyoto encyclopedia of genes and genomes analysis revealed that the signaling pathways comprised pathways in cancer, pathways of neurodegeneration - multiple diseases, and PI3K-Akt signaling pathway. The molecular docking results indicated that 10 of active ingredients from Polygonatum exhibited strong binding affinity with the 6 core targets that were screened before. The activity of Polygonatum against AD could be attributed to the regulation of multiple biological effects via multi-pathways (pathways in cancer, pathways of neurodegeneration - multiple diseases, and PI3K-Akt signaling pathway). The binding activities were estimated as good level by molecular docking. These discoveries disclosed the multi-component, multi-target, and multi-pathway characteristics of Polygonatum against AD, providing a new strategy for such medical problem.
Collapse
Affiliation(s)
- Liangliang Luo
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yao Pan
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, China
| | - Fang Chen
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, China
| | - Zhihong Zhang
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, Nanchang, China
| |
Collapse
|
22
|
Weng Y, Xie G. Increased GABBR2 Expression on Cell Membranes Causes Increased Ca2 + Inward Flow, Associated with Cognitive Impairment in Early Alzheimer's Disease. Biochem Genet 2024:10.1007/s10528-024-11004-z. [PMID: 39724481 DOI: 10.1007/s10528-024-11004-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Alzheimer's disease (AD) and mild cognitive impairment (MCI) are a serious global public health problem. The aim of this study was to analyze the key molecular pathological mechanisms that occur in early AD progression as well as MCI. Expression profiling data from brain homogenates of 8 normal volunteers, and 6 patients with prodromal AD who had developed MCI were analyzed, and the data were obtained from GSE12685. Further, overexpression of GABBR2 was achieved in human neuroblastoma cell lines SH-SY5Y and BE(2)-M17 using expression plasmid transfection. GABBR2 was significantly overexpressed in brain tissues of patients with prodromal AD who had developed MCI, as compared to normal brains. Moreover, GABBR2 overexpressing cells showed a significant increase in intracellular Ca2+ concentration, a large amount of reactive oxygen species production, a large opening of the mitochondrial permeability transition pore and a significant increase in apoptosis compared with control cells. GABBR2 overexpression was significantly involved in early AD progression and MCI by causing cellular events such as intracellular Ca2+ imbalance, oxidative stress, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Yifei Weng
- Department of Neurology, The Affiliated People's Hospital of Ningbo University, No.251 East Baizhang Road, Ningbo, 315040, Zhejiang, China
| | - Guomin Xie
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, No.57 Xingning Road, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
23
|
Cantón-Suárez A, Sánchez-Valdeón L, Bello-Corral L, Cuevas MJ, Estébanez B. Understanding the Molecular Impact of Physical Exercise on Alzheimer's Disease. Int J Mol Sci 2024; 25:13576. [PMID: 39769339 PMCID: PMC11677557 DOI: 10.3390/ijms252413576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Alzheimer's disease is one of the most common neurodegenerative diseases, characterized by a wide range of neurological symptoms that begin with personality changes and psychiatric symptoms, progress to mild cognitive impairment, and eventually lead to dementia. Physical exercise is part of the non-pharmacological treatments used in Alzheimer's disease, as it has been shown to delay the neurodegenerative process by improving the redox state in brain tissue, providing anti-inflammatory effects or stimulating the release of the brain-derived neurotrophic factor that enhances the brain structure and cognitive performance. Here, we reviewed the results obtained from studies conducted in both animal models and human subjects to comprehend how physical exercise interventions can exert changes in the molecular mechanisms underlying the pathophysiological processes in Alzheimer's disease: amyloid β-peptide pathology, tau pathology, neuroglial changes, mitochondrial dysfunction, and oxidative stress. Physical exercise seems to have a protective effect against Alzheimer's disease, since it has been shown to induce positive changes in some of the biomarkers related to the pathophysiological processes of the disease. However, additional studies in humans are necessary to address the current lack of conclusive evidence.
Collapse
Affiliation(s)
| | - Leticia Sánchez-Valdeón
- Health Research Nursing Group (GREIS), University of Leon, 24071 Leon, Spain; (L.S.-V.); (L.B.-C.)
- Department of Nursing and Physiotherapy, University of Leon, 24071 Leon, Spain
| | - Laura Bello-Corral
- Health Research Nursing Group (GREIS), University of Leon, 24071 Leon, Spain; (L.S.-V.); (L.B.-C.)
- Department of Nursing and Physiotherapy, University of Leon, 24071 Leon, Spain
| | - María J. Cuevas
- Institute of Biomedicine (IBIOMED), University of León, 24071 Leon, Spain;
| | - Brisamar Estébanez
- Institute of Biomedicine (IBIOMED), University of León, 24071 Leon, Spain;
| |
Collapse
|
24
|
Shao N, Lu Q, Ouyang Z, Yang P, Wei T, Wang J, Cai B. Ganoderic acid a alleviates Aβ 25-35-induced HT22 cell apoptosis through the ERK/MAPK pathway: a system pharmacology and in vitro experimental validation. Metab Brain Dis 2024; 40:51. [PMID: 39625499 DOI: 10.1007/s11011-024-01429-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/31/2024] [Indexed: 02/27/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that occurs with aging. Ganoderma lucidum (Curtis.) P. Karst. (G. lucidum) is a traditional medicinal fungus believed to nourish the brain and anti-aging. Ganoderic acid A (GAA), a triterpenoid from G. lucidum, has demonstrated natural neuroprotective effects. This study aims to explore the therapeutic effect and molecular mechanism of GAA on AD. Systematic network pharmacology identified 95 targets, 8 biological functions, and multiple pathways. The results highlighted MAPK family members as core genes, with MAPK1 (ERK2) showing the highest binding affinity to GAA in molecular docking. In vitro experiments revealed that GAA dose-dependently increased the viability of Aβ25-35-injured HT22 cells and inhibited MAPK pathway-related protein expression. Similar to FR180204, 100 µM GAA significantly reversed ERK protein expression, oxidative stress markers, and mitochondrial damage in AD cell model. GAA also downregulated cleaved caspase-3 protein levels, apoptosis rates, Aβ and p-Tau expression by inhibiting the ERK signaling pathway. The therapeutic effect of GAA on AD was predicted and validated through network pharmacology and in vitro experiments. The ability of GAA to inhibit apoptosis via the ERK/MAPK signaling pathway positions it as a promising candidate for AD treatment.
Collapse
Affiliation(s)
- Nan Shao
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Qingyang Lu
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Zhaorong Ouyang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Peizheng Yang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Tao Wei
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China
| | - Jinghui Wang
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| | - Biao Cai
- College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, 230012, China.
| |
Collapse
|
25
|
Guo F, Qin X, Mao J, Xu Y, Xie J. Potential Protective Effects of Pungent Flavor Components in Neurodegenerative Diseases. Molecules 2024; 29:5700. [PMID: 39683859 PMCID: PMC11643850 DOI: 10.3390/molecules29235700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD) have become a major global health burden, but the detailed pathogeneses of neurodegenerative diseases are still unknown, and current treatments are mainly aimed at controlling symptoms; there are no curative treatments for neurodegenerative diseases or treatments for the progressive cognitive, behavioral, and functional impairments that they cause. Studies have shown that some plant extracts with pungent flavor components have a certain neuroprotective effect in neurodegenerative diseases, and their mechanisms mainly involve inhibiting neuronal apoptosis, promoting neuronal regeneration, reducing mitochondrial degeneration, and reducing the production of oxides such as reactive oxygen species in cells, which are of great significance for exploring the treatment of neurodegenerative diseases. In this review, we searched the PubMed database for relevant literature collected in the past 15 years. Finally, we summarized the protective effects of pungent flavor components such as capsaicin, piperine, curcumin, cannabinoids, allicin, and nicotine on the nervous system, focusing on the molecular mechanisms and signaling pathways that they activate. In addition, we also compiled and summarized the laboratory experiments, preclinical experiments, and effects of various pungent flavor components in neurodegenerative diseases. The goal is to further explore their potential as effective drugs for the treatment of neurodegenerative diseases and provide new ideas for further research on the specific protective mechanisms of these substances for the treatment of neurodegenerative diseases and the targets of drug action in the future.
Collapse
Affiliation(s)
- Fangxin Guo
- Beijing Life Science Academy (BLSA), Beijing 102209, China
- School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Xudi Qin
- Beijing Life Science Academy (BLSA), Beijing 102209, China
- School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Jian Mao
- Beijing Life Science Academy (BLSA), Beijing 102209, China
- Flavour Science Research Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yan Xu
- Beijing Life Science Academy (BLSA), Beijing 102209, China
- School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou 450001, China
| | - Jianping Xie
- Beijing Life Science Academy (BLSA), Beijing 102209, China
- Flavour Science Research Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
26
|
Yu C, Liu X, Ma B, Xu J, Chen Y, Dai C, Peng H, Zha D. Novel anti-neuroinflammatory pyranone-carbamate derivatives as selective butyrylcholinesterase inhibitors for treating Alzheimer's disease. J Enzyme Inhib Med Chem 2024; 39:2313682. [PMID: 38362862 PMCID: PMC10878344 DOI: 10.1080/14756366.2024.2313682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/29/2024] [Indexed: 02/17/2024] Open
Abstract
Butyrylcholinesterase (BuChE) and neuroinflammation have recently emerged as promising therapeutic directions for Alzheimer's disease (AD). Herein, we synthesised 19 novel pyranone-carbamate derivatives and evaluated their activities against cholinesterases and neuroinflammation. The optimal compound 7p exhibited balanced BuChE inhibitory activity (eqBuChE IC50 = 4.68 nM; huBuChE IC50 = 9.12 nM) and anti-neuroinflammatory activity (NO inhibition = 28.82% at 10 μM, comparable to hydrocortisone). Enzyme kinetic and docking studies confirmed compound 7p was a mix-type BuChE inhibitor. Additionally, compound 7p displayed favourable drug-likeness properties in silico prediction, and exhibited high BBB permeability in the PAMPA-BBB assay. Compound 7p had good safety in vivo as verified by an acute toxicity assay (LD50 > 1000 mg/kg). Most importantly, compound 7p effectively mitigated cognitive and memory impairments in the scopolamine-induced mouse model, showing comparable effects to Rivastigmine. Therefore, we envisioned that compound 7p could serve as a promising lead compound for treating AD.
Collapse
Affiliation(s)
- Chuanyu Yu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xueyan Liu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Bingxiang Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jiexin Xu
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Yiquan Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Chaoxian Dai
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Huaping Peng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Daijun Zha
- Department of Medicinal Chemistry, School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, China
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
27
|
Mormile R, Mormile C, Picone C. Alzheimer's disease following COVID-19: a two player match? Infection 2024; 52:2547-2549. [PMID: 39143436 DOI: 10.1007/s15010-024-02368-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Common pathways may underlie the association between COVID-19 and risk for Alzheimer's disease (AD). We conjecture that severe COVID-19 may contribute to AD onset in predisposed individuals through aberrant MDSCs expression and increased IL-6 expression levels leading to immunosuppression in inflamed brains. Research studies are needed to gain empirical evidence to strengthen the hypothesis of the involvement of MDSCs and IL-6 in the formation of AD following COVID-19 infection and possibly vaccination enabling a more in-depth understanding of the role of immunosuppression in the onset of neurodegenerative diseases at any age. Identifying why those who get severe COVID-19 are more likely to develop AD may offer a novel therapeutic approach to delay or prevent cognitive decline.
Collapse
Affiliation(s)
- Raffaella Mormile
- Division of Pediatrics and Neonatology, Moscati Hospital, Via A. Gramsci, Aversa, 81031, Italy.
| | | | - Carmine Picone
- Division of Radiology, "Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli", Naples, Italy
- Department of Medicine and Health Science, Vincenzo Tiberio University of Molise, Campobasso, Italy
| |
Collapse
|
28
|
Merighi S, Nigro M, Travagli A, Fernandez M, Vincenzi F, Varani K, Pasquini S, Borea PA, Salati S, Cadossi R, Gessi S. Effect of Low-Frequency, Low-Energy Pulsed Electromagnetic Fields in Neuronal and Microglial Cells Injured with Amyloid-Beta. Int J Mol Sci 2024; 25:12847. [PMID: 39684558 DOI: 10.3390/ijms252312847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative pathology covering about 70% of all cases of dementia. It is associated with neuroinflammation and neuronal cell death, which are involved in disease progression. There is a lack of effective therapies, and halting this process represents a therapeutic challenge. Data in the literature suggest several neuroprotective effects of low-frequency, low-energy pulsed electromagnetic fields (PEMFs) on biological systems, and clinical studies report that PEMF stimulation is safe and well tolerated. The aim of this work is to investigate the effects of PEMF exposure on oxidative stress and cell death in in vitro-injured cellular models of neurons and microglia. SH-SY5Y cells were stimulated by hydrogen peroxide (H2O2) or amyloid-β (Aβ) peptide, and N9 microglial cells were activated with lipopolysaccharide (LPS) or Aβ peptide. Reactive oxygen production, mitochondrial integrity, and cell death modulation were investigated through 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbo-cyanine iodide (JC-1) biochemical assays, fluorescence, and MTS experiments. Cells were exposed to PEMFs producing a pulsed signal with the following parameters: pulse duration of 1.3 ms and frequency of 75 Hz. The outcomes demonstrated that PEMFs defended SH-SY5Y cells against Aβ peptide- or H2O2-induced oxidative stress, mitochondrial damage, and cell death. Furthermore, in microglia activated by LPS or Aβ peptide, they reverted the reduction in mitochondrial potential, oxidative damage, and cell death. Overall, these findings imply that PEMFs influence the redox state of the cells by significantly boosting antioxidant levels in both injured microglia and neuronal in vitro cells mimicking in vitro AD.
Collapse
Affiliation(s)
- Stefania Merighi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Manuela Nigro
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Alessia Travagli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Mercedes Fernandez
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Fabrizio Vincenzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Katia Varani
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Silvia Pasquini
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | | | - Simona Salati
- Igea Clinical Biophysics, Medical Division, 41012 Carpi, Italy
| | - Ruggero Cadossi
- Igea Clinical Biophysics, Medical Division, 41012 Carpi, Italy
| | - Stefania Gessi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
29
|
Liu W, Rao X, Sun W, Chen X, Yu L, Zhang J, Chen J, Zheng X. The neuroinflammatory role of microRNAs in Alzheimer's disease: pathological insights to therapeutic potential. Mol Cell Biochem 2024:10.1007/s11010-024-05164-0. [PMID: 39567427 DOI: 10.1007/s11010-024-05164-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and the most common cause of dementia, contributing to around 60-80% of cases. The main pathophysiology of AD is characterized by an abnormal accumulation of protein aggregates extracellularly (beta-amyloid plaques) and intracellularly (neurofibrillary tangles of hyperphosphorylated tau). However, an increasing number of studies have also suggested neuroinflammation may have a crucial role in precipitating the cascade reactions that result in the development of AD neuropathology. In particular, several studies indicate microRNAs (miRNAs) can act as regulatory factors for neuroinflammation in AD, with potential to affect the occurrence and/or progression of AD inflammation by targeting the expression of multiple genes. Therefore, miRNAs may have potential as therapeutic targets for AD, which requires more research. This article will review the existing studies on miRNAs that have been identified to regulate neuroinflammation, aiming to gain further insights into the specific regulatory processes of miRNAs, highlight the diagnostic and therapeutic potential of miRNAs as biomarkers in AD, as well as current challenges, and suggest the further work to bridge the gap in knowledge to utilize miRNAs as therapeutic targets for AD.
Collapse
Affiliation(s)
- Wenjia Liu
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xin Rao
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Wen Sun
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Xiaodong Chen
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China.
| | - Liyang Yu
- School of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Jiangtao Zhang
- Department of Geriatrics, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China.
| | - Jiong Chen
- Department of Geriatrics, Tongde Hospital of Zhejiang Province, Hangzhou, 310012, China
| | - Xiaorong Zheng
- Blood Purification Center, The Second Affiliated Hospital of Jiaxing University, Jiaxing, 314000, China
| |
Collapse
|
30
|
Zhu H, Zhang T, Li R, Ren D, Xu J, Xiao L. Bushen Huoxue acupuncture ameliorates Alzheimer's disease by upregulating MARCHF3 to induce NLRP3 ubiquitination and inhibit caspase-1-dependent pyroptosis. Metab Brain Dis 2024; 40:11. [PMID: 39556273 PMCID: PMC11573812 DOI: 10.1007/s11011-024-01459-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/20/2024] [Indexed: 11/19/2024]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder that places a heavy burden on patients and society. Hippocampal neuronal loss is a hallmark of AD progression. Therefore, understanding the mechanism underlying hippocampal neuronal death would be of great importance for the diagnosis and treatment of AD. This study aimed to explore the molecular mechanism via which Bushen Huoxue Acupuncture inhibits hippocampal neuronal pyroptosis in AD. Senescence-accelerated mouse prone 8 (SAMP8) mice were used as a model of AD. Bushen Huoxue Acupuncture was performed in four acupoints: "Baihui acupoint" (GV20), "Shenshu acupoint" (BL23), "Xuehai acupoint" (SP10), and "Geshu acupoint" (BL17). Morris water maze was used to test cognitive function in mice. IHC staining was used to test mice's Aβ1-42, MARCHF1 and MARCHF3 expression. Terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) staining was used for observing hippocampal neuronal apoptosis. The mRNA expression levels of pyroptosis markers MARCHF1, MARCHF3, NLRP3, caspase-1, GSDMD, IL-1β, and IL-18 mRNA in AD mice were determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The protein expression of NLRP3, caspase-1 and GSDMD-N was tested by Western blotting. IL-1β and IL-18 protein levels were measured by Enzyme-Linked Immunosorbent Assay (ELISA). SH-SY5Y cells were used to establish an AD model following Aβ1-42 treatment. Western blot was used to detect the NLRP3, MARCHF1 and MARCHF3 proteins following Aβ1-42 treatment. The endogenous Co-IP assay in combination with immunoblotting for ubiquitin signals was used to detect of NLRP3 ubiquitination level. We found that Bushen Huoxue Acupuncture protected cognitive impairment in AD mice. Bushen Huoxue Acupuncture inhibited hippocampal neuronal pyroptosis and the secretion of inflammatory cytokines in vivo. In SH-SY5Y cells, we found that Aβ1-42 decreased the binding of E3 ubiquitin-protein ligase MARCHF1 or MARCHF3 with NLRP3, and the ubiquitination of NLRP3. In conclusion, Bushen Huoxue Acupuncture ameliorates AD by upregulating MARCHF3 to induce NLRP3 ubiquitination and inhibits caspase-1-dependent pyroptosis.
Collapse
Affiliation(s)
- Hong Zhu
- Department of Traditional Chinese Medicine, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410008, Hunan Province, China
| | - Ting Zhang
- Department of Traditional Chinese Medicine, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410008, Hunan Province, China
| | - Ruomeng Li
- Department of Traditional Chinese Medicine, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410008, Hunan Province, China
| | - Dan Ren
- Department of Traditional Chinese Medicine, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410008, Hunan Province, China
| | - Jiangxi Xu
- Department of Traditional Chinese Medicine, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410008, Hunan Province, China
| | - Lan Xiao
- Department of Traditional Chinese Medicine, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, 410008, Hunan Province, China.
| |
Collapse
|
31
|
Toledano A, Rodríguez-Casado A, Älvarez MI, Toledano-Díaz A. Alzheimer's Disease, Obesity, and Type 2 Diabetes: Focus on Common Neuroglial Dysfunctions (Critical Review and New Data on Human Brain and Models). Brain Sci 2024; 14:1101. [PMID: 39595866 PMCID: PMC11591712 DOI: 10.3390/brainsci14111101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Obesity, type 2 diabetes (T2D), and Alzheimer's disease (AD) are pathologies that affect millions of people worldwide. They have no effective therapy and are difficult to prevent and control when they develop. It has been known for many years that these diseases have many pathogenic aspects in common. We highlight in this review that neuroglial cells (astroglia, oligodendroglia, and microglia) play a vital role in the origin, clinical-pathological development, and course of brain neurodegeneration. Moreover, we include the new results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we are investigating. METHODS Critical bibliographic revision and biochemical neuropathological study of neuroglia in a T2D-AD model. RESULTS T2D and AD are not only "connected" by producing complex pathologies in the same individual (obesity, T2D, and AD), but they also have many common pathogenic mechanisms. These include insulin resistance, hyperinsulinemia, hyperglycemia, oxidative stress, mitochondrial dysfunction, and inflammation (both peripheral and central-or neuroinflammation). Cognitive impairment and AD are the maximum exponents of brain neurodegeneration in these pathological processes. both due to the dysfunctions induced by metabolic changes in peripheral tissues and inadequate neurotoxic responses to changes in the brain. In this review, we first analyze the common pathogenic mechanisms of obesity, T2D, and AD (and/or cerebral vascular dementia) that induce transcendental changes and responses in neuroglia. The relationships between T2D and AD discussed mainly focus on neuroglial responses. Next, we present neuroglial changes within their neuropathological context in diverse scenarios: (a) aging involution and neurodegenerative disorders, (b) human obesity and diabetes and obesity/diabetes models, (c) human AD and in AD models, and (d) human AD-T2D and AD-T2D models. An important part of the data presented comes from our own studies on humans and experimental models over the past few years. In the T2D-AD section, we included the results of a T2D-AD mouse model (APP+PS1 mice on a high-calorie diet) that we investigated, which showed that neuroglial dysfunctions (astrocytosis and microgliosis) manifest before the appearance of amyloid neuropathology, and that the amyloid pathology is greater than that presented by mice fed a normal, non-high-caloric diet A broad review is finally included on pharmacological, cellular, genic, and non-pharmacological (especially diet and lifestyle) neuroglial-related treatments, as well as clinical trials in a comparative way between T2D and AD. These neuroglial treatments need to be included in the multimodal/integral treatments of T2D and AD to achieve greater therapeutic efficacy in many millions of patients. CONCLUSIONS Neuroglial alterations (especially in astroglia and microglia, cornerstones of neuroinflammation) are markedly defining brain neurodegeneration in T2D and A, although there are some not significant differences between each of the studied pathologies. Neuroglial therapies are a very important and p. promising tool that are being developed to prevent and/or treat brain dysfunction in T2D-AD. The need for further research in two very different directions is evident: (a) characterization of the phenotypic changes of astrocytes and microglial cells in each region of the brain and in each phase of development of each isolated and associated pathology (single-cell studies are mandatory) to better understand the pathologies and define new therapeutic targets; (b) studying new therapeutic avenues to normalize the function of neuroglial cells (preventing neurotoxic responses and/or reversing them) in these pathologies, as well as the phenotypic characteristics in each moment of the course and place of the neurodegenerative process.
Collapse
Affiliation(s)
- Adolfo Toledano
- Instituto Cajal, CSIC, 28002 Madrid, Spain; (A.R.-C.); (M.I.Ä.)
| | | | | | | |
Collapse
|
32
|
Costa ACS. On the Therapeutic Use of Monoclonal Antibodies Against Amyloid Plaques in Older Adults with Down Syndrome: A Narrative Review and Perspective. Brain Sci 2024; 14:1084. [PMID: 39595846 PMCID: PMC11591668 DOI: 10.3390/brainsci14111084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Down syndrome (DS) is a genetic disorder caused by an extra copy of chromosome 21 (trisomy 21 or T21) and is associated with an increased risk of early-onset Alzheimer's disease (AD), also known as DS-associated AD (DSAD). Individuals with DS typically develop amyloid neuropathology in their late-thirties to early-forties and the mean age of onset of clinical dementia is approximately 55 years. Recent advances in AD clinical research have focused on monoclonal antibodies (mAbs) targeting amyloid-β (Aβ) plaques as a potential therapeutic approach. Therefore, there has been guarded enthusiasm about using anti-amyloid mAbs in the prevention/treatment of DSAD. This narrative review and perspective explores the current understanding of amyloid pathology in AD and DSAD, the rationale for using anti-amyloid mAbs in the treatment of DSAD, and the challenges and opportunities for research toward the application of this therapeutic strategy to older adults with DS.
Collapse
Affiliation(s)
- Alberto C S Costa
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106-6090, USA
| |
Collapse
|
33
|
Hu Y, Cui J, Sun J, Liu X, Gao S, Mei X, Wu C, Tian H. A novel biomimetic nanovesicle containing caffeic acid-coupled carbon quantum dots for the the treatment of Alzheimer's disease via nasal administration. J Nanobiotechnology 2024; 22:642. [PMID: 39425199 PMCID: PMC11490022 DOI: 10.1186/s12951-024-02912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease characterized by progressive cognitive and physical impairment. Neuroinflammation is related to AD, and the misfolding and aggregation of amyloid protein in the brain creates an inflammatory microenvironment. Microglia are the predominant contributors to neuroinflammation, and abnormal activation of microglia induces the release of a large amount of inflammatory factors, promotes neuronal apoptosis, and leads to cognitive impairment. In this study, we used microglial membranes containing caffeic acid-coupled carbon quantum dots to prepare a novel biomimetic nanocapsule (CDs-CA-MGs) for the treatment of AD. The application of CDs-CA-MGs via nasal administration can bypass the blood‒brain barrier (BBB) and directly target the site of inflammation. After treatment with CDs-CA-MGs, AD mice showed reduced inflammation in the brain, decreased neuronal apoptosis, and significantly improved learning and memory abilities. In addition, CDs-CA-MGs affect inflammation-related JAK-STAT and Toll-like receptor signaling pathways in AD mice. CDs-CA-MGs significantly downregulated interleukins (IL-1β and IL-6) and tumor necrosis factor (TNF-α). This finding suggested that CDs-CA-MGs may improve cognitive impairment by modulating inflammatory responses. In conclusion, the use of CDs-CA-MGs provides a possible therapeutic strategy for the treatment of AD.
Collapse
Affiliation(s)
- Yu Hu
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Jingwen Cui
- The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Junpeng Sun
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Xiaobang Liu
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Shuang Gao
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Xifan Mei
- Liaoning Vocational College of Medicine, Shenyang, Liaoning, 110101, China.
| | - Chao Wu
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
| | - He Tian
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
| |
Collapse
|
34
|
Wang Q, Chen S, Wang J, Shang H, Chen X. Advancements in Pharmacological Treatment of Alzheimer's Disease: The Advent of Disease-Modifying Therapies (DMTs). Brain Sci 2024; 14:990. [PMID: 39452004 PMCID: PMC11506318 DOI: 10.3390/brainsci14100990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
The landscape of pharmacological treatment for Alzheimer's disease (AD) has undergone significant transformations with the advent of disease-modifying therapies (DMTs) targeting β-Amyloid (Aβ) accumulation, one of the hallmark pathologies of AD. The approval and market introduction of monoclonal antibodies mark the dawn of a new era in AD therapeutics as well. Furthermore, considerable progress has also been made in the development of new drugs targeting non-Aβ and non-Tau protein pathways. These advancements are key in tackling the root causes of AD, offering hope for treatments that both relieve symptoms and slow disease progression, improving patient outcomes and quality of life. This review aims to provide a comprehensive update on the advances in drug development and application for AD, including those currently in clinical trials and those already approved for the market to treat patients.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Sihui Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China; (S.C.); (H.S.)
| | - Junhui Wang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada;
- Thyropathy Hospital, Sunsimiao Hospital, Beijing University of Chinese Medicine, Tongchuan 727000, China
| | - Huifang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China; (S.C.); (H.S.)
| | - Xueping Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu 610041, China; (S.C.); (H.S.)
| |
Collapse
|
35
|
Li Y, Zhang H, Yu C, Dong X, Yang F, Wang M, Wen Z, Su M, Li B, Yang L. New Insights into Mitochondria in Health and Diseases. Int J Mol Sci 2024; 25:9975. [PMID: 39337461 PMCID: PMC11432609 DOI: 10.3390/ijms25189975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Mitochondria are a unique type of semi-autonomous organelle within the cell that carry out essential functions crucial for the cell's survival and well-being. They are the location where eukaryotic cells carry out energy metabolism. Aside from producing the majority of ATP through oxidative phosphorylation, which provides essential energy for cellular functions, mitochondria also participate in other metabolic processes within the cell, such as the electron transport chain, citric acid cycle, and β-oxidation of fatty acids. Furthermore, mitochondria regulate the production and elimination of ROS, the synthesis of nucleotides and amino acids, the balance of calcium ions, and the process of cell death. Therefore, it is widely accepted that mitochondrial dysfunction is a factor that causes or contributes to the development and advancement of various diseases. These include common systemic diseases, such as aging, diabetes, Parkinson's disease, and cancer, as well as rare metabolic disorders, like Kearns-Sayre syndrome, Leigh disease, and mitochondrial myopathy. This overview outlines the various mechanisms by which mitochondria are involved in numerous illnesses and cellular physiological activities. Additionally, it provides new discoveries regarding the involvement of mitochondria in both disorders and the maintenance of good health.
Collapse
Affiliation(s)
- Ya Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Huhu Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Chunjuan Yu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Ziyuan Wen
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Mohan Su
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| |
Collapse
|
36
|
Puranik N, Song M. Insights into the Role of microRNAs as Clinical Tools for Diagnosis, Prognosis, and as Therapeutic Targets in Alzheimer's Disease. Int J Mol Sci 2024; 25:9936. [PMID: 39337429 PMCID: PMC11431957 DOI: 10.3390/ijms25189936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Neurodegenerative diseases (NDDs) are a diverse group of neurological disorders characterized by alterations in the structure and function of the central nervous system. Alzheimer's disease (AD), characterized by impaired memory and cognitive abilities, is the most prevalent type of senile dementia. Loss of synapses, intracellular aggregation of hyperphosphorylated tau protein, and extracellular amyloid-β peptide (Aβ) plaques are the hallmarks of AD. MicroRNAs (miRNAs/miRs) are single-stranded ribonucleic acid (RNA) molecules that bind to the 3' and 5' untranslated regions of target genes to cause post-transcriptional gene silencing. The brain expresses over 70% of all experimentally detected miRNAs, and these miRNAs are crucial for synaptic function and particular signals during memory formation. Increasing evidence suggests that miRNAs play a role in AD pathogenesis and we provide an overview of the role of miRNAs in synapse formation, Aβ synthesis, tau protein accumulation, and brain-derived neurotrophic factor-associated AD pathogenesis. We further summarize and discuss the role of miRNAs as potential therapeutic targets and biomarkers for AD detection and differentiation between early- and late-stage AD, based on recent research. In conclusion, altered expression of miRNAs in the brain and peripheral circulation demonstrates their potential as biomarkers and therapeutic targets in AD.
Collapse
Affiliation(s)
- Nidhi Puranik
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
37
|
Li L, Zhang W, Cao H, Fang L, Wang W, Li C, He Q, Jiao J, Zheng R. Nanozymes in Alzheimer's disease diagnostics and therapy. Biomater Sci 2024; 12:4519-4545. [PMID: 39083017 DOI: 10.1039/d4bm00586d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative condition that has become an important public health problem of global concern, and the early diagnosis and etiological treatment of AD are currently the focus of research. In the course of clinical treatment, approved clinical drugs mainly serve to slow down the disease process by relieving patients' clinical symptoms. However, these drugs do not target the cause of the disease, and the lack of specificity of these drugs has led to undesirable side effects in treatment. Meanwhile, AD is mainly diagnosed by clinical symptoms and imaging, which does not have the advantage of early diagnosis. Nanozymes have been extensively investigated for the diagnosis and treatment of AD with high stability and specificity. Therefore, this review summarizes the recent advances in various nanozymes for AD diagnosis and therapy, including with peroxidase-like-activity gold nanozymes, iron nanozymes, superoxide dismutase-like- and catalase-like-activity selenium dioxide nanozymes, platinum nanozymes, and peroxidase-like palladium nanozymes, among others. A comprehensive analysis was conducted on the diagnostic and therapeutic characteristics of nanozyme therapy for AD, as well as the prospects and challenges of its clinical application. Our goal is to advance this emerging topic by building on our own work and the new insights we have learned from others. This review will assist researchers to quickly understand relevant nanozymes' therapeutic and diagnostic information and further advance the field of nanozymes in AD.
Collapse
Affiliation(s)
- Linquan Li
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Wenyu Zhang
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Hengyi Cao
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Leming Fang
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Wenjing Wang
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Chengzhilin Li
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Qingbin He
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| | - Jianwei Jiao
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Runxiao Zheng
- School of Clinical and Basic Medical Sciences, Medical Science and Technology Innovation Center, Shandong Provincial Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, China.
| |
Collapse
|
38
|
Pakaprot N, Khamphaya T, Kwankaew P, Ninsuwan S, Laisunthad S, Thonoi K, Kuraeiad S. Neuroprotective effects of Paederia foetida Linn. on scopolamine-induced cognitive impairment in rats. Vet World 2024; 17:1972-1982. [PMID: 39507784 PMCID: PMC11536741 DOI: 10.14202/vetworld.2024.1972-1982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/29/2024] [Indexed: 11/08/2024] Open
Abstract
Background and Aim Alzheimer's disease (AD) poses a significant health-care challenge, often linked to cognitive decline caused by oxidative stress. This study investigated the potential neuroprotective effects of the Paederia foetida leaf extract (PFE) in rats that exhibited scopolamine-induced dementia mimicking AD. Materials and Methods Forty-two male rats were treated with either donepezil (0.5 mg/kg) or PFE at doses of 250, 500, and 1000 mg/kg for 14 days before and 14 days after the beginning of Alzheimer's-like symptoms after 14 consecutive days of scopolamine administration. Behavioral tests, including the open-field test for locomotor activity and the Morris water maze task for learning and memory assessment, were conducted. Neuronal cell counts and biochemical assays were performed to further analyze outcomes. Results All groups exhibited normal locomotor activity. The scopolamine group displayed longer escape latency times, reduced time in the target quadrant, decreased number of surviving neurons, and increased malondialdehyde and decreased glutathione levels compared with the control group. However, pre-treatment with 1000 mg/kg PFE notably mitigated the neurotoxic effects of scopolamine. Conclusion The neuroprotective properties of PFE are highlighted, suggesting its potential as a promising treatment strategy for AD.
Collapse
Affiliation(s)
- Narawut Pakaprot
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Srisavarindhira Bldg., 13 Floor, Wanglang Road, Siriraj Subdistrict, Bangkoknoi District, Bangkok, 10700, Thailand
| | - Tanaporn Khamphaya
- Department of Occupational Health and Safety, School of Public Health, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Pattamaporn Kwankaew
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Sarawut Ninsuwan
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Sutida Laisunthad
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Kotchaporn Thonoi
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Saruda Kuraeiad
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Research Center in Tropical Pathobiology, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| |
Collapse
|
39
|
Wang J, Du L, Zhang T, Chu Y, Wang Y, Wang Y, Ji X, Kang Y, Cui R, Zhang G, Liu J, Shi G. Edaravone Dexborneol ameliorates the cognitive deficits of APP/PS1 mice by inhibiting TLR4/MAPK signaling pathway via upregulating TREM2. Neuropharmacology 2024; 255:110006. [PMID: 38763325 DOI: 10.1016/j.neuropharm.2024.110006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Currently, there are no effective therapeutic agents available to treat Alzheimer's disease (AD). However, edaravone dexborneol (EDB), a novel composite agent used to treat acute ischemic stroke, has recently been shown to exert efficacious neuroprotective effects. However, whether EDB can ameliorate cognitive deficits in AD currently remains unclear. To this end, we explored the effects of EDB on AD and its potential mechanisms using an AD animal model (male APP/PS1 mice) treated with EDB for 10 weeks starting at 6 months of age. Subsequent analyses revealed that EDB-treated APP/PS1 mice exhibited improved cognitive abilities compared to untreated APP/PS1 mice. Administration of EDB in APP/PS1 mice further alleviated neuropathological alterations of the hippocampus, including Aβ deposition, pyramidal cell karyopyknosis, and oxidative damage, and significantly decreased the levels of inflammatory cytokines (IL-1β, IL-6 and TNF-α) and COX-2 in the hippocampus of APP/PS1 mice. Transcriptome sequencing analysis demonstrated the critical role of the inflammatory reaction in EDB treatment in APP/PS1 mice, indicating that the alleviation of the inflammatory reaction by EDB in the hippocampus of APP/PS1 mice was linked to the action of the TREM2/TLR4/MAPK signaling pathway. Further in vitro investigations showed that EDB suppressed neuroinflammation in LPS-stimulated BV2 cells by inhibiting the TLR4/MAPK signaling pathway and upregulating TREM2 expression. Thus, the findings of the present study demonstrate that EDB is a promising therapeutic agent for AD-related cognitive dysfunction.
Collapse
Affiliation(s)
- Jinyang Wang
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China; Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Longyuan Du
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Tianyun Zhang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yun Chu
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yue Wang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yu Wang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiaoming Ji
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yunxiao Kang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Rui Cui
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Guoliang Zhang
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China
| | - Junyan Liu
- Department of Neurology, The Third Hospital of Hebei Medical University, Shijiazhuang, 050051, China
| | - Geming Shi
- Laboratory of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
40
|
Gürbüzer N, Ozkaya AL. Inflammatory Burden Index (IBI) and Hemoglobin, Albumin, Lymphocyte, and Platelet (HALP) Score in Alzheimer's Disease: A Retrospective Comparative Study. Cureus 2024; 16:e69148. [PMID: 39398776 PMCID: PMC11467697 DOI: 10.7759/cureus.69148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
OBJECTIVE This study aimed to evaluate the differences between Alzheimer's disease (AD) patients and controls in biochemistry and peripheral hemogram parameters neutrophil, lymphocyte, monocyte, platelet, and C-reactive protein (CRP) levels, lipid profile, inflammatory burden index (IBI), and hemoglobin, albumin, lymphocyte, and platelet (HALP) score and the relationship between inflammatory and immunonutritive biomarkers and cognitive impairment in patients. METHOD Data from 79 patients with AD and 42 controls were included in the study. Medical data of the participants were obtained from hospital records. IBI was obtained by using the following formula: CRP × neutrophil/lymphocyte. HALP score was calculated as (hemoglobin (g/L) × albumin (g/L) × lymphocytes (/L))/platelets (/L). RESULTS Neutrophil count (p=0.003, effect size=0.60), CRP level (p<0.001, effect size=0.87), and IBI (p<0.001, effect size=0.93) were significantly higher in AD patients compared to the control group; hemoglobin (p<0.001, effect size=1.03), lymphocyte count (p<0.001, effect size=0.78), albumin level (p<0.001, effect size=1.31), and HALP score (p<0.001, effect size=0.85) were lower. According to the Standardized Mini Mental Test (SMMT) score, neutrophil count (p=0.001), CRP (p<0.001), and IBI (p<0.001) were significantly higher and lymphocyte count (p=0.001) and HALP score (p<0.001) were lower in the group with severe cognitive impairment. Albumin levels were highest in the group with mild cognitive impairment. In the patient group, there was a moderately significant negative relationship between SMMT score and age (p<0.001, r=-0.437), neutrophil count (p=0.033, r=-0.240), CRP (p<0.001, r=-0.451), and IBI (p<0.001, r=-0.538). Lymphocyte count (p<0.001, r=0.412), high-density lipoprotein (HDL) (p=0.049, r=0.223), albumin levels (p=0.001, r=0.357), and HALP score (p<0.001, r=0.486) were moderately positively associated with SMMT score. Age (β=-0.437, p<0.001), HALP score (β=0.403, p<0.001), and IBI (β=-0.322, p=0.004) were found to be predictors for the severity of cognitive impairment. CONCLUSION Our results revealed that inflammation and immunonutritive status play an important role in the pathogenesis of AD. Novel inflammatory and immunonutritive biomarkers, and IBI and HALP score may be promising clinical tools that may pave the way for more personalized treatment strategies and interventions for patients.
Collapse
|
41
|
Inagawa H, Oda M, Tjhin VT, Kohchi C, Soma GI. Restoration of Spatial Learning Through Oral Administration of Lipopolysaccharides in Diabetes-related Cognitive Dysfunction. In Vivo 2024; 38:2190-2196. [PMID: 39187339 PMCID: PMC11363766 DOI: 10.21873/invivo.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND/AIM In a previous report, our group showed that oral administration of lipopolysaccharides (LPS) from Pantoea agglomerans can prevent the progression of streptozotocin (STZ)-induced diabetes-related cognitive dysfunction (DRCD) in mice without causing significant side-effects. However, the treatment effects of oral administration of LPS to DRCD remain unknown. MATERIALS AND METHODS We modified our previous animal experimental model to investigate whether oral administration of LPS can recover cognitive function after DRCD onset. RESULTS The Morris water maze (MWM) revealed a significant decrease in learning and memory abilities at 13 days after intracerebroventricular administration of STZ, thereby providing evidence of the occurrence of DRCD in the animal model. Oral administration of LPS (1 mg/kg per day) started after cognitive impairment was observed. After 28 days of treatment, mice receiving LPS via the oral route showed significant recovery of spatial learning ability, a symptom of early dementia, while only a trend toward recovery was seen for spatial memory compared to the untreated group. CONCLUSION These results, limited to MWM, suggest that oral administration of LPS is a promising therapeutic strategy for restoring decreased spatial learning ability.
Collapse
Affiliation(s)
- Hiroyuki Inagawa
- Control of Innate Immunity, Collaborative Innovation Partnership, Kagawa, Japan
- Macrophi Inc., Kagawa, Japan
- Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| | - Masataka Oda
- Control of Innate Immunity, Collaborative Innovation Partnership, Kagawa, Japan
| | | | - Chie Kohchi
- Control of Innate Immunity, Collaborative Innovation Partnership, Kagawa, Japan
- Macrophi Inc., Kagawa, Japan
| | - Gen-Ichiro Soma
- Control of Innate Immunity, Collaborative Innovation Partnership, Kagawa, Japan;
- Macrophi Inc., Kagawa, Japan
- Research Institute for Healthy Living, Niigata University of Pharmacy and Applied Life Sciences, Niigata, Japan
| |
Collapse
|
42
|
Lin H, Zhang C, Gao Y, Zhou Y, Ma B, Jiang J, Long X, Yimamu N, Zhong K, Li Y, Cui X, Wang H. HLH-30/TFEB modulates autophagy to improve proteostasis in Aβ transgenic Caenorhabditis elegans. Front Pharmacol 2024; 15:1433030. [PMID: 39281281 PMCID: PMC11392864 DOI: 10.3389/fphar.2024.1433030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease that affects elderly individuals, characterized by senile plaques formed by extracellular amyloid beta (Aβ). Autophagy dysfunction is a manifestation of protein homeostasis imbalance in patients with AD, but its relationship with Aβ remains unclear. Here, we showed that in Aβ transgenic Caenorhabditis elegans, Aβ activated the TOR pathway and reduced the nuclear entry of HLH-30, leading to autophagy dysfunction characterized by autophagosome accumulation. Then, utilizing RNA-seq, we investigated the regulatory mechanisms by which HLH-30 modulates autophagy in C. elegans. We found that HLH-30 elevated the transcript levels of v-ATPase and cathepsin, thus enhancing lysosomal activity. This led to an increase in autophagic flux, facilitating more pronounced degradation of Aβ. Moreover, HLH-30 reduced the level of ROS induction by Aβ and enhanced the antioxidant stress capacity of the worms through the gsto-1 gene. Additionally, we identified two HLH-30/TFEB activators, saikosaponin B2 and hypericin, that improved autophagic flux, thereby enhancing protein homeostasis in C. elegans. Overall, our findings suggested that HLH-30/TFEB plays a key role in modulating autophagy and can be considered a promising drug target for AD treatments.
Collapse
Affiliation(s)
- Hongru Lin
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chen Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yehui Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yi Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Botian Ma
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jinyun Jiang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xue Long
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Nuerziya Yimamu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Kaixin Zhong
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yingzi Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xianghuan Cui
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hongbing Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Tongji Alpha Natural Medicine Research Institute, Tongji University, Shanghai, China
| |
Collapse
|
43
|
Liu F, Liu Y, Shen X, Du J, Zhang H, Hou X. Ovariectomy exacerbates the disturbance of excitation- inhibition balance in the brain of APP/PS-1/tau mice. Front Mol Neurosci 2024; 17:1391082. [PMID: 39262829 PMCID: PMC11389216 DOI: 10.3389/fnmol.2024.1391082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 08/05/2024] [Indexed: 09/13/2024] Open
Abstract
Introduction The prevalence of Alzheimer's disease (AD) is significantly gender-differentiated, with the number of female AD patients far exceeding that of males, accounting for two-thirds of the total prevalence. Although postmenopausal AD mice have been shown to have more prominent pathologic features and memory impairments than normal AD mice, the relevant molecular mechanisms leading to these outcomes have not been well elucidated. In the present study, we used the disturbance of excitation-inhibition balance in the postmenopausal brain as an entry point to explore the link between estrogen deficiency, disorders of the glutamatergic-GABAergic nervous system, and memory impairment. Methods Wild-type (WT) mice and APP/PS1/tau (3 × Tg-AD) mice (10 months old) were randomly divided into four groups: WT+Sham group, WT+OVX group, 3 × Tg-AD+Sham group and 3 × Tg-AD+OVX group. Ovariectomy (OVX) was performed in the WT+OVX group and the 3 × Tg-AD+OVX group, and sham surgery was performed in the WT+Sham group and the 3 × Tg-AD+Sham group. The learning and memory ability and the anxiety and depression-like behavior changes of mice were evaluated by behavioral experiments, and the association between estrogen-estrogen receptors pathway and glutamatergic/GABAergic nervous system and female AD was evaluated by neurochemical experiments. Results In WT and 3 × Tg-AD mice, OVX resulted in impaired learning and memory abilities and anxiety and depression-like behaviors; reduced estrogen levels and downregulated the expression of estrogen receptors; upregulated the expression of amyloid-β, amyloid precursor protein, presenilin 1, and p-tau; upregulated the expression of Bcl-2-associated X protein and downregulated the expression of B-cell lymphoma-2, promoting cell apoptosis; reduced the number of neuronal dendrites and downregulated the expression of postsynaptic density protein-95; more importantly, OVX increased brain glutamate levels but downregulated the expression of N-methyl-D-aspartate receptor-2B, excitatory amino acid transporter 1, excitatory amino acid transporter 2, γ-aminobutyric acid receptor-A and γ-aminobutyric acid receptor-B. Conclusion Our results suggested that OVX-induced estrogen-estrogen receptors pathway disruption caused learning and memory impairment and anxiety and depression-like behaviors, upregulated the expression of AD pathological markers, promoted apoptosis, destroyed neuronal structure, and most importantly, caused glutamatergic/GABAergic nervous system disorders.
Collapse
Affiliation(s)
- Fuwang Liu
- School of Pharmaceutical Sciences and Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yanman Liu
- School of Pharmaceutical Sciences and Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xuri Shen
- School of Pharmaceutical Sciences and Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiarui Du
- School of Pharmaceutical Sciences and Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hanting Zhang
- Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao, Shandong, China
| | - Xueqin Hou
- School of Pharmaceutical Sciences and Institute of Materia Medica, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
44
|
Wu S, Chen N, Wang C. Frontiers and hotspots evolution in anti-inflammatory studies for Alzheimer's disease. Behav Brain Res 2024; 472:115178. [PMID: 39098396 DOI: 10.1016/j.bbr.2024.115178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/24/2024] [Accepted: 08/02/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder that seriously affects the quality of the elderly's lives worldwide. The main pathological features of AD are amyloid plaques formed by β-amyloid (Aβ) and neuronal fibrillary tangls (NFTs) formed by hyperphosphorylated Tau protein. The formation process of these pathological features is closely related to inflammatory response, so anti-inflammatory treatment has become a potential treatment for AD. In recent years, more and more research has shown that the anti-inflammatory therapy can relieve the symptoms of AD and improve cognitive function, which provides a valuable research direction for the treatment of AD strategy. Therefore, a comprehensive understanding of the hotspots and development trends of AD anti-inflammatory research is important for promoting the further development of this field and improving the quality of life of patients. METHODS This study used bibliometric methods, with AD and anti-inflammatory as key words, collected 7638 AD anti-inflammatory studies collected in Web of Science Core Collection (WoSCC) literature database since 2000, and conducted an in-depth analysis of the research hotspots and potential trends in this field. RESULTS The depth and breadth of AD anti-inflammatory research are in the stage of rapid development, and the hot focus is on exploring the role of inflammation in the pathogenesis of AD, especially the interaction of microglia in the neuroinflammatory mechanism. Secondly, the treatment effect and potential risks of anti-inflammatory drugs such as non-steroidal anti-inflammatory drugs (NSAIDs) on AD are also the focus of research. Therefore, researchers have carried out a series of animal experiments and prospective clinical studies on anti-inflammatory drugs for the treatment of AD, forming a comprehensive research system from basic research to clinical research. As for the future development trend, we believe that the further exploration of inflammation in the pathogenesis of AD will still be one of the key directions, and the application of big data and artificial intelligence technology is expected to provide strong support for the association between inflammation and AD progression. Moreover, the development of novel anti-inflammatory drugs for the inflammatory mechanism of AD will be another major trend for future research. At the same time, personalized treatment strategies and alternative supplements of medicine will also become one of the hotspots of future research. Through the comprehensive use of anti-inflammatory drugs, nutritional supplements, lifestyle intervention and other means, more comprehensive and effective treatment plans for AD patients are expected. CONCLUSION This research analyzes the overall development trend of AD anti-inflammatory research field since 2000, and provides a comprehensive perspective for the progress of AD anti-inflammatory research. Overall, the field of AD anti-inflammatory research is facing a broad development prospect. In the future, with further research and technological advances, we have resason to expect more effective and safer treatment options for AD patients to help them improve their quality of life and delay disease progression.
Collapse
Affiliation(s)
- Shan Wu
- Guangdong-HongKong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Nanjie Chen
- Beijing University of Aeronautics and Astronautics, Beijing, China
| | - Chuanchi Wang
- Xin-Huangpu Joint Innovation Institute of Chinese Medicine, Guangzhou, China; Modern Traditional Chinese Medicine Haihe Laboratory, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
45
|
Nunes YC, Mendes NM, Pereira de Lima E, Chehadi AC, Lamas CB, Haber JFS, dos Santos Bueno M, Araújo AC, Catharin VCS, Detregiachi CRP, Laurindo LF, Tanaka M, Barbalho SM, Marin MJS. Curcumin: A Golden Approach to Healthy Aging: A Systematic Review of the Evidence. Nutrients 2024; 16:2721. [PMID: 39203857 PMCID: PMC11357524 DOI: 10.3390/nu16162721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Aging-related disorders pose significant challenges due to their complex interplay of physiological and metabolic factors, including inflammation, oxidative stress, and mitochondrial dysfunction. Curcumin, a natural compound with potent antioxidant and anti-inflammatory properties, has emerged as a promising candidate for mitigating these age-related processes. However, gaps in understanding the precise mechanisms of curcumin's effects and the optimal dosages for different conditions necessitate further investigation. This systematic review synthesizes current evidence on curcumin's potential in addressing age-related disorders, emphasizing its impact on cognitive function, neurodegeneration, and muscle health in older adults. By evaluating the safety, efficacy, and mechanisms of action of curcumin supplementation, this review aims to provide insights into its therapeutic potential for promoting healthy aging. A systematic search across three databases using specific keywords yielded 2256 documents, leading to the selection of 15 clinical trials for synthesis. Here, we highlight the promising potential of curcumin as a multifaceted therapeutic agent in combating age-related disorders. The findings of this review suggest that curcumin could offer a natural and effective approach to enhancing the quality of life of aging individuals. Further research and well-designed clinical trials are essential to validate these findings and optimize the use of curcumin in personalized medicine approaches for age-related conditions.
Collapse
Affiliation(s)
- Yandra Cervelim Nunes
- Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, SP, Brazil; (Y.C.N.); (L.F.L.)
| | - Nathalia M. Mendes
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
| | - Enzo Pereira de Lima
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
| | - Amanda Chabrour Chehadi
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
| | - Caroline Barbalho Lamas
- Department of Gerontology, School of Gerontology, Universidade Federal de São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil;
| | - Jesselina F. S. Haber
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
| | - Manoela dos Santos Bueno
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (V.C.S.C.); (C.R.P.D.)
| | - Vitor C. Strozze Catharin
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (V.C.S.C.); (C.R.P.D.)
| | - Claudia Rucco P. Detregiachi
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (V.C.S.C.); (C.R.P.D.)
| | - Lucas Fornari Laurindo
- Faculdade de Medicina de Marília (FAMEMA), Marília 17519-030, SP, Brazil; (Y.C.N.); (L.F.L.)
| | - Masaru Tanaka
- Danube Neuroscience Research Laboratory, HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Tisza Lajos krt. 113, H-6725 Szeged, Hungary
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (N.M.M.); (E.P.d.L.); (A.C.C.); (J.F.S.H.); (M.d.S.B.); (A.C.A.)
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, University of Marília (UNIMAR), Marília 17525-902, SP, Brazil; (V.C.S.C.); (C.R.P.D.)
- Department of Biochemistry and Nutrition, School of Food and Technology of Marília (FATEC), Marília 17500-000, SP, Brazil
- Research Coordination, Hospital Beneficente (HBU), University of Marília (UNIMAR), Marília 17525-160, SP, Brazil
| | | |
Collapse
|
46
|
Piekarz J, Picheta N, Burdan O, Kurek M, Chrościńska-Krawczyk M. Phytotherapy in Alzheimer's Disease-A Narrative Review. Biomedicines 2024; 12:1812. [PMID: 39200276 PMCID: PMC11351709 DOI: 10.3390/biomedicines12081812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Alzheimer's disease (AD) affects 50-70% of patients with dementia, making it the leading cause of dementia. The condition is classified as a neurodegenerative, progressive and incurable disease. The disease is affecting more and more people around the world. AD has a multifactorial nature, spreading from beta-amyloid deposition to inflammation in patients' brains. Patients experience cognitive impairment and functional decline. Although it is a disease that occurs mainly in the elderly, it is increasingly being diagnosed in young people between the ages of 30 and 40. It not only affects the patient themself but also reduces the quality of life of their closest caregivers. According to the WHO, the treatment of AD consumes USD 1.3 trillion globally, but it is only symptomatic, as there are no drugs to prevent the onset of AD or treat the cause of its onset. Due to the numerous side effects of therapy and the lack of proactive drugs that act on the pathomechanism of AD, alternative therapies are being sought. One possible option that has many studies confirming its effect is phytotherapy. Many herbs have pharmacological properties, such as antioxidant, anti-inflammatory, or neuroprotective effects, making them the future of cognitive disorders and AD treatment. This review focuses on some of the most promising herbs that have potentially potent properties and effects in AD therapy. These include Curcuma longa, Panax ginseng, Berberis and Crocus sativus. These herbs may perhaps be key in the future to make functioning and life easier for patients struggling with AD.
Collapse
Affiliation(s)
- Julia Piekarz
- Students’ Scientific Association, Department of Paediatric Neurology, Medical University, 20-059 Lublin, Poland; (N.P.); (O.B.); (M.K.)
| | - Natalia Picheta
- Students’ Scientific Association, Department of Paediatric Neurology, Medical University, 20-059 Lublin, Poland; (N.P.); (O.B.); (M.K.)
| | - Oliwia Burdan
- Students’ Scientific Association, Department of Paediatric Neurology, Medical University, 20-059 Lublin, Poland; (N.P.); (O.B.); (M.K.)
| | - Marcelina Kurek
- Students’ Scientific Association, Department of Paediatric Neurology, Medical University, 20-059 Lublin, Poland; (N.P.); (O.B.); (M.K.)
| | | |
Collapse
|
47
|
Li H, Sun J, Wu Y, Yang Y, Zhang W, Tian Y. Honokiol relieves hippocampal neuronal damage in Alzheimer's disease by activating the SIRT3-mediated mitochondrial autophagy. CNS Neurosci Ther 2024; 30:e14878. [PMID: 39097923 PMCID: PMC11298204 DOI: 10.1111/cns.14878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND This work elucidated the effect of honokiol (HKL) on hippocampal neuronal mitochondrial function in Alzheimer's disease (AD). METHODS APP/PS1 mice were used as AD mice models and exposed to HKL and 3-TYP. Morris water maze experiment was performed to appraise cognitive performance of mice. Hippocampal Aβ+ plaque deposition and neuronal survival was evaluated by immunohistochemistry and Nissl staining. Hippocampal neurons were dissociated from C57BL/6 mouse embryos. Hippocampal neuronal AD model was constructed by Aβ oligomers induction and treated with HKL, CsA and 3-TYP. Neuronal viability and apoptosis were detected by cell counting kit-8 assay and TUNEL staining. mRFP-eGFP-LC3 assay, MitoSOX Red, dichlorodihydrofluorescein diacetate, and JC-1 staining were performed to monitor neuronal autophagosomes, mitochondrial reactive oxygen species (ROS), neuronal ROS, and mitochondrial membrane potential. Autophagy-related proteins were detected by Western blot. RESULTS In AD mice, HKL improved cognitive function, relieved hippocampal Aβ1-42 plaque deposition, promoted hippocampal neuron survival, and activated hippocampal SIRT3 expression and mitochondrial autophagy. These effects of HKL on AD mice were abolished by 3-TYP treatment. In hippocampal neuronal AD model, HKL increased neuronal activity, attenuated neuronal apoptosis and Aβ aggregation, activated SIRT3 and mitochondrial autophagy, reduced mitochondrial and neuronal ROS, and elevated mitochondrial membrane potential. CsA treatment and 3-TYP treatment abrogated the protection of HKL on hippocampal neuronal AD model. The promotion of mitochondrial autophagy by HKL in hippocampal neuronal AD model was counteracted by 3-TYP. CONCLUSIONS HKL activates SIRT3-mediated mitochondrial autophagy to mitigate hippocampal neuronal damage in AD. HKL may be effective in treating AD.
Collapse
Affiliation(s)
- Haitao Li
- Department of Neurology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Jinmei Sun
- Department of Neurology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Yili Wu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Wenzhou Kangning Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang ProvinceWenzhou Medical University, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| | - Yishu Yang
- Department of Neurology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Wei Zhang
- Department of Neurology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| | - Yuanruhua Tian
- Department of Neurology, Beijing Friendship HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
48
|
Vieira CP, Lelis CA, Ochioni AC, Rosário DKA, Rosario ILS, Vieira IRS, Carvalho APA, Janeiro JM, da Costa MP, Lima FRS, Mariante RM, Alves LA, Foguel D, Junior CAC. Estimating the therapeutic potential of NSAIDs and linoleic acid-isomers supplementation against neuroinflammation. Biomed Pharmacother 2024; 177:116884. [PMID: 38889635 DOI: 10.1016/j.biopha.2024.116884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/03/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) regulate inflammation, which is associated with their role in preventing neurodegenerative diseases in epidemiological studies. It has sparked interest in their unconventional application for reducing neuroinflammation, opening up new avenues in biomedical research. However, given the pharmacological drawbacks of NSAIDs, the development of formulations with naturally antioxidant/anti-inflammatory dietary fatty acids has been demonstrated to be advantageous for the clinical translation of anti-inflammatory-based therapies. It includes improved blood-brain barrier (BBB) permeability and reduced toxicity. It permits us to speculate about the value of linoleic acid (LA)-isomers in preventing and treating neuroinflammatory diseases compared to NSAIDs. Our research delved into the impact of various factors, such as administration route, dosage, timing of intervention, and BBB permeability, on the efficacy of NSAIDs and LA-isomers in preclinical and clinical settings. We conducted a systematic comparison between NSAIDs and LA-isomers regarding their therapeutic effectiveness, BBB compatibility, and side effects. Additionally, we explored their underlying mechanisms in addressing neuroinflammation. Through our analysis, we've identified challenges and drawn conclusions that could propel advancements in treating neurodegenerative diseases and inform the development of future alternative therapeutic strategies.
Collapse
Affiliation(s)
- Carla Paulo Vieira
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil; Cellular Communication Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil
| | - Carini A Lelis
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Alan Clavelland Ochioni
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Denes Kaic A Rosário
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Iuri L S Rosario
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil; Laboratory of Inspection and Technology of Milk and Derivatives (LaITLácteos), School of Veterinary Medicine and Zootechnies, Universidade Federal da Bahia (UFBA), Ondina, Salvador, BA 40170-110, Brazil
| | - Italo Rennan S Vieira
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - Anna Paula A Carvalho
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil
| | - José Marcos Janeiro
- Glial Cell Biology Laboratory, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-590, Brazil
| | - Marion P da Costa
- Laboratory of Inspection and Technology of Milk and Derivatives (LaITLácteos), School of Veterinary Medicine and Zootechnies, Universidade Federal da Bahia (UFBA), Ondina, Salvador, BA 40170-110, Brazil; Graduate Program in Food Science (PGAli), Faculty of Pharmacy, Universidade Federal da Bahia (UFBA), Ondina, Salvador, BA 40170-110, Brazil
| | - Flavia R S Lima
- Glial Cell Biology Laboratory, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-590, Brazil
| | - Rafael M Mariante
- Laboratory of Structural Biology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ 21040-900, Brazil
| | - Luiz Anastácio Alves
- Cellular Communication Laboratory, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, RJ 21040-900, Brazil
| | - Debora Foguel
- Laboratory of Protein Aggregation and Amyloidosis, Institute of Medical Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-590, Brazil
| | - Carlos Adam Conte Junior
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil; Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-598, Brazil.
| |
Collapse
|
49
|
Pan Q, Hu X, Guo K. Beta -amyloid protein regulates miR -15a and activates Bag5 to influence neuronal apoptosis in Alzheimer 's disease. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2024; 49:1109-1119. [PMID: 39788499 PMCID: PMC11495979 DOI: 10.11817/j.issn.1672-7347.2024.230439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Indexed: 01/12/2025]
Abstract
OBJECTIVES The prevalence of Alzheimer's disease (AD) is increasing globally, however its pathogenesis is still unclear. The evidence showed that the progression of AD was closely related to the apoptosis of nerve cells. This study amis to explore the role and specific mechanism of miR-15a and Bag5 in the apoptosis of nerve cells induced by beta-amyloid protein (Aβ) in AD. METHODS The AD rat model was constructed by injecting Aβ42 into SD rat brain and the AD cell model was constructed by treating SH-SY5Y cells with Aβ42. The learning and memory ability of rats was detected by Morris Water Maze. Hematoxylin and eosin (HE) staining was used to detect the pathological changes of brain tissues. Nissl staining was used to detect the changes of cell morphology and number in brain tissues. The upstream miRNA that interacted with Bag5 were screened by bioinformatics analysis. Methyl thiazolyl tetrazolium (MTT) assay was used to detect cell proliferation. Flow cytometry was used to detect the apoptosis rate of cells. Real-time reverse transcription PCR (real-time RT-PCR) was used to detect the mRNA levels of miR-15a and Bag5. Western blotting was used to detect the protein expression levels of Bag5, Bax and Caspase-3. MiR-15a knockdown or overexpression vectors or Bag5 knockdown vectors were transfected into AD rat model and AD cell models, respectively. Luciferase reporter assay was used to verify the binding relationship between miR-15a and Bag5. RESULTS Morris Water Maze, HE staining and Nissl staining showed that the rat model of AD was established successfully, and Aβ could induce neuronal apoptosis and inhibit the expression of miR-15a in AD rats. Compared with normal cells, Aβ treatment significantly increased apoptosis rate and Bag5 expression, and weakened cell proliferation and miR-15a (all P<0.01). Overexpression of miR-15a further enhanced the effect of Aβ on cell proliferation and apoptosis, while knockdown of miR-15a expression had the opposite effect (all P<0.01). Luciferase reporter assay confirmed that there was a negative targeting relationship between miR-15a and Bag5. Compared with Bag5 knockdown alone, the co-transfection of miR-15a inhibitor and si-Bag5 significantly increased the cell proliferation ability and mRNA and protein levels of Bag5, and significantly reduced the cell apoptosis rate and the expression of Bax and Caspase-3, animal studies have also shown consistent results (all P<0.01). CONCLUSIONS Aβ can inhibit the expression of miR-15a, thereby inducing the expression of Bag5 and activating the protective mechanism of Bag5 against Aβ induced apoptosis.
Collapse
Affiliation(s)
- Qiong Pan
- Department of Obstetrics and Gynecology, Third Xiangya Hospital, Central South University, Changsha 410013.
| | - Xinyu Hu
- Department of Obstetrics and Gynecology, Third Xiangya Hospital, Central South University, Changsha 410013
| | - Ke Guo
- Department of Neurology, Third Xiangya Hospital, Central South University, Changsha 410013, China.
| |
Collapse
|
50
|
Krawczuk D, Kulczyńska-Przybik A, Mroczko B. Clinical Application of Blood Biomarkers in Neurodegenerative Diseases-Present and Future Perspectives. Int J Mol Sci 2024; 25:8132. [PMID: 39125699 PMCID: PMC11311320 DOI: 10.3390/ijms25158132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Neurodegenerative diseases are a group of complex diseases characterized by a progressive loss of neurons and degeneration in different areas of the nervous system. They share similar mechanisms, such as neuroinflammation, oxidative stress, and mitochondrial injury, resulting in neuronal loss. One of the biggest challenges in diagnosing neurodegenerative diseases is their heterogeneity. Clinical symptoms are usually present in the advanced stages of the disease, thus it is essential to find optimal biomarkers that would allow early diagnosis. Due to the development of ultrasensitive methods analyzing proteins in other fluids, such as blood, huge progress has been made in the field of biomarkers for neurodegenerative diseases. The application of protein biomarker measurement has significantly influenced not only diagnosis but also prognosis, differentiation, and the development of new therapies, as it enables the recognition of early stages of disease in individuals with preclinical stages or with mild symptoms. Additionally, the introduction of biochemical markers into routine clinical practice may improve diagnosis and allow for a stratification group of people with higher risk, as well as an extension of well-being since a treatment could be started early. In this review, we focus on blood biomarkers, which could be potentially useful in the daily medical practice of selected neurodegenerative diseases.
Collapse
Affiliation(s)
- Daria Krawczuk
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-089 Białystok, Poland; (D.K.); (A.K.-P.)
| | - Agnieszka Kulczyńska-Przybik
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-089 Białystok, Poland; (D.K.); (A.K.-P.)
| | - Barbara Mroczko
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15-089 Białystok, Poland; (D.K.); (A.K.-P.)
- Department of Biochemical Diagnostics, Medical University of Białystok, 15-089 Białystok, Poland
| |
Collapse
|