1
|
Han H, Zhang S, Wang M, Yi B, Zhao Y, Schroyen M, Zhang H. Retinol metabolism signaling participates in microbiota-regulated fat deposition in obese mice. J Nutr Biochem 2025; 136:109787. [PMID: 39461600 DOI: 10.1016/j.jnutbio.2024.109787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/03/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Obesity is a global pandemic threatening public health, excess fat accumulation and overweight are its characteristics. In this study, the interplay between gut microbiota and retinol metabolism in modulating fat accumulation was verified. We observed gut microbiota depletion reduced the body weight and the ratios of white adipose tissues (WATs) to body weight in high-fat diet (HFD) fed-mice. The kyoto encyclopedia of genes and genomes (KEGG) analysis and protein-protein interaction (PPI) network of RNA-seq results indicated that retinol metabolism signaling may be involved in the microbiota-regulated fat deposition. Furthermore, activated retinol metabolism signaling by all-trans retinoic acid (atRA) supplementation reduced body weight and WAT accumulation in obese mice. 16S rRNA gene sequencing of the ileal microbiota suggested that atRA supplementation increased the microbial diversity and induced the growth of beneficial bacteria including Parabacteroides, Bacteroides, Clostridium_XVIII, Bifidobacterium, Enterococcus, Bacillus, Leuconostoc, and Lactobacillus in obese mice. Spearman correlation showed that the microbiota altered by atRA were associated with body and WAT weights. Together, this study reveals the interaction between the gut microbiota and retinol metabolism signaling in regulating adipose accumulation and obesity. It is expected of this finding to provide new insights to prevent and develop therapeutic measures of obesity-related metabolic syndrome.
Collapse
Affiliation(s)
- Hui Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China; Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Shunfen Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mengyu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bao Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Yong Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
2
|
Sharma T, Ranawat P, Garg A, Rastogi P, Kaushal N. Short-chain fatty acids as a novel intervention for high-fat diet-induced metabolic syndrome. Mol Cell Biochem 2024:10.1007/s11010-024-05185-9. [PMID: 39709317 DOI: 10.1007/s11010-024-05185-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/07/2024] [Indexed: 12/23/2024]
Abstract
Metabolic syndrome (MetS) is driven by a complex interplay of genetic, lifestyle, and dietary factors, leading to weight gain, insulin resistance, dyslipidemia, and chronic inflammation. Gut microbiota dysbiosis has been recently recognized as a key contributor to MetS, leading to advancements in gut microbiome-based interventions to improve health outcomes. Considering the unique challenges associated with the use of pre/probiotics, short-chain fatty acids (SCFA), also known as postbiotics, have emerged as promising therapeutic agents due to their role in modulating host metabolism and physiology. Considering this, the aim of the current study was to explore the therapeutic potential of SCFA (butyrate, propionate, and acetate) supplementation against a high-fat diet (HFD)-induced experimental model of MetS in male Wistar rats. Alterations in body weight, lipid profile, histopathology, and adipose tissue accumulation were assessed to establish SCFA-mediated amelioration of experimental MetS. Further, the enzymatic (GPx, Catalase, GR, and GST) and non-enzymatic (LPO, total ROS, and Redox ratio were evaluated. The results indicated that SCFA supplementation could effectively mitigate key features of MetS. A significant reduction in body weight gain and fasting blood glucose levels, along with markedly lowered triglycerides, total cholesterol, and LDL levels, with partial restoration of HDL levels was observed following SCFA supplementation. SCFA administration also attenuated MetS-associated hepatic damage as studied by histopathological investigation and analysis of liver function marker enzyme activities. Such ameliorative effects of SCFA against HFD-induced MetS were owed to potential redox modulation studied using enzymatic and non-enzymatic oxidative stress markers. In conclusion, the study's outcomes show that SCFA supplementation could potentially be used against managing MetS. It underscores the therapeutic potential of SCFA by placing them as a novel gut microbiome-based dietary approach to improve metabolic health and reduce the risk of MetS-associated complications. However, more detailed mechanistic explorations are warranted in the future, leading to their beneficial role in MetS contributing to holistic health outcomes.
Collapse
Affiliation(s)
- Tanvi Sharma
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Pavitra Ranawat
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Ayushi Garg
- Department of Biophysics, Panjab University, Chandigarh, 160014, India
| | - Pulkit Rastogi
- Department of Hematology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Naveen Kaushal
- Department of Biophysics, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
3
|
Zhong S, Yang B, Liu Y, Dai W, Li G, Yang J, Yang A, Wang Y, Wang M, Xu C, Deng Y. Dynamic changes of gut microbiota between the first and second trimester for women with gestational diabetes mellitus and their correlations with BMI: a nested cohort study in China. Front Microbiol 2024; 15:1467414. [PMID: 39723141 PMCID: PMC11669307 DOI: 10.3389/fmicb.2024.1467414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/18/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Gut microbiota (GM) has been implicated in gestational diabetes mellitus (GDM), yet longitudinal changes across trimesters remain insufficiently explored. Methods This nested cohort study aimed to investigate GM alterations before 24 weeks of gestation and their association with GDM. Ninety-three Chinese participants provided fecal samples during the first and second trimesters. Based on oral glucose tolerance tests, 11 participants were classified as GDM, and 82 as non-diabetic (ND). Using 16S rRNA sequencing, we analyzed both cross-sectional and longitudinal differences in GM structure between those two groups. Results In the first trimester, GDM group exhibited lower levels of Bacteroides_H and Acetatifactor compared to ND group (p < 0.05). In the second trimester, GDM individuals showed increased abundance of Fusobacteriota and Firmicutes_D, and genera including Fusobacterium_A and Fournierella, while Anaerotruncus and others decreased (P<0.05). Inflammation-associated genera like Gemmiger_A_73129 and Enterocloster increased, while Megamonas decreased in overweight or obese GDM women, which was not identified in normal-weight women. The ratios of relative abundance of genera Streptococcus, Enterocloster, and Collinsella exceeded 1.5 in the GDM group, particularly in overweight or obese individuals. Inflammatory pathways related to African trypanosomiasis and Staphylococcus aureus infection were predicted to be up-regulated in overweight or obese GDM individuals but not in normal-weight GDM women. Discussion This study suggests that GM of women with GDM undergoes significant alterations between the first and second trimesters, potentially linked to inflammation, with more pronounced changes observed in overweight or obese individuals.
Collapse
Affiliation(s)
- Shilin Zhong
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Bingcai Yang
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Yuzhen Liu
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Wenkui Dai
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Guanglei Li
- CheerLand Biological Technology Co., Ltd., Shenzhen, China
| | - Juan Yang
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Ao Yang
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Ying Wang
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Min Wang
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| | - Chang Xu
- Intelligent Hospital Research Academy, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yuqing Deng
- Center of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Obstetrics and Gynecology, Shenzhen PKU-HKUST Medical Center, Shenzhen, China
- Shenzhen Key Laboratory on Technology for Early Diagnosis of Major Gynecologic Diseases, Shenzhen, China
| |
Collapse
|
4
|
Forner-Piquer I, Giommi C, Sella F, Lombó M, Montik N, Dalla Valle L, Carnevali O. Endocannabinoid System and Metabolism: The Influences of Sex. Int J Mol Sci 2024; 25:11909. [PMID: 39595979 PMCID: PMC11593739 DOI: 10.3390/ijms252211909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
The endocannabinoid system (ECS) is a lipid signaling system involved in numerous physiological processes, such as endocrine homeostasis, appetite control, energy balance, and metabolism. The ECS comprises endocannabinoids, their cognate receptors, and the enzymatic machinery that tightly regulates their levels within tissues. This system has been identified in various organs, including the brain and liver, in multiple mammalian and non-mammalian species. However, information regarding the sex-specific regulation of the ECS remains limited, even though increasing evidence suggests that interactions between sex steroid hormones and the ECS may ultimately modulate hepatic metabolism and energy homeostasis. Within this framework, we will review the sexual dimorphism of the ECS in various animal models, providing evidence of the crosstalk between endocannabinoids and sex hormones via different metabolic pathways. Additionally, we will underscore the importance of understanding how endocrine-disrupting chemicals and exogenous cannabinoids influence ECS-dependent metabolic pathways in a sex-specific manner.
Collapse
Affiliation(s)
- Isabel Forner-Piquer
- Centre for Pollution Research and Policy, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK;
| | - Christian Giommi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (C.G.); (F.S.)
- INBB—Biostructures and Biosystems National Institute, 00136 Roma, Italy
| | - Fiorenza Sella
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (C.G.); (F.S.)
- INBB—Biostructures and Biosystems National Institute, 00136 Roma, Italy
| | - Marta Lombó
- INBB—Biostructures and Biosystems National Institute, 00136 Roma, Italy
- Department of Molecular Biology, Universidad de León, 24071 León, Spain
| | - Nina Montik
- Department of Odontostomatological and Specialized Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy;
| | | | - Oliana Carnevali
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (C.G.); (F.S.)
- INBB—Biostructures and Biosystems National Institute, 00136 Roma, Italy
| |
Collapse
|
5
|
Guo J, Wang H, Jiang F, Liu D. Ingesting Stellera chamaejasme Significantly Impacts the Gastrointestinal Tract Bacterial Community and Diversity in Plateau Zokors ( Eospalax baileyi). Microorganisms 2024; 12:2182. [PMID: 39597571 PMCID: PMC11596747 DOI: 10.3390/microorganisms12112182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/29/2024] Open
Abstract
Intestinal bacteria are considered the "second genome" of the host, playing a crucial physiological role in assisting the host in degrading plant secondary compounds, nutrient absorption, immune regulation, and other aspects. To explore the effects of Stellera chamaejasme on the bacterial community of the gastrointestinal tract of plateau zokor, this study uses the 16S rRNA gene high-throughput sequencing technology, and the biodiversity and the community structure of gut bacteria in different gastrointestinal tract segments (the stomach and cecum) of plateau zokors. The results showed that at the phylum level, the dominant flora in the stomach and cecum of plateau zokors before and after ingesting Stellera chamaejasme were Firmicutes and Bacteroidetes. In plateau zokors that ingested Stellera chamaejasme, the relative abundance of Firmicutes in the stomach and cecum decreased, the relative abundance of Bacteroidetes increased, and the ratio of Firmicutes to Bacteroidetes decreased. After plateau zokors ingested Stellera chamaejasme, the ACE index demonstrated a significant reduction in the richness of the stomach bacterial community, while cecal bacterial community richness showed no significant change. Stellera chamaejasme exhibits significantly different effects on the bacterial communities in different segments of the gastrointestinal tract. Beta diversity analysis revealed that, after plateau zokors ingested Stellera chamaejasme, there were notable distinctions in the bacterial communities within both the stomach and cecum, alongside a marked reduction in the variability of the intestinal bacterial profiles across individuals. The results show that ingesting Stellera chamaejasme has a significant impact on the composition and structure of the gastrointestinal tract bacterial community in plateau zokors.
Collapse
Affiliation(s)
- Jialong Guo
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China;
| | - Haijing Wang
- Department of Public Health, Qinghai University Medical College, Xining 810008, China;
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810001, China
| | - Feng Jiang
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810001, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810001, China
| | - Daoxin Liu
- College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China;
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining 810001, China
| |
Collapse
|
6
|
Sokal-Dembowska A, Jarmakiewicz-Czaja S, Filip R. Flavonoids and Their Role in Preventing the Development and Progression of MAFLD by Modifying the Microbiota. Int J Mol Sci 2024; 25:11187. [PMID: 39456969 PMCID: PMC11508831 DOI: 10.3390/ijms252011187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
With the increasing prevalence and serious health consequences of metabolic-associated fatty liver disease (MAFLD), early diagnosis and intervention are key to effective treatment. Recent studies highlight the important role of dietary factors, including the use of flavonoids, in improving liver health. These compounds possess anti-inflammatory, antioxidant, and liver-protective properties. Flavonoids have been shown to affect the gut microbiota, which plays a key role in liver function and disease progression. Therefore, their role in preventing the development and progression of MAFLD through modulation of the microbiome seems to be of interest. This narrative review aims to consolidate the current evidence on the effects of selected flavonoids on MAFLD progression, their potential mechanisms of action, and the implications for the development of personalized dietary interventions for the management of liver disease.
Collapse
Affiliation(s)
- Aneta Sokal-Dembowska
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland.; (S.J.-C.)
| | - Sara Jarmakiewicz-Czaja
- Institute of Health Sciences, Medical College of Rzeszow University, 35-959 Rzeszow, Poland.; (S.J.-C.)
| | - Rafał Filip
- Institute of Medicine, Medical College of Rzeszow University, 35-959 Rzeszow, Poland
- Department of Gastroenterology with IBD Unit, Clinical Hospital No. 2, 35-301 Rzeszow, Poland
| |
Collapse
|
7
|
Krizanac M, Štancl P, Mass-Sanchez PB, Karlić R, Moeckel D, Lammers T, Asimakopoulos A, Weiskirchen R. The influence of perilipin 5 deficiency on gut microbiome profiles in murine metabolic dysfunction-associated fatty liver disease (MAFLD) and MAFLD-hepatocellular carcinoma. Front Cell Infect Microbiol 2024; 14:1443654. [PMID: 39469452 PMCID: PMC11513398 DOI: 10.3389/fcimb.2024.1443654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Metabolic dysfunction-associated fatty liver disease (MAFLD) has emerged as the leading cause of hepatocellular carcinoma (HCC) worldwide. Over the years, Perilipin 5 (PLIN5) has been recognized as a key regulator of both MAFLD and HCC development. In our previous studies we demonstrated that deficiency in Plin5 reduces the severity of MAFLD and HCC in mice. Interestingly, it has been established that patients with MAFLD and HCC exhibit various changes in their gut microbiome profiles. The gut microbiome itself has been shown to play a role in modulating carcinogenesis and the immune response against cancer. Methods Therefore, we conducted a study to investigate the alterations in fecal microbiome composition in wild type (WT) and Plin5-deficient (Plin5 -/-) mice models of MAFLD and MAFLD-induced HCC (MAFLD-HCC). We utilized 16S rRNA gene sequencing analysis to profile the composition of gut bacteria in fecal samples. Results Notably, we discovered that the absence of Plin5 alone is already associated with changes in gut microbiota composition. Moreover, feeding the mice a Western diet (WD) resulted in additional microbial alterations. Interestingly, Plin5 -/- animals exhibited an enrichment of the beneficial taxa Lactobacillus in both animal models. Discussion Our findings identify Plin5 as a major regulator of gut microbiota during the development of MAFLD and MAFLD-HCC.
Collapse
Affiliation(s)
- Marinela Krizanac
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Paula Štancl
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Paola Berenice Mass-Sanchez
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Rosa Karlić
- Bioinformatics Group, Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Diana Moeckel
- Institute for Experimental Molecular Imaging, RWTH Aachen, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen, Aachen, Germany
| | - Anastasia Asimakopoulos
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
8
|
Pan Z, Luo H, He F, Du Y, Wang J, Zeng H, Xu Z, Sun Y, Li M. Guava polysaccharides attenuate high fat and STZ-induced hyperglycemia by regulating gut microbiota and arachidonic acid metabolism. Int J Biol Macromol 2024; 276:133725. [PMID: 38986994 DOI: 10.1016/j.ijbiomac.2024.133725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/18/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
This study investigated the hypoglycemic mechanism of guava polysaccharides (GP) through the gut microbiota (GM) and related metabolites. Our findings demonstrated that GP significantly mitigated high-fat diet- and streptozotocin-induced hyperglycemia, insulin resistance, hyperlipidemia, elevated alanine aminotransferase, high hepatic inflammation levels, and prevented pancreatic atrophy and hepatomegaly. Interestingly, the benefits of GP were attributed to alterations in the GM. GP decreased the ratio of Firmicutes to Bacteroidetes, significantly inhibiting deleterious bacteria, including Uncultured_f_Desulfovibrionaceae, Bilophila, and Desulfovibrio, while promoting the proliferation of probiotic Bifidobacterium and Bacteroides. In addition, GP promoted the generation of short-chain fatty acids. Notably, the arachidonic acid (AA) metabolism pathway was enriched in liver metabolites. GP significantly elevated hepatic AA and 15-hydroxyeicosatetraenoic acid, while reducing prostaglandin E2 and 5- and 12-hydroxyeicosatetraenoic acid. This modulation is accompanied by the downregulation of hepatic cyclooxygenase-1, 12-lipoxygenase, P38, and c-Jun N-terminal kinase mRNA expression, and the upregulation of cytochrome P4502J5 and insulin receptor substrate 1/2 mRNA expression. However, GP antibiotic treatment did not induce significant alterations in FBG and AA levels or gene expression. Overall, our findings suggest that the hypoglycemic effect of GP may be intricately linked to alterations in AA metabolism, which depends on the GM.
Collapse
Affiliation(s)
- Zhuangguang Pan
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Haolin Luo
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Fangqing He
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yixuan Du
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Junyi Wang
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Huize Zeng
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Zhenlin Xu
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Yuanming Sun
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Meiying Li
- Guangdong Provincial Key Lab of Food Safety and Quality, South China Agricultural University, Guangzhou, Guangdong 510642, PR China; College of Food Science, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
9
|
Li Y, Yang P, Ye J, Xu Q, Wu J, Wang Y. Updated mechanisms of MASLD pathogenesis. Lipids Health Dis 2024; 23:117. [PMID: 38649999 PMCID: PMC11034170 DOI: 10.1186/s12944-024-02108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/11/2024] [Indexed: 04/25/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) has garnered considerable attention globally. Changing lifestyles, over-nutrition, and physical inactivity have promoted its development. MASLD is typically accompanied by obesity and is strongly linked to metabolic syndromes. Given that MASLD prevalence is on the rise, there is an urgent need to elucidate its pathogenesis. Hepatic lipid accumulation generally triggers lipotoxicity and induces MASLD or progress to metabolic dysfunction-associated steatohepatitis (MASH) by mediating endoplasmic reticulum stress, oxidative stress, organelle dysfunction, and ferroptosis. Recently, significant attention has been directed towards exploring the role of gut microbial dysbiosis in the development of MASLD, offering a novel therapeutic target for MASLD. Considering that there are no recognized pharmacological therapies due to the diversity of mechanisms involved in MASLD and the difficulty associated with undertaking clinical trials, potential targets in MASLD remain elusive. Thus, this article aimed to summarize and evaluate the prominent roles of lipotoxicity, ferroptosis, and gut microbes in the development of MASLD and the mechanisms underlying their effects. Furthermore, existing advances and challenges in the treatment of MASLD were outlined.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Peipei Yang
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jialu Ye
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Qiyuan Xu
- Wenzhou Medical University, Wenzhou, China
| | - Jiaqi Wu
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
- Department of Gastroenterology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
| | - Yidong Wang
- Department of Cardiology, State Key Laboratory of Transvascular Implantation Devices, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
10
|
Lu J, Zeng Y, Zhong H, Guo W, Zhang Y, Mai W, Qin Y, Su X, Zhang B, Wu W, Zhu Y, Huang Q, Ye Y. Dual-Stimuli-Responsive Gut Microbiota-Targeting Nitidine Chloride-CS/PT-NPs Improved Metabolic Status in NAFLD. Int J Nanomedicine 2024; 19:2409-2428. [PMID: 38476281 PMCID: PMC10929648 DOI: 10.2147/ijn.s452194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Background and Purpose Nitidine chloride (NC) is a botanical drug renowned for its potent anti-inflammatory, antimalarial, and hepatocellular carcinoma-inhibiting properties; however, its limited solubility poses challenges to its development and application. To address this issue, we have devised a colon-targeted delivery system (NC-CS/PT-NPs) aimed at modulating the dysbiosis of the gut microbiota by augmenting the interaction between NC and the intestinal microbiota, thereby exerting an effect against nonalcoholic fatty liver disease. Methods The NC-CS/PT-NPs were synthesized using the ion gel method. Subsequently, the particle size distribution, morphology, drug loading efficiency, and release behavior of the NC-CS/PT-NPs were characterized. Furthermore, the impact of NC-CS/PT-NPs on non-alcoholic fatty liver disease (NAFLD) induced by a high-fat diet (HFD) in mice was investigated through serum biochemical analysis, ELISA, and histochemical staining. Additionally, the influence of NC-CS/PT-NPs on intestinal microbiota was analyzed using 16S rDNA gene sequencing. Results The nanoparticles prepared in this study have an average particle size of (255.9±5.10) nm, with an encapsulation rate of (72.83±2.13) % and a drug loading of (4.65±0.44) %. In vitro release experiments demonstrated that the cumulative release rate in the stomach and small intestine was lower than 22.0%, while it reached 66.75% in the colon. In vivo experiments conducted on HFD-induced NAFLD mice showed that treatment with NC-CS/PT-NPs inhibited weight gain, decreased serum aspartate aminotransferase (AST), Alanine aminotransferase (ALT) and lipid levels, improved liver and intestinal inflammation, and altered the diversity of gut microbiota in mice. Conclusion This study provides new evidence for the treatment of NAFLD through the regulation of gut microbiota using active ingredients from traditional Chinese medicine.
Collapse
Affiliation(s)
- Jianmei Lu
- Department of Pharmacy, Guangxi Medical University, Nanning, People’s Republic of China
- The Second Nanning People’s Hospital, Nanning, People’s Republic of China
| | - Yongzhu Zeng
- Department of Pharmacy, Guangxi Medical University, Nanning, People’s Republic of China
| | - Huashuai Zhong
- Department of Pharmacy, Guangxi Medical University, Nanning, People’s Republic of China
| | - Wei Guo
- Department of Pharmacy, Guangxi Medical University, Nanning, People’s Republic of China
| | - Yuyan Zhang
- Department of Pharmacy, Guangxi Medical University, Nanning, People’s Republic of China
| | - Wanting Mai
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Yucui Qin
- Maternity and Child Health Care of Guangxi Zhuang Autonomous Region, Nanning, People’s Republic of China
| | - Xiaodan Su
- The Second Affiliated Hospital of Guangxi Medical University, Nanning, People’s Republic of China
| | - Bo Zhang
- Scientific Research Center, Guilin Medical University, Guilin, People’s Republic of China
| | - Weisen Wu
- Department of Pharmacy, Guangxi Medical University, Nanning, People’s Republic of China
| | - Yu Zhu
- Department of Pharmacy, Guangxi Medical University, Nanning, People’s Republic of China
| | - Qiujie Huang
- Department of Pharmacy, Guangxi University of Traditional Chinese Medicine, Nanning, People’s Republic of China
| | - Yong Ye
- Department of Pharmacy, Guangxi Medical University, Nanning, People’s Republic of China
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation, Nanning, People’s Republic of China
- Guangxi Key Laboratory of Pharmaceutical Precision Detection and Screening, Nanning, People’s Republic of China
- Key Laboratory of Micro-Nanoscale Bioanalysis and Drug Screening of Guangxi Education Department, Nanning, People’s Republic of China
| |
Collapse
|
11
|
Kei N, Cheung KK, Ma KL, Yau TK, Lauw S, Wong VWS, You L, Cheung PCK. Effects of Oat β-Glucan and Inulin on Alleviation of Nonalcoholic Steatohepatitis Aggravated by Circadian Disruption in C57BL/6J Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3520-3535. [PMID: 38333950 DOI: 10.1021/acs.jafc.3c08028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
This was the first study that examined the effects of oat β-glucan and inulin on diet-induced nonalcoholic steatohepatitis (NASH) in circadian-disrupted (CD)-male C57BL/6J mice. CD intensified NASH, significantly increasing alanine aminotransferase and upregulating hepatic tumor necrosis factor α (TNFα) and transforming growth factor β 1 (TGFβ1). However, these observations were significantly alleviated by oat β-glucan and inulin treatments. Compared to CD NASH mice, oat β-glucan significantly decreased the liver index, aspartate aminotransferase (AST), and insulin. In prebiotic-treated and CD NASH mice, significant negative correlations were found between enrichment of Muribaculaceae bacterium Isolate-036 (Harlan), Muribaculaceae bacterium Isolate-001 (NCI), and Bacteroides ovatus after oat β-glucan supplementation with TNFα and TGFβ1 levels; and enrichment of Muribaculaceae bacterium Isolate-110 (HZI) after inulin supplementation with AST level. In conclusion, oat β-glucan and inulin exhibited similar antiliver injury, anti-inflammatory, and antifibrotic activities but had no effect on cecal short-chain fatty acids and gut microbiota diversity in CD NASH mice.
Collapse
Affiliation(s)
- Nelson Kei
- Food and Nutritional Sciences Program, School of Life Sciences, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Kam Kuen Cheung
- Food and Nutritional Sciences Program, School of Life Sciences, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
- Food Research Centre, The Chinese University of Hong Kong, New Territories, Hong Kong SAR , China
| | - Ka Lee Ma
- Food and Nutritional Sciences Program, School of Life Sciences, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Tsz Kwan Yau
- Cell and Molecular Biology Program, School of Life Sciences, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Susana Lauw
- Food and Nutritional Sciences Program, School of Life Sciences, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
- Food Research Centre, The Chinese University of Hong Kong, New Territories, Hong Kong SAR , China
| | - Vincent Wai Sun Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
| | - Lijun You
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Peter Chi Keung Cheung
- Food and Nutritional Sciences Program, School of Life Sciences, The Chinese University of Hong Kong, New Territories, Hong Kong SAR, China
- Food Research Centre, The Chinese University of Hong Kong, New Territories, Hong Kong SAR , China
| |
Collapse
|
12
|
Fernandes Q, Inchakalody VP, Bedhiafi T, Mestiri S, Taib N, Uddin S, Merhi M, Dermime S. Chronic inflammation and cancer; the two sides of a coin. Life Sci 2024; 338:122390. [PMID: 38160787 DOI: 10.1016/j.lfs.2023.122390] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
The correlation between chronic inflammation and cancer was initially identified in the 19th century. Biomolecules like interleukins, chemokines, tumor necrosis factors, growth factors, and adhesion molecules, which regulate inflammation, are recognized contributors to neoplastic transformation through various mechanisms, including oncogenic mutations, resistance to apoptosis, and adaptive responses like angiogenesis. This review aims to establish connections between the intricate and complex mechanisms of chronic inflammation and cancer. We illuminate implicit signaling mechanisms that drive the association between chronic inflammation and the initiation/progression of cancer, exploring potential impacts on other diseases. Additionally, we discuss the modalities of currently available therapeutic options for chronic inflammation and cancer, emphasizing the dual nature of such therapies. A thorough understanding of the molecular basis of chronic inflammation is crucial for developing novel approaches in the prevention and treatment of cancer.
Collapse
Affiliation(s)
- Queenie Fernandes
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; College of Medicine, Qatar University, Doha, Qatar
| | - Varghese Philipose Inchakalody
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Takwa Bedhiafi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Sarra Mestiri
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar.
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar.
| |
Collapse
|