1
|
Shao S, Cao S, Chen Y, Zhang Z, Zhaohui T. Immunological Features and Potential Biomarkers of Systemic Sclerosis-Associated Interstitial Lung Disease and Idiopathic Pulmonary Fibrosis. THE CLINICAL RESPIRATORY JOURNAL 2025; 19:e70072. [PMID: 40165483 DOI: 10.1111/crj.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/01/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND This study aims to summarize the similarities and differences in immune cell characteristics, and potential therapeutic targets between systemic sclerosis-associated interstitial lung disease (SSc-ILD) and idiopathic pulmonary fibrosis (IPF). METHODS This study included SSc-ILD and SSc-nonILD patients who were admitted to Beijing Chaoyang Hospital between April 4th, 2013, to June 30th, 2023. Publicly available datasets, including peripheral blood monocular cell (pbmc) single-cell data, SSc, SSc-ILD pbmc transcriptome data, and SSc-ILD, IPF lung tissue transcriptome data were analyzed. Statistical analyses were conducted using the SPSS and R software, employing standard statistical methods and bioinformatics packages such as Seurat, DESeq2, enrichR, and CellChat. RESULTS The results revealed that the CD4+/CD8+ T cell ratio of pbmc in SSc-ILD patients was significantly higher than in SSc-nonILD patients. In IPF patients, an elevated CD4+/CD8+ T cell ratio was also observed in progressive group, and Treg and mature CD4+ T cells might cause this change. JAK-STAT pathway and the cytokine-cytokine receptor interaction pathway were activated in peripheral blood T cells of IPF patients. The CD30, CD40, and FLT3 signaling pathways were found to play crucial roles in T cell interactions with other immune cells among IPF patients. SPA17 as a commonly upregulated gene among SSc, SSc-ILD, and IPF pbmc and lung, with its expression correlating positively with disease severity and lung function progression. CONCLUSION CD4+/CD8+ T cell ratio might associate with ILD initiation and progression; Treg cells and mature CD4+ T cells play key roles of it. SPA17 might serve as a pan-ILD marker and associated with lung function progression.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Siyu Cao
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yusha Chen
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhijin Zhang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Tong Zhaohui
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Jiang Y, Dong S, Wang Y. Antibody-Drug Conjugates Targeting CD30 in T-Cell Lymphomas: Clinical Progression and Mechanism. Cancers (Basel) 2025; 17:496. [PMID: 39941862 PMCID: PMC11815818 DOI: 10.3390/cancers17030496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
CD30 is overexpressed in many T-cell lymphoma (TCL) entities, including subsets of peripheral T-cell lymphomas (PTCL) and cutaneous T-cell lymphomas (CTCL). The antibody-drug conjugate brentuximab vedotin (BV), targeting CD30-positive cells, has been approved for the treatment of relapsed or refractory (R/R) systemic anaplastic large cell lymphoma (sALCL), and primary cutaneous anaplastic large cell lymphoma or mycosis fungoides in patients who have received previous systemic therapy. However, many patients still experience disease progression after BV monotherapy. Extensive efforts have been dedicated to investigating effective combinations of BV. A phase III clinical study demonstrated that the combination of BV with cyclophosphamide, doxorubicin, and prednisone (CHP) is superior to cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) for CD30-positive PTCL. This study led to the approval of BV with CHP as the first-line therapy for CD30-positive PTCL (sALCL in Europe). We summarize the encouraging combination applications of BV in this review. Ongoing studies on combination therapies of BV are also listed, highlighting potential directions for the future application of BV. We focus on dissecting the underlying mechanisms of BV, discussing its effects on both tumor cells and the tumor microenvironment. Exploring resistance mechanisms in TCL provide valuable insights for optimizing BV-based therapies in the future.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing 100034, China; (Y.J.); (S.D.)
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
- NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing 100034, China
| | - Sai Dong
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing 100034, China; (Y.J.); (S.D.)
- The Second Clinical Medical School, Peking University, Beijing 100044, China
| | - Yang Wang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing 100034, China; (Y.J.); (S.D.)
- National Clinical Research Center for Skin and Immune Diseases, Beijing 100034, China
- NMPA Key Laboratory for Quality Control and Evaluation of Cosmetics, Beijing 100034, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Li J, Tang S, Liu J, Huang R, Rao J, Gao L, Wang X, Zhang X. The efficacy and safety of brentuximab vedotin for peripheral T-cell lymphoma: A systemic review and meta-analysis. J Investig Med 2025; 73:156-171. [PMID: 39324259 DOI: 10.1177/10815589241288517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Peripheral T-cell lymphoma (PTCL) is an extensive class of heterogeneous diseases with dismal outcomes. Brentuximab vedotin (BV) is an antibody-drug conjugate (ADC) comprising a CD30-directed antibody. This review aimed to evaluate the efficacy and safety of BV for treating PTCL. We searched the PubMed, Embase, Cochrane Library, and Web of Science databases for studies evaluating the efficacy of BV alone or in combination with other drugs for treating PTCL. The primary outcome measures included objective response rate (ORR), complete remission (CR), progression-free survival (PFS), and overall survival (OS). The secondary outcomes included 5-year OS, 5-year PFS, and adverse events. 22 studies involving 1137 patients were included. These studies reported the use patterns of BV, ORR, CR, PFS, OS, and adverse events. The pooled ORR and CR rates were 68% (95% CI: 59%-75%) and 43% (95% CI: 34%-53%). For survival outcomes, the longest median PFS was 8.3 months, and the longest median OS was 26.3 months. The most common adverse event was peripheral neuropathy and neutropenia. The analysis suggested that BV alone or in combination with other drugs improved the response and survival rates in PTCL patients and was associated with tolerable adverse effects.
Collapse
Affiliation(s)
- Jiarun Li
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| | - Shuhan Tang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| | - Jinyi Liu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| | - Ruihao Huang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| | - Jun Rao
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| | - Li Gao
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, China
- Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, China
| |
Collapse
|
4
|
Akiba H, Ise T, Satoh R, Abe Y, Tsumoto K, Ohno H, Kamada H, Nagata S. Generation of antagonistic biparatopic anti-CD30 antibody from an agonistic antibody by precise epitope determination and utilization of structural characteristics of CD30 molecule. Antib Ther 2025; 8:56-67. [PMID: 39958564 PMCID: PMC11826918 DOI: 10.1093/abt/tbaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/06/2024] [Accepted: 01/13/2025] [Indexed: 02/18/2025] Open
Abstract
Background CD30 is a member of the tumor necrosis factor receptor superfamily. Recently, blocking CD30-dependent intracellular signaling has emerged as potential strategy for immunological regulation. Development of antibody-based CD30 antagonists is therefore of significant interest. However, a key challenge is that the bivalent form of natural antibody can crosslink CD30 molecules, leading to signal transduction even in the absence of specific ligand, CD153. Biparatopic antibodies (BpAbs) offer a solution, using two different variable fragments (Fvs) to bind distinct epitopes on a single antigen molecule. BpAbs format is an attractive alternative of natural antibody by potentially avoiding unwanted crosslinking and signaling induction. Methods We systematically characterized 36 BpAbs, each designed with pairs of Fvs binding to nine distinct epitopes across the CD30 extracellular domain. We first identified the precise epitope sites of the nine antibodies by assessing the binding to multiple orthologous CD30 proteins and mutants. We then produced the 36 BpAbs and analyzed their biological activities and binding modes. Results Among 36 BpAbs, we identified both potent ligand-independent agonists and ligand-blocking antagonists, with many displayed reduced signal activation, including 1:1-binding antagonists derived from AC10, a strong agonist developed for lymphoma therapy. Epitope dependency in reduced signaling activity was observed and associated with the flexible nature of CD30 protein. Conclusions We successfully developed antagonistic BpAbs against CD30 by controlling the stoichiometry of antibody-antigen binding mode. This study elucidated the mechanism of signaling induction, informing the design strategies of the development of biparatopic antibodies.
Collapse
Affiliation(s)
- Hiroki Akiba
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Laboratory of Advanced Biopharmaceuticals, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Tomoko Ise
- Laboratory of Antibody Design, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Reiko Satoh
- Laboratory of Advanced Biopharmaceuticals, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Yasuhiro Abe
- Division of Drugs, National Institute of Health Sciences, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Kouhei Tsumoto
- School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
- The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Laboratory of Advanced Biopharmaceuticals, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Haruhiko Kamada
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Laboratory of Advanced Biopharmaceuticals, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Satoshi Nagata
- Laboratory of Antibody Design, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| |
Collapse
|
5
|
Pitaro M, Antonini G, Arcovito A, Buccisano F, De Lauro A, Irno Consalvo M, Gallo V, Giacon N, Mangiatordi GF, Pacelli M, Pitaro MT, Polticelli F, Sorrenti M, Venditti A. Development of a recombinant human IgG1 monoclonal antibody against the TRBV5-1 segment of the T cell receptor for the treatment of mature T cell neoplasms. Front Immunol 2024; 15:1520103. [PMID: 39742266 PMCID: PMC11686114 DOI: 10.3389/fimmu.2024.1520103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 11/21/2024] [Indexed: 01/03/2025] Open
Abstract
Background Mature T-cell neoplasms arise from the neoplastic transformation of a single T lymphocyte, and all cells in a neoplastic clone share the same V segment in the beta chain of the T-cell receptor (TCR). These segments may represent an innovative target for the development of targeted therapies. Methods A specific V segment of the TCR beta chain (TRBV5-1) was analyzed using bioinformatic tools, identifying three potential antigenic peptides. One of these peptides, selected for synthesis, was used to screen a library of human single-chain variable fragments (scFv) through phage display. One fragment demonstrated high affinity and specificity for the antigen and was used to produce a human monoclonal antibody of the IgG1 class. Results Surface plasmon resonance (SPR) studies confirmed the high affinity of the monoclonal antibody for the antigen in the nanomolar range. Flow cytometry analysis on patients' samples demonstrated that the antibody, conjugated with a fluorochrome, selectively binds to tumor T lymphocytes expressing TRBV5-1, without binding to other lymphocytes or blood cell components. Conclusions The development of fully human IgG1 monoclonal antibodies targeting specific V segments of the TCR beta chain represents a potential therapeutic option for patients with mature T-cell neoplasms.
Collapse
Affiliation(s)
- Michele Pitaro
- INBB – Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy
| | - Giovanni Antonini
- INBB – Istituto Nazionale Biostrutture e Biosistemi, Rome, Italy
- Dipartimento di Scienze, Università di Roma Tre, Rome, Italy
| | - Alessandro Arcovito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche, Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Francesco Buccisano
- Dipartimento di Biomedicina e Prevenzione, Università di Roma Tor Vergata, Rome, Italy
| | | | - Maria Irno Consalvo
- Dipartimento di Biomedicina e Prevenzione, Università di Roma Tor Vergata, Rome, Italy
| | - Valentina Gallo
- Dipartimento di Scienze, Università di Roma Tre, Rome, Italy
| | - Noah Giacon
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche, Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | | | | | | | - Adriano Venditti
- Dipartimento di Biomedicina e Prevenzione, Università di Roma Tor Vergata, Rome, Italy
| |
Collapse
|
6
|
AlDoughaim M, AlSuhebany N, AlZahrani M, AlQahtani T, AlGhamdi S, Badreldin H, Al Alshaykh H. Cancer Biomarkers and Precision Oncology: A Review of Recent Trends and Innovations. Clin Med Insights Oncol 2024; 18:11795549241298541. [PMID: 39559827 PMCID: PMC11571259 DOI: 10.1177/11795549241298541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/22/2024] [Indexed: 11/20/2024] Open
Abstract
The discovery of cancer-specific biomarkers has resulted in major advancements in the field of cancer diagnostics and therapeutics, therefore significantly lowering cancer-related morbidity and mortality. Cancer biomarkers can be generally classified as prognostic biomarkers that predict specific disease outcomes and predictive biomarkers that predict disease response to targeted therapeutic interventions. As research in the area of predictive biomarkers continues to grow, precision medicine becomes far more integrated in cancer treatment. This article presents a general overview on the most recent advancements in the area of cancer biomarkers, immunotherapy, artificial intelligence, and pharmacogenomics of the Middle East.
Collapse
Affiliation(s)
- Maha AlDoughaim
- College of Pharmacy, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Nada AlSuhebany
- College of Pharmacy, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Mohammed AlZahrani
- College of Pharmacy, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Tariq AlQahtani
- College of Pharmacy, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Sahar AlGhamdi
- College of Pharmacy, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Hisham Badreldin
- College of Pharmacy, King Saud Bin Abdul Aziz University for Health Sciences (KSAU-HS), King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
| | - Hana Al Alshaykh
- Pharmaceutical Care Devision, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Paranga TG, Pavel-Tanasa M, Constantinescu D, Iftimi E, Plesca CE, Miftode IL, Cianga P, Miftode E. Distinct soluble immune checkpoint profiles characterize COVID-19 severity, mortality and SARS-CoV-2 variant infections. Front Immunol 2024; 15:1464480. [PMID: 39376569 PMCID: PMC11456479 DOI: 10.3389/fimmu.2024.1464480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 09/06/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction Over the past four years, the COVID-19 pandemic has posed serious global health challenges. The severe form of disease and death resulted from the failure of immune regulatory mechanisms, closely highlighted by the dual proinflammatory cytokine and soluble immune checkpoint (sICP) storm. Identifying the individual factors impacting on disease severity, evolution and outcome, as well as any additional interconnections, have become of high scientific interest. Methods In this study, we evaluated a novel panel composed of ten sICPs for the predictive values of COVID-19 disease severity, mortality and Delta vs. Omicron variant infections in relation to hyperinflammatory biomarkers. The serum levels of sICPs from confirmed SARS-CoV-2 infected patients at hospital admission were determined by Luminex, and artificial neural network analysis was applied for defining the distinct patterns of molecular associations with each form of disease: mild, moderate, and severe. Results Notably, distinct sICP profiles characterized various stages of disease and Delta infections: while sCD40 played a central role in all defined diagrams, the differences emerged from the distribution levels of four molecules recently found and relatively less investigated (sCD30, s4-1BB, sTIM-1, sB7-H3), and their associations with various hematological and biochemical inflammatory biomarkers. The artificial neural network analysis revealed the prominent role of serum sTIM-1 and Galectin-9 levels at hospital admission in discriminating between survivors and non-survivors, as well as the role of specific anti-interleukin therapy (Tocilizumab, Anakinra) in improving survival for patients with initially high sTIM-1 levels. Furthermore, strong associations between sCD40 and Galectin-9 with suPAR defined the Omicron variant infections, while the positive match of sCD40 with sTREM-1 serum levels characterized the Delta-infected patients. Conclusions Of importance, this study provides a comprehensive analysis of circulatory immune factors governing the COVID-19 pathology, and identifies key roles of sCD40, sTIM-1, and Galectin-9 in predicting mortality.
Collapse
Affiliation(s)
- Tudorita Gabriela Paranga
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- St. Parascheva Clinical Hospital for Infectious Diseases, Iasi, Romania
| | - Mariana Pavel-Tanasa
- Department of Immunology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Laboratory of Immunology, St. Spiridon County Clinical Emergency Hospital, Iasi, Romania
| | - Daniela Constantinescu
- Department of Immunology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Laboratory of Immunology, St. Spiridon County Clinical Emergency Hospital, Iasi, Romania
| | - Elena Iftimi
- Department of Immunology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Claudia Elena Plesca
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- St. Parascheva Clinical Hospital for Infectious Diseases, Iasi, Romania
| | - Ionela-Larisa Miftode
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- St. Parascheva Clinical Hospital for Infectious Diseases, Iasi, Romania
| | - Petru Cianga
- Department of Immunology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- Laboratory of Immunology, St. Spiridon County Clinical Emergency Hospital, Iasi, Romania
| | - Egidia Miftode
- Department of Infectious Diseases (Internal Medicine II), Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
- St. Parascheva Clinical Hospital for Infectious Diseases, Iasi, Romania
| |
Collapse
|
8
|
He J, Zeng X, Wang C, Wang E, Li Y. Antibody-drug conjugates in cancer therapy: mechanisms and clinical studies. MedComm (Beijing) 2024; 5:e671. [PMID: 39070179 PMCID: PMC11283588 DOI: 10.1002/mco2.671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024] Open
Abstract
Antibody-drug conjugates (ADCs) consist of monoclonal antibodies that target tumor cells and cytotoxic drugs linked through linkers. By leveraging antibodies' targeting properties, ADCs deliver cytotoxic drugs into tumor cells via endocytosis after identifying the tumor antigen. This precise method aims to kill tumor cells selectively while minimizing harm to normal cells, offering safe and effective therapeutic benefits. Recent years have seen significant progress in antitumor treatment with ADC development, providing patients with new and potent treatment options. With over 300 ADCs explored for various tumor indications and some already approved for clinical use, challenges such as resistance due to factors like antigen expression, ADC processing, and payload have emerged. This review aims to outline the history of ADC development, their structure, mechanism of action, recent composition advancements, target selection, completed and ongoing clinical trials, resistance mechanisms, and intervention strategies. Additionally, it will delve into the potential of ADCs with novel markers, linkers, payloads, and innovative action mechanisms to enhance cancer treatment options. The evolution of ADCs has also led to the emergence of combination therapy as a new therapeutic approach to improve drug efficacy.
Collapse
Affiliation(s)
- Jun He
- Department of General Surgery Jiande Branch of the Second Affiliated Hospital, School of Medicine, Zhejiang University Jiande Zhejiang China
| | - Xianghua Zeng
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Chunmei Wang
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Enwen Wang
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| | - Yongsheng Li
- Department of Medical Oncology Chongqing University Cancer Hospital Chongqing China
| |
Collapse
|
9
|
Zheng R, Zhu X, Xiao Y. Advances in CAR-T-cell therapy in T-cell malignancies. J Hematol Oncol 2024; 17:49. [PMID: 38915099 PMCID: PMC11197302 DOI: 10.1186/s13045-024-01568-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/13/2024] [Indexed: 06/26/2024] Open
Abstract
Significant advances have been made in chimeric antigen receptor T (CAR-T)-cell therapy for the treatment of recurrent or refractory B-cell hematologic malignancies. However, CAR-T-cell therapy has not yet achieved comparable success in the management of aggressive T-cell malignancies. This article reviews the challenges of CAR-T-cell therapy in treating T-cell malignancies and summarizes the progress of preclinical and clinical studies in this area. We present an analysis of clinical trials of CAR-T-cell therapies for the treatment of T-cell malignancies grouped by target antigen classification. Moreover, this review focuses on the major challenges encountered by CAR-T-cell therapies, including the nonspecific killing due to T-cell target antigen sharing and contamination with cell products during preparation. This review discusses strategies to overcome these challenges, presenting novel therapeutic approaches that could enhance the efficacy and applicability of CAR-T-cell therapy in the treatment of T-cell malignancies. These ideas and strategies provide important information for future studies to promote the further development and application of CAR-T-cell therapy in this field.
Collapse
Affiliation(s)
- Rubing Zheng
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaojian Zhu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yi Xiao
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
10
|
Yin Y, Wang Y, Wang C, Zhang Y, Qi A, Song J, Xu L, Yang W, Jiao L. Predicting the mechanism of action of YQYYJD prescription in the treatment of non-small cell lung cancer using transcriptomics analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117984. [PMID: 38428661 DOI: 10.1016/j.jep.2024.117984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/16/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The efficacy of the herbal formula Yiqi Yangyin Jiedu (YQYYJD) in the treatment of advanced lung cancer has been reported in clinical trials. However, the key anti-lung cancer herbs and molecular mechanisms underlying its inhibition of lung cancer are not well-understood. AIM OF THE STUDY To identify the key anti-lung cancer herbs in the YQYYJD formula and investigate their therapeutic effect and potential mechanism of action in non-small cell lung cancer (NSCLC) using transcriptomics and bioinformatics techniques. MATERIALS AND METHODS A mouse Lewis lung carcinoma (LLC) subcutaneous inhibitory tumor model was established with 6 mice in each group. Mice were treated with the YQYYJD split formula: Yiqi Formula (YQ), Yangyin Formula (YY), and Ruanjian Jiedu Formula (RJJD) for 14 days. The tumor volume and mouse weight were recorded, and the status of tumor occurrence was further observed by taking photos. The tumor was stained with hematoxylin-eosin to observe its histopathological changes. Immunohistochemistry was used to detect the expression of the proliferation marker Ki67 and the apoptotic marker Caspase-3 in tumor tissues. Flow cytometry was used to detect the number of CD4+ and CD8+ T cells and cytokines interleukin-2 (IL-2) and interferon-gamma (IFN-γ) in the spleen and tumor tissues. The differential genes of key drugs against tumors were obtained by transcriptome sequencing of tumors. Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) enrichment analyses were performed on differential genes to obtain pathways and biological processes where targets were aggregated. TIMER2.0 and TISIDB databases were used to evaluate the impact of drugs on immune cell infiltration and immune-related genes. The binding activity of the key targets and compounds was verified by molecular docking. RESULTS YQ, YY, and RJJD inhibited the growth of subcutaneous transplanted tumors in LLC mice to varying degrees and achieved antitumor effects by inhibiting the expression of tumor cell proliferation, apoptosis, and metastasis-related proteins. Among the three disassembled prescriptions, YQ better inhibited the growth of subcutaneous transplanted tumors in LLC mice, significantly promoted tumor necrosis, significantly increased the expression of Caspase-3 protein in tumor tissue, and significantly decreased the expression of Ki-67 (P < 0.05), thereby increasing the infiltration of CD8+ T cells. YQ significantly increased the expression of CD4+ and CD8+ T cells in tumor and splenic tissues of tumor-bearing mice and up-regulated the expression of IL-2 and IFN-γ. Transcriptome sequencing and bioinformatics results showed that after YQ intervention, differentially expressed genes were enriched in more than one tumor-related pathway and multiple immune regulation-related biological functions. There were 12 key immune-related target genes. CONCLUSION YQ was the key disassembled prescription of YQYYJD, exerting significant antitumor effects and immune regulation effects on NSCLC. It may have relieved T cell exhaustion and regulated the immune microenvironment to exert antitumor effects by changing lung cancer-related targets, pathways, and biological processes.
Collapse
Affiliation(s)
- Yinan Yin
- Department of Oncology, Yue Yang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yichao Wang
- Department of Oncology, Yue Yang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chengyan Wang
- Department of Oncology, Jing'an Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Yilu Zhang
- Department of Oncology, Yue Yang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ao Qi
- Department of Oncology, Yue Yang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiajun Song
- Department of Oncology, Yue Yang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Xu
- Department of Oncology, Yue Yang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Translational Cancer Research for Integrated Chinese and Western Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenxiao Yang
- Department of Oncology, Yue Yang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Lijing Jiao
- Department of Oncology, Yue Yang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Translational Cancer Research for Integrated Chinese and Western Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
11
|
Morelli F, Matis S, Benelli R, Salvini L, Zocchi MR, Poggi A. Antibody-Drug Conjugate Made of Zoledronic Acid and the Anti-CD30 Brentuximab-Vedotin Exert Anti-Lymphoma and Immunostimulating Effects. Cells 2024; 13:862. [PMID: 38786084 PMCID: PMC11119185 DOI: 10.3390/cells13100862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Relevant advances have been made in the management of relapsed/refractory (r/r) Hodgkin Lymphomas (HL) with the use of the anti-CD30 antibody-drug conjugate (ADC) brentuximab-vedotin (Bre-Ved). Unfortunately, most patients eventually progress despite the excellent response rates and tolerability. In this report, we describe an ADC composed of the aminobisphosphonate zoledronic acid (ZA) conjugated to Bre-Ved by binding the free amino groups of this antibody with the phosphoric group of ZA. Liquid chromatography-mass spectrometry, inductively coupled plasma-mass spectrometry, and matrix-assisted laser desorption ionization-mass spectrometry analyses confirmed the covalent linkage between the antibody and ZA. The novel ADC has been tested for its reactivity with the HL/CD30+ lymphoblastoid cell lines (KMH2, L428, L540, HS445, and RPMI6666), showing a better titration than native Bre-Ved. Once the HL-cells are entered, the ADC co-localizes with the lysosomal LAMP1 in the intracellular vesicles. Also, this ADC exerted a stronger anti-proliferative and pro-apoptotic (about one log fold) effect on HL-cell proliferation compared to the native antibody Bre-Ved. Eventually, Bre-Ved-ZA ADC, in contrast with the native antibody, can trigger the proliferation and activation of cytolytic activity of effector-memory Vδ2 T-lymphocytes against HL-cell lines. These findings may support the potential use of this ADC in the management of r/r HL.
Collapse
Affiliation(s)
- Feliciana Morelli
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.M.); (S.M.); (R.B.)
| | - Serena Matis
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.M.); (S.M.); (R.B.)
| | - Roberto Benelli
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.M.); (S.M.); (R.B.)
| | - Laura Salvini
- Fondazione Toscana Life Sciences, Technology Facilities and Mass Spectrometry Unit, 53100 Siena, Italy;
| | - Maria Raffaella Zocchi
- Division of Immunology, Transplants and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Alessandro Poggi
- Molecular Oncology and Angiogenesis Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; (F.M.); (S.M.); (R.B.)
| |
Collapse
|
12
|
Satapathy BP, Sheoran P, Yadav R, Chettri D, Sonowal D, Dash CP, Dhaka P, Uttam V, Yadav R, Jain M, Jain A. The synergistic immunotherapeutic impact of engineered CAR-T cells with PD-1 blockade in lymphomas and solid tumors: a systematic review. Front Immunol 2024; 15:1389971. [PMID: 38799440 PMCID: PMC11116574 DOI: 10.3389/fimmu.2024.1389971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/11/2024] [Indexed: 05/29/2024] Open
Abstract
Currently, therapies such as chimeric antigen receptor-T Cell (CAR-T) and immune checkpoint inhibitors like programmed cell death protein-1 (PD-1) blockers are showing promising results for numerous cancer patients. However, significant advancements are required before CAR-T therapies become readily available as off-the-shelf treatments, particularly for solid tumors and lymphomas. In this review, we have systematically analyzed the combination therapy involving engineered CAR-T cells and anti PD-1 agents. This approach aims at overcoming the limitations of current treatments and offers potential advantages such as enhanced tumor inhibition, alleviated T-cell exhaustion, heightened T-cell activation, and minimized toxicity. The integration of CAR-T therapy, which targets tumor-associated antigens, with PD-1 blockade augments T-cell function and mitigates immune suppression within the tumor microenvironment. To assess the impact of combination therapy on various tumors and lymphomas, we categorized them based on six major tumor-associated antigens: mesothelin, disialoganglioside GD-2, CD-19, CD-22, CD-133, and CD-30, which are present in different tumor types. We evaluated the efficacy, complete and partial responses, and progression-free survival in both pre-clinical and clinical models. Additionally, we discussed potential implications, including the feasibility of combination immunotherapies, emphasizing the importance of ongoing research to optimize treatment strategies and improve outcomes for cancer patients. Overall, we believe combining CAR-T therapy with PD-1 blockade holds promise for the next generation of cancer immunotherapy.
Collapse
Affiliation(s)
- Bibhu Prasad Satapathy
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Pooja Sheoran
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Rohit Yadav
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Dewan Chettri
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Dhruba Sonowal
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Chinmayee Priyadarsini Dash
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Prachi Dhaka
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Vivek Uttam
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Ritu Yadav
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| | - Manju Jain
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Aklank Jain
- Department of Zoology, Non-Coding RNA and Cancer Biology Laboratory, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
13
|
Luo R, Qian D, Yang D, Cheng Y, Li J, Liu L, Li Y, Lei Q, Chang X, Liu Y, Xu G, Ge S. Circulating soluble CD30 is associated with renal tertiary lymphoid structures and the progression of IgA nephropathy. Clin Chim Acta 2024; 557:117888. [PMID: 38527714 DOI: 10.1016/j.cca.2024.117888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Renal tertiary lymphoid structures (TLSs) are involved in renal pathology and prognosis of IgA nephropathy (IgAN). CD30 and its ligands participate in the formation of renal TLSs. However, the relationship between circulating CD30 and renal prognosis is unclear. The objective of this study was to evaluate the relationship between circulating CD30 and prognosis in patients with IgAN. METHODS We conducted a retrospective study including 351 patients with biopsy proved IgAN. We collected clinical and pathologic features at the time of biopsy and recorded renal follow-up outcomes. Circulating CD30 levels in IgAN patients at the time of biopsy were measured via enzyme-linked immunosorbent assay (ELISA). The association between elevated CD30 levels and the composite endpoint (defined as a ≥ 50 % decline in eGFR from baseline, end-stage renal disease, or death) was investigated using Cox regression analysis. RESULTS During a median follow-up period of 5.12 years, 44 (12.5 %) patients in the cohort reached the composite endpoint. Kaplan-Meier survival curve analysis revealed a significant association between higher circulating CD30 levels and a poorer renal prognosis (log-rank P < 0.001). Cox regression analysis showed that high CD30 was an independent factor for the composite endpoints in multivariable-adjusted models (HR 3.397, 95 % CI: 1.230-9.384, P = 0.018). These associations were also observed in a subgroup of patients with concomitant renal TLSs formation (10.443, 95 % CI: 1.680-65.545, P = 0.012), proteinuria > 1 g/d (HR 12.287, 95 % CI: 1.499-100.711, P = 0.019), and female patients (HR 22.372, 95 % CI: 1.797-278.520, P = 0.016). CONCLUSION Elevated level of circulating CD30 is an independent risk factor for renal disease progression in patients with IgAN.
Collapse
Affiliation(s)
- Ran Luo
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Duo Qian
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Yang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yichun Cheng
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junhua Li
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yueqiang Li
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Lei
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Chang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanyan Liu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Xu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shuwang Ge
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
14
|
Li Z, Guo W, Bai O. Mechanism of action and therapeutic targeting of CD30 molecule in lymphomas. Front Oncol 2023; 13:1301437. [PMID: 38188299 PMCID: PMC10767573 DOI: 10.3389/fonc.2023.1301437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
At present, the treatment of lymphoma has entered the era of precision medicine, and CD30, as a transmembrane protein, has become an important marker to help the diagnosis and formulation of treatment plans for lymphomas. This protein is widely expressed in various types of lymphomas and can play a role through nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK), and other pathways, and ultimately lead to the up-regulation of CD30 expression to give tumor cells a survival advantage. Brentuximab vedotin (BV), as an antibody-drug conjugate (ADC) targeting CD30, is one of the first new drugs to significantly improve survival in patients with CD30+lymphomas. However, the biological function of CD30 has not been fully elucidated. Therefore, this review highlights the CD30-mediated tumor-promoting mechanisms and the molecular factors that regulate CD30 expression. We hope that a better understanding of CD30 biology will provide new insights into clinical treatment and improve the survival and quality of life of lymphoma patients.
Collapse
Affiliation(s)
| | | | - Ou Bai
- Department of Hematology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|