1
|
Bo Y, Xing Y, Wang Y, Gu W, Jiang X, Yu J, Shi X, Liu C, Liu C, Zhou Y. Exogenous Melatonin Modulates Photosynthesis and Antioxidant Systems for Improving Drought Tolerance of Sorghum Seedling. Curr Issues Mol Biol 2024; 46:9785-9806. [PMID: 39329933 PMCID: PMC11430488 DOI: 10.3390/cimb46090581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/24/2024] [Accepted: 09/01/2024] [Indexed: 09/28/2024] Open
Abstract
Sorghum faces significant production challenges due to drought stress. Melatonin has been demonstrated to play a crucial role in coping with stresses in plants. This study investigated the effect of exogenous melatonin on the sorghum seedling growth, photosynthetic capacity, and antioxidant system under drought stress. The results indicated that drought stress inhibited the growth of sorghum seedlings by a marked reduction in leaf relative water content, along with a significant increase in both malondialdehyde and hydrogen peroxide content. The drought stress also led to a significant diminution in chlorophyll contents, thereby curtailing the capacity for light energy capture. Furthermore, the efficiency of the photosynthetic electron transport chain was adversely impacted. However, the application of exogenous melatonin notably mitigated the adverse effects on sorghum seedlings under the drought stress. Additionally, it stimulated an elevation in the photosynthetic rate and a decrease in non-photochemical quenching. The exogenous melatonin also facilitated the preservation of the chloroplast ultra-structure and boosted the activity of antioxidant enzymes and the content of non-enzymatic antioxidants. Cluster heat maps and principal component analysis further revealed significant correlations among various parameters under different treatment conditions. These results highlight melatonin's role in improving sorghum's drought tolerance, which is beneficial for agricultural management.
Collapse
Affiliation(s)
- Yushan Bo
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Yifan Xing
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Yu Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Wendong Gu
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Xinyi Jiang
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiarui Yu
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaolong Shi
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Chunjuan Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Chang Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| | - Yufei Zhou
- College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
2
|
Mushtaq N, Altaf MA, Ning J, Shu H, Fu H, Lu X, Cheng S, Wang Z. Silicon improves the drought tolerance in pepper plants through the induction of secondary metabolites, GA biosynthesis pathway, and suppression of chlorophyll degradation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108919. [PMID: 38991591 DOI: 10.1016/j.plaphy.2024.108919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/13/2024]
Abstract
Drought stress caused by the global climate considerably disturbs plant yield and growth. Here, we explored the putative roles of silicon in repressing drought mechanisms in pepper and the prominent involvement of secondary metabolites, GA pathway, and photosystem II. Our research revealed that the transcript level of the flavonoid biosynthesis-associated genes, including the PAL, 4-CL, CHS, FLS-1, F3H and DFR, progressively induced in the pepper leaves treated with silicon during the drought stress duration. Moreover, the phenolic and flavonoid compounds extensively induced in the pepper plants. Furthermore, the pepper plants markedly inhibited chlorophyll catabolic-allied genes, senescence-related marker gene, and the Rbohs gene. Silicon application also sustained the membrane stability, supported via fewer electrolyte leakage processes and minor, O2- H2O2 and MDA levels during drought. Apart from this, the pepper plants significantly induced the expression level of the photosystem II-related genes, osmoprotectants pathway-associated genes, and antioxidant defense genes. Moreover, the GA biosynthesis genes were prompted, while the ABA signaling and biosynthesis genes were suppressed in the silicon-supplemented plants. These consequences infer that the role of Si supplementation on enhancing drought tolerance could be elucidated through the activation of secondary metabolites, flavonoid biosynthesis, osmoprotectants, GA pathway, the efficiency of PSII, and the suppression of chlorophyll degradation. Our research outcomes unveil new and remarkable characteristics of silicon supplementation and offer a series of candidate targets for improving the tolerance of pepper plants to drought stress.
Collapse
Affiliation(s)
- Naveed Mushtaq
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Muhammad Ahsan Altaf
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Jiahui Ning
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Huangying Shu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Huizhen Fu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Xu Lu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Shanhan Cheng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| | - Zhiwei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China.
| |
Collapse
|
3
|
Zhang HX, Zhang Y, Zhang BW. Pepper SBP-box transcription factor, CaSBP13, plays a negatively role in drought response. FRONTIERS IN PLANT SCIENCE 2024; 15:1412685. [PMID: 39070917 PMCID: PMC11272568 DOI: 10.3389/fpls.2024.1412685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024]
Abstract
The SBP-box gene significantly influences plant growth, development, and stress responses, yet its function in pepper plants during drought stress remains unexplored. Using virus-induced gene silencing and overexpression strategies, we examined the role of CaSBP13 during drought stress in plants. The results revealed that the expression of CaSBP13 can be induced by drought stress. Silencing of CaSBP13 in pepper notably boosted drought resistance, as evident by decreased active oxygen levels. Furthermore, the water loss rate, relative electrical conductivity, malondialdehyde content, and stomatal density were reduced in CaSBP13-silenced plants compared to controls. In contrast, CaSBP13 overexpression in Nicotiana benthamiana decreased drought tolerance with elevated reactive oxygen levels and stomatal density. Additionally, ABA signaling pathway genes (CaPP2C, CaAREB) exhibited reduced expression levels in CaSBP13-silenced plants post drought stress, as compared to control plants. On the contrary, CaPYL9 and CaSNRK2.4 showed heightened expression in CaSBP13-sienced plants under the same conditions. However, a converse trend for NbAREB, NbSNRK2.4, and NbPYL9 was observed post-four day drought in CaSBP13-overexpression plants. These findings suggest that CaSBP13 negatively regulates drought tolerance in pepper, potentially via ROS and ABA signaling pathways.
Collapse
Affiliation(s)
- Huai-Xia Zhang
- College of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, Henan, China
| | | | | |
Collapse
|
4
|
Wu J, Chen Y, Xu Y, An Y, Hu Z, Xiong A, Wang G. Effects of Jasmonic Acid on Stress Response and Quality Formation in Vegetable Crops and Their Underlying Molecular Mechanisms. PLANTS (BASEL, SWITZERLAND) 2024; 13:1557. [PMID: 38891365 PMCID: PMC11175075 DOI: 10.3390/plants13111557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
The plant hormone jasmonic acid plays an important role in plant growth and development, participating in many physiological processes, such as plant disease resistance, stress resistance, organ development, root growth, and flowering. With the improvement in living standards, people have higher requirements regarding the quality of vegetables. However, during the growth process of vegetables, they are often attacked by pests and diseases and undergo abiotic stresses, resulting in their growth restriction and decreases in their yield and quality. Therefore, people have found many ways to regulate the growth and quality of vegetable crops. In recent years, in addition to the role that JA plays in stress response and resistance, it has been found to have a regulatory effect on crop quality. Therefore, this study aims to review the jasmonic acid accumulation patterns during various physiological processes and its potential role in vegetable development and quality formation, as well as the underlying molecular mechanisms. The information provided in this manuscript sheds new light on the improvements in vegetable yield and quality.
Collapse
Affiliation(s)
- Jiaqi Wu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (J.W.); (Y.C.); (Y.X.); (Y.A.); (Z.H.)
| | - Yangyang Chen
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (J.W.); (Y.C.); (Y.X.); (Y.A.); (Z.H.)
| | - Yujie Xu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (J.W.); (Y.C.); (Y.X.); (Y.A.); (Z.H.)
| | - Yahong An
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (J.W.); (Y.C.); (Y.X.); (Y.A.); (Z.H.)
| | - Zhenzhu Hu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (J.W.); (Y.C.); (Y.X.); (Y.A.); (Z.H.)
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, Huaian 223003, China
| | - Aisheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guanglong Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China; (J.W.); (Y.C.); (Y.X.); (Y.A.); (Z.H.)
- Jiangsu Provincial Agricultural Green and Low Carbon Production Technology Engineering Research Center, Huaian 223003, China
| |
Collapse
|
5
|
Morales-Quintana L, Rabert C, Mendez-Yañez A, Ramos P. Transcriptional and structural analysis of non-specific lipid transfer proteins modulated by fungal endophytes in Antarctic plants under drought. PHYSIOLOGIA PLANTARUM 2024; 176:e14359. [PMID: 38797943 DOI: 10.1111/ppl.14359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 04/15/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Lipid transfer proteins (LTPs) play crucial roles in various biological processes in plants, such as pollen tube adhesion, phospholipid transfer, cuticle synthesis, and response to abiotic stress. While a few members of the non-specific LTPs (nsLTPs) have been identified, their structural characteristics remain largely unexplored. Given the observed improvement in the performance of Antarctic plants facing water deficit when associated with fungal endophytes, this study aimed to assess the role of these symbiotic organisms in the transcriptional modulation of putative nsLTPs. The study focused on identifying and characterizing two nsLTP in the Antarctic plant Colobanthus quitensis that exhibit responsiveness to drought stress. Furthermore, we investigated the influence of Antarctic endophytic fungi on the expression profiles of these nsLTPs, as these fungi have been known to enhance plant physiological and biochemical performance under water deficit conditions. Through 3D modeling, docking, and molecular dynamics simulations with different substrates, the conducted structural and ligand-protein interaction analyses showed that differentially expressed nsLTPs displayed the ability to interact with various ligands, with a higher affinity towards palmitoyl-CoA. Overall, our findings suggest a regulatory mechanism for the expression of these two nsLTPs in Colobanthus quitensis under drought stress, further modulated by the presence of endophytic fungi.
Collapse
Affiliation(s)
- Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Claudia Rabert
- Instituto de Ciencias Biomédicas, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Temuco, Chile
| | - Angela Mendez-Yañez
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Facultad Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Patricio Ramos
- Plant-microorganisms Interaction Laboratory, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| |
Collapse
|
6
|
Huang P, Xu Z, He W, Yang H, Li B, Ding W, Lei Y, Abbas A, Hameed R, Wang C, Sun J, Du D. The Cooperation Regulation of Antioxidative System and Hormone Contents on Physiological Responses of Wedelia trilobata and Wedelia chinensis under Simulated Drought Environment. PLANTS (BASEL, SWITZERLAND) 2024; 13:472. [PMID: 38498409 PMCID: PMC10892296 DOI: 10.3390/plants13040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 03/20/2024]
Abstract
Drought-induced metabolic dysregulation significantly enhances the production of reactive oxygen species (ROS), which, in turn, exerts a substantial influence on the oxidation-reduction regulatory status of cells. These ROS, under conditions of drought stress, become highly reactive entities capable of targeting various plant organelles, metabolites, and molecules. Consequently, disruption affects a wide array of metabolic pathways and eventually leads to the demise of the cells. Given this understanding, this study aimed to investigate the effects of different drought stress levels on the growth and development of the invasive weed Wedelia trilobata and its co-responding native counterpart Wedelia chinensis. Both plants evolved their defense mechanisms to increase their antioxidants and hormone contents to detoxify ROS to avoid oxidative damage. Still, the chlorophyll content fluctuated and increased in a polyethylene-glycol-simulated drought. The proline content also rose in the plants, but W. chinensis showed a significant negative correlation between proline and malondialdehyde in different plant parts. Thus, W. trilobata and W. chinensis exhibited diverse or unlike endogenous hormone regulation patterns under drought conditions. Meanwhile, W. trilobata and W. chinensis pointedly increased the content of indole acetic acid and gibberellic acid in a different drought stress environment. A positive correlation was found between endogenous hormones in other plant parts, including in the roots and leaves. Both simulated and natural drought conditions exerted a significant influence on both plant species, with W. trilobata displaying superior adaptation characterized by enhanced growth, bolstered antioxidant defense mechanisms, and heightened hormonal activities.
Collapse
Affiliation(s)
- Ping Huang
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Zhiwei Xu
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Weijie He
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Hong Yang
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Bin Li
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Wendian Ding
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yuze Lei
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Adeel Abbas
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Rashida Hameed
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Congyan Wang
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Jianfan Sun
- Institute of Environment and Ecology, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Daolin Du
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|