1
|
Wang H, Lei L, Guo H, Xu K, Liu Q, Cao H, Hu J, Liu S, Zhang D. Discovery of novel fructose-1,6-bisphosphatase inhibitors bearing benzimidazole scaffold using a dual-ligand molecular docking model. Eur J Med Chem 2024; 279:116888. [PMID: 39332383 DOI: 10.1016/j.ejmech.2024.116888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/29/2024]
Abstract
Fructose-1,6-bisphosphatase (FBPase) is an emerging target in gluconeogenesis, inhibitors of which would be an effective treatment for elevated fasting blood glucose in patients with type 2 diabetes. Based on the lead compound G-1 (FBPase 10 μM inhibition = 64.3 %) and according to the X-ray crystal structure of FBPase, we designed and validated an innovative molecular docking method based on the dual-ligand model to explore the interactions between two identical ligands in neighboring targets. Based on the dual-ligand molecular docking model, a novel compound 45 bearing a benzimidazole scaffold was identified to show increased inhibitory activity against FBPase (IC50, 2.08 μM). An oral pyruvate tolerance test in ICR mice showed that 45 had a potent inhibitory effect on gluconeogenesis similar to that of metformin when administered as a single dose in vivo. Compound 45 did not inhibit the common subtypes of the human cytochrome P450 system, indicating that it may have a reduced propensity for drug-drug interactions. The findings of this study may pave the way for further development of FBPase inhibitors with novel structural features, improved activity, and good druggability.
Collapse
Affiliation(s)
- Huahao Wang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Liran Lei
- Department of Pharmacology, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Hao Guo
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China
| | - Kejia Xu
- Department of Pharmacology, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Quan Liu
- Department of Pharmacology, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Hui Cao
- Department of Pharmacology, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Jinping Hu
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing, 100050, China
| | - Shuainan Liu
- Department of Pharmacology, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing, 100050, China.
| | - Dongfeng Zhang
- Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, 1 Xian Nong Tan Street, Beijing 100050, China.
| |
Collapse
|
2
|
Li JH, Hsin PY, Hsiao YC, Chen BJ, Zhuang ZY, Lee CW, Lee WJ, Vo TTT, Tseng CF, Tseng SF, Lee IT. A Narrative Review: Repurposing Metformin as a Potential Therapeutic Agent for Oral Cancer. Cancers (Basel) 2024; 16:3017. [PMID: 39272875 PMCID: PMC11394296 DOI: 10.3390/cancers16173017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Oral cancer, particularly oral squamous cell carcinoma (OSCC), is a significant global health challenge because of its high incidence and limited treatment options. Major risk factors, including tobacco use, alcohol consumption, and specific microbiota, contribute to the disease's prevalence. Recently, a compelling association between diabetes mellitus (DM) and oral cancer has been identified, with metformin, a widely used antidiabetic drug, emerging as a potential therapeutic agent across various cancers, including OSCC. This review explores both preclinical and clinical studies to understand the mechanisms by which metformin may exert its anticancer effects, such as inhibiting cancer cell proliferation, inducing apoptosis, and enhancing the efficacy of existing treatments. Preclinical studies demonstrate that metformin modulates crucial metabolic pathways, reduces inflammation, and impacts cellular proliferation, thereby potentially lowering cancer risk and improving patient outcomes. Additionally, metformin's ability to reverse epithelial-to-mesenchymal transition (EMT), regulate the LIN28/let-7 axis, and its therapeutic role in head and neck squamous cell carcinoma (HNSCC) are examined through experimental models. In clinical contexts, metformin shows promise in enhancing therapeutic outcomes and reducing recurrence rates, although challenges such as drug interactions, complex dosing regimens, and risks such as vitamin B12 deficiency remain. Future research should focus on optimizing metformin's application, investigating its synergistic effects with other therapies, and conducting rigorous clinical trials to validate its efficacy in OSCC treatment. This dual exploration underscores metformin's potential to play a transformative role in both diabetes management and cancer care, potentially revolutionizing oral cancer treatment strategies.
Collapse
Affiliation(s)
- Jui-Hsiang Li
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 33004, Taiwan
| | - Pei-Yi Hsin
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yung-Chia Hsiao
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Bo-Jun Chen
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Zhi-Yun Zhuang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chiang-Wen Lee
- Department of Nursing, Division of Basic Medical Sciences, Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Wei-Ju Lee
- School of Food Safety, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
| | - Thi Thuy Tien Vo
- Faculty of Dentistry, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
| | - Chien-Fu Tseng
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei 10048, Taiwan
- Department of Dentistry, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 33004, Taiwan
| | - Shih-Fen Tseng
- Department of Emergency Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 33004, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
3
|
Mishra AK, Choudhary MK, Kumar C, Kishor A, Kumari A. Assessment of Health-Related Quality of Life and Its Determinants in Type 2 Diabetes Mellitus Patients: A Cross-Sectional Study. Cureus 2024; 16:e66055. [PMID: 39224717 PMCID: PMC11367283 DOI: 10.7759/cureus.66055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2024] [Indexed: 09/04/2024] Open
Abstract
Background Type 2 diabetes mellitus is a complex metabolic disorder associated with several complications that determine the quality of life of the patients. Health-related quality of life (HRQoL) is a measurable outcome of the self-perception of a patient's health which is affected due to age, lifestyle changes, medication, and treatment modalities. This study was undertaken to understand the impact of individual parameters of age, medication type and duration, diabetes-associated complications, and levels of glycated hemoglobin (HbA1c) on the quality of life (QoL) of the patient. Methodology This single-center prospective, cross-sectional study was conducted at the Indira Gandhi Institute of Medical Sciences (IGIMS), Patna, Bihar, India. Participants were recruited from the Outpatient Department of General Medicine, IGIMS. HRQoL was measured using a validated and reliable EuroQol 5-dimensions 5-levels (EQ-5D-5L) questionnaire developed by the EuroQol Research Foundation, along with the EuroQol-Visual Analogue Scale (EQ-VAS). The eligibility criteria included adult diabetic patients above 18 years of age with complete medical records, who had been treated at the outpatient department for a minimum of three months and could be interviewed. Results The results from this study show that 46% of the patients belonged to the age group of 45-65 years. The quality of health index scores and EQ-VAS scores significantly correlated with age (p-values: 1.11 e-4 and 3.09 e-5; <0.05). Of the subjects, 66.4%, 6.7%, and 26.8% were under oral hypoglycaemic agents (OHA), insulin, and both insulin with OHA medications respectively. HbA1C levels were statistically significantly correlated with mobility, self-care, usual activities, pain or discomfort, and anxiety or depression (p-value 0.032; <0.05), along with self-perception of the patient's health (p-value 0.00026; <0.05). Also, the perception of having slight problems in mobility, self-care, usual activities, pain or discomfort, and anxiety or depression was similar irrespective of gender (EQ-5D-5L score for males: 9.47 and females: 9.3). Despite suffering from diabetes-associated chronic complications, 60.5% of the subjects perceived their overall health to be good as indicated by the scores. Conclusion The self-perception of HRQoL concerning mobility, self-care, usual activities, pain or discomfort, and anxiety or depression was correlated with age, duration of anti-diabetic medication, and HbA1C level. Good mobility, self-care, and performing usual activities reduce anxiety or depression as opposed to age, pain, and discomfort. However, the subjects in this study cohort perceived overall good health in themselves in terms of EQ-VAS and 5D-5L scores, indicating effective diabetic care and management options available to them.
Collapse
Affiliation(s)
- Amit Kumar Mishra
- Department of General Medicine, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Manoj Kumar Choudhary
- Department of General Medicine, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Chandan Kumar
- Department of General Medicine, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Anand Kishor
- Department of General Medicine, Indira Gandhi Institute of Medical Sciences, Patna, IND
| | - Anjali Kumari
- Department of General Medicine, Indira Gandhi Institute of Medical Sciences, Patna, IND
| |
Collapse
|
4
|
Sivakumar A, Thanu AS, Vishnumukkala T, KSV ABG, K Shetty J, Jagadeesan S, Gopalakrishna PK. Management of diabetes mellitus using medicinal plants: A review. Bioinformation 2024; 20:705-710. [PMID: 39309571 PMCID: PMC11414330 DOI: 10.6026/973206300200705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 09/25/2024] Open
Abstract
Diabetes mellitus has a global impact affecting 422 million individuals and leading to significant health complications. This makes it a pressing global health concern. Present treatments prioritize alleviating symptoms; however, it is imperative to adopt a multitarget strategy. Herbal medicines, which have been historically employed in traditional medicine, have undergone animal experiments to assess their efficacy in reducing or preventing the disease. Known data shows that the phytochemicals found in medicinal plants have anti-hypoglycemic properties. Hence, we review the therapeutic properties of Withania somnifera, Trigonella foenum-graecum, Moringa oliefera, Memmordica charantia and Allium sativa.
Collapse
Affiliation(s)
- Anupa Sivakumar
- Human Biology Division, School of Medicine, IMU University, Kuala Lumpur, Malaysia
| | - Amardev Singh Thanu
- Human Biology Division, School of Medicine, IMU University, Kuala Lumpur, Malaysia
| | | | - Angu Bala Ganesh KSV
- Department of Anatomy, Gujarat Adani Institute of Medical Sciences, Bhuj, Gujarat, India
| | - Jeevan K Shetty
- Department of Biochemistry, School of Medicine, Royal College of Surgeons in Ireland (RCSI) Bahrain, Muharraq, Bahrain
| | - Saravanan Jagadeesan
- Department of Anatomy, School of Medicine, Lakeside Campus, Taylor's University, Selangor, Malaysia
| | | |
Collapse
|
5
|
Wang X, Chen L, Zhang C, Shi Q, Zhu L, Zhao S, Luo Z, Long Y. Effect of probiotics at different intervention time on glycemic control in patients with type 2 diabetes mellitus: a systematic review and meta-analysis. Front Endocrinol (Lausanne) 2024; 15:1392306. [PMID: 39114293 PMCID: PMC11303337 DOI: 10.3389/fendo.2024.1392306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Background Type 2 diabetes mellitus(T2DM) is characterized by hyperglycemia. Gut microbiome adjustment plays a positive part in glucose regulation, which has become a hotspot. Probiotics have been studied for their potential to control the gut flora and to treat T2DM. However, the conclusion of its glucose-lowering effect is inconsistent based on different probiotic intervention times. Objectives To comprehensively evaluate how various probiotic intervention times affect glycemic control in people with T2DM. Methods We retrieved PubMed, Embase, Web of Science, and Cochrane Library on randomized controlled trials(RCTs)regarding the impact of probiotics on glycemic control in patients with T2DM from the inception to November 16, 2023. Separately, two researchers conducted a literature analysis, data extraction, and bias risk assessment of the involved studies. We followed the PRISMA guidelines, used RevMan 5.4 software for meta-analysis, and assessed the risk of bias by applying the Cochrane Handbook for Systematic Reviews 5.1.0. Results We included eight RCTs with 507 patients. Meta-analysis revealed that the use of probiotics might considerably reduce levels of glycosylated hemoglobin (HbA1c) {mean deviation (MD) = -0.33, 95% confidence interval (CI) (-0.59, -0.07), p = 0.01}, Insulin {standard mean deviation (SMD) = -0.48, 95% CI (-0.74, -0.22), p = 0.0003} and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR){SMD = -1.36, 95% CI (-2.30, -0.41), p = 0.005} than placebo group. No statistically significant differences were found regarding fasting blood glucose (FBG) and body mass index (BMI) {SMD = -0.39, 95% CI (-0.83, 0.05), p = 0.08}, {SMD = -0.40, 95% CI (-1.07, 0.27), p = 0.25}, respectively. Subgroup analyses, grouped by intervention times, showed that six to eight weeks of intervention improved HbA1c compared to the control group (p < 0.05), both six to eight weeks and 12-24 weeks had a better intervention effect on Insulin, and HOMA-IR (p < 0.05).In contrast, there was no statistically significant variation in the length between FBG and BMI regarding duration. Conclusion This meta-analysis found probiotics at different intervention times play a positive role in modulating glucose in T2DM, specifically for HbA1c in six to eight weeks, Insulin and HOMA-IR in six to eight weeks, and 12-24 weeks. To confirm our findings, further excellent large-sample research is still required. Systematic review registration https://www.crd.york.ac.uk/prospero, identifier CRD42023483325.
Collapse
Affiliation(s)
- Xinghui Wang
- School of Nursing, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Lu Chen
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Chunling Zhang
- Department of Nutrition, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Qing Shi
- Department of Nutrition, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Lei Zhu
- School of Nursing, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Sisi Zhao
- School of Nursing, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Zhiqin Luo
- School of Nursing, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Yirun Long
- School of Nursing, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| |
Collapse
|
6
|
Xiao X, Zhao F, DuBois DB, Liu Q, Zhang YL, Yao Q, Zhang GJ, Chen S. Nanozymes for the Therapeutic Treatment of Diabetic Foot Ulcers. ACS Biomater Sci Eng 2024; 10:4195-4226. [PMID: 38752382 DOI: 10.1021/acsbiomaterials.4c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Diabetic foot ulcers (DFU) are chronic, refractory wounds caused by diabetic neuropathy, vascular disease, and bacterial infection, and have become one of the most serious and persistent complications of diabetes mellitus because of their high incidence and difficulty in healing. Its malignancy results from a complex microenvironment that includes a series of unfriendly physiological states secondary to hyperglycemia, such as recurrent infections, excessive oxidative stress, persistent inflammation, and ischemia and hypoxia. However, current common clinical treatments, such as antibiotic therapy, insulin therapy, surgical debridement, and conventional wound dressings all have drawbacks, and suboptimal outcomes exacerbate the financial and physical burdens of diabetic patients. Therefore, development of new, effective and affordable treatments for DFU represents a top priority to improve the quality of life of diabetic patients. In recent years, nanozymes-based diabetic wound therapy systems have been attracting extensive interest by integrating the unique advantages of nanomaterials and natural enzymes. Compared with natural enzymes, nanozymes possess more stable catalytic activity, lower production cost and greater maneuverability. Remarkably, many nanozymes possess multienzyme activities that can cascade multiple enzyme-catalyzed reactions simultaneously throughout the recovery process of DFU. Additionally, their favorable photothermal-acoustic properties can be exploited for further enhancement of the therapeutic effects. In this review we first describe the characteristic pathological microenvironment of DFU, then discuss the therapeutic mechanisms and applications of nanozymes in DFU healing, and finally, highlight the challenges and perspectives of nanozyme development for DFU treatment.
Collapse
Affiliation(s)
- Xueqian Xiao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Fei Zhao
- Institute of Hematology, Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430065, China
| | - Davida Briana DuBois
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Qiming Liu
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| | - Yu Lin Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei 430065, China
| | - Qunfeng Yao
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei 430065, China
| | - Guo-Jun Zhang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei 430065, China
| | - Shaowei Chen
- Department of Chemistry and Biochemistry, University of California, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
7
|
Ayesh H, Suhail S, Ayesh S, Niswender K. Comparative efficacy and safety of weekly dulaglutide versus weekly insulin in type 2 diabetes: A network meta-analysis of randomized clinical trials. Metabol Open 2024; 22:100284. [PMID: 38699397 PMCID: PMC11064603 DOI: 10.1016/j.metop.2024.100284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024] Open
Abstract
Background Advancements in type 2 diabetes mellitus (T2DM) therapy, notably with weekly agents like glucagon-like peptide-1 receptor agonists (GLP-RAs) such as dulaglutide, offer promising outcomes in clinical practice. The emergence of once-weekly insulin adds to this therapeutic arsenal. This research aims to explore and compare the efficacy and safety profiles of these agents in diabetes management, facilitating informed decision-making for optimizing their utilization in clinical practice. Methods A systematic search of PubMed, Scopus, Cochrane, and Web of Science databases was conducted. The research protocol was registered at OSF registries (https://osf.io/gd67x). The primary outcome of interest was the change in hemoglobin A1C (HbA1c), with secondary outcomes including the change in fasting plasma glucose, body weight, prevalence of hypoglycemia, and treatment discontinuation due to adverse events. The evaluation of bias risk was conducted utilizing the RoB2 tool developed by the Cochrane Collaboration. Statistical analysis was performed using RStudio version 4.3.2 with the meta package version 7.0-0 and the netmeta package version 2.9-0. Confidence in network meta-analysis estimates was evaluated using the CINeMA (Confidence In Network Meta-Analysis). Heterogeneity was assessed by comparing the magnitude of the common between-study variance (τ2) for each outcome with empirical distributions of heterogeneity variances. Results Dulaglutide 1.5 mg (mg) weekly demonstrated superior reduction in hemoglobin A1C (HbA1c) compared to insulin, with a mean difference (MD) of -0.35 (95 % CI: -0.51 to -0.19). Additionally, Dulaglutide 1.5 mg exhibited greater weight loss, with an MD of -3.12 (95 % CI: -3.55 to -2.68). However, it also showed a higher rate of adverse events, with an odds ratio (OR) of 1.40 (95 % CI: 1.12 to 1.75) compared to insulin. Both doses of Dulaglutide (1.5 mg and 0.75 mg) had lower prevalence of hypoglycemia compared to insulin, with ORs of 0.60 (95 % CI: 0.41 to 0.87) and 0.59 (95 % CI: 0.41 to 0.86), respectively. There was no significant difference in treatment discontinuation among the treatment groups. Conclusion Dulaglutide, particularly at higher doses, demonstrates superior efficacy in lowering hemoglobin A1C and reducing hypoglycemia risk compared to Icodec insulin in type 2 diabetes management. However, its use is also associated with a higher incidence of adverse events. Clinicians should carefully consider these factors when selecting optimal treatment strategies for patients with type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Hazem Ayesh
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Kevin Niswender
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
8
|
Zhou Y, Yang J, Li Y, Shu X, Cai Y, Xu P, Huang W, Yang Z, Li R. Multifunctional nanocomposites mediated novel hydrogel for diabetic wound repair. J Mater Chem B 2024; 12:3292-3306. [PMID: 38502068 DOI: 10.1039/d3tb02283h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The regeneration and repair of diabetic wounds, especially those including bacterial infection, have always been difficult and challenging using current treatment. Herein, an effective strategy is reported for constructing glucose-responsive functional hydrogels using nanocomposites as nodes. In fact, tannic acid (TA)-modified ceria nanocomposites (CNPs) and a zinc metal-organic framework (ZIF-8) were employed as nodes. Subsequent crosslinking with 3-acrylamidophenylboronic acid achieved functional nanocomposite-hydrogels (TA@CN gel, TA@ZMG gel) by radical-mediated polymerization. Compared with a simple physically mixed hydrogel system, the mechanical properties of TA@CN gel and TA@ZMG gel are significantly enhanced due to the intervention of the nanocomposite nodes. In addition, this kind of nanocomposite hydrogel can realize the programmed loading of drugs and release of drugs in response to glucose/PH, to coordinate and promote its application in the regeneration and repair of diabetic wounds and infected diabetic wounds. Specifically, TA@CN gel can remove reactive oxygen species and generate oxygen through its various enzymatic activities. At the same time, it can effectively promote neovascularization, thus promoting the regeneration and repair of diabetic wounds. Furthermore, glucose oxidase-loaded TA@ZMG gel exhibits glucose response and pH-regulating functions, triggering programmed metformin (Met) release by degrading the metal-organic framework (MOF) backbone. It also exhibited additional synergistic effects of antibacterial activity, hair regeneration and systemic blood glucose regulation, which make it suitable for the repair of more complex infected diabetic wounds. Overall, this novel nanocomposite-mediated hydrogel holds great potential as a biomaterial for the healing of chronic diabetic wounds, opening up new avenues for further biomedical applications.
Collapse
Affiliation(s)
- Yingjuan Zhou
- Center for Pharmaceutical Formulation and Nanomedicine Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China.
| | - Jiaxin Yang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Military Key Laboratory of Nanomedicine, Department of Military Preventive Medicine, Army Medical University, Chongqing, 400038, People's Republic of China.
| | - Yan Li
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, P.R. China
| | - Xin Shu
- College of pharmacy, Chongqing Medical and Pharmaceutical College, China
| | - Yucen Cai
- Center for Pharmaceutical Formulation and Nanomedicine Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China.
| | - Ping Xu
- Center for Pharmaceutical Formulation and Nanomedicine Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China.
| | - Wenyan Huang
- Center for Pharmaceutical Formulation and Nanomedicine Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China.
| | - Zhangyou Yang
- Center for Pharmaceutical Formulation and Nanomedicine Research, College of Pharmacy, Chongqing Medical University, Chongqing 400016, P.R. China.
| | - Rong Li
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Military Key Laboratory of Nanomedicine, Department of Military Preventive Medicine, Army Medical University, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
9
|
Kubohara Y, Fukunaga Y, Shigenaga A, Kikuchi H. Dictyostelium Differentiation-Inducing Factor 1 Promotes Glucose Uptake via Direct Inhibition of Mitochondrial Malate Dehydrogenase in Mouse 3T3-L1 Cells. Int J Mol Sci 2024; 25:1889. [PMID: 38339168 PMCID: PMC10855897 DOI: 10.3390/ijms25031889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Differentiation-inducing factor 1 (DIF-1), found in Dictyostelium discoideum, has antiproliferative and glucose-uptake-promoting activities in mammalian cells. DIF-1 is a potential lead for the development of antitumor and/or antiobesity/antidiabetes drugs, but the mechanisms underlying its actions have not been fully elucidated. In this study, we searched for target molecules of DIF-1 that mediate the actions of DIF-1 in mammalian cells by identifying DIF-1-binding proteins in human cervical cancer HeLa cells and mouse 3T3-L1 fibroblast cells using affinity chromatography and liquid chromatography-tandem mass spectrometry and found mitochondrial malate dehydrogenase (MDH2) to be a DIF-1-binding protein in both cell lines. Since DIF-1 has been shown to directly inhibit MDH2 activity, we compared the effects of DIF-1 and the MDH2 inhibitor LW6 on the growth of HeLa and 3T3-L1 cells and on glucose uptake in confluent 3T3-L1 cells in vitro. In both HeLa and 3T3-L1 cells, DIF-1 at 10-40 μM dose-dependently suppressed growth, whereas LW6 at 20 μM, but not at 2-10 μM, significantly suppressed growth in these cells. In confluent 3T3-L1 cells, DIF-1 at 10-40 μM significantly promoted glucose uptake, with the strongest effect at 20 μM DIF-1, whereas LW6 at 2-20 μM significantly promoted glucose uptake, with the strongest effect at 10 μM LW6. Western blot analyses showed that LW6 (10 μM) and DIF-1 (20 μM) phosphorylated and, thus, activated AMP kinase in 3T3-L1 cells. Our results suggest that MDH2 inhibition can suppress cell growth and promote glucose uptake in the cells, but appears to promote glucose uptake more strongly than it suppresses cell growth. Thus, DIF-1 may promote glucose uptake, at least in part, via direct inhibition of MDH2 and a subsequent activation of AMP kinase in 3T3-L1 cells.
Collapse
Affiliation(s)
- Yuzuru Kubohara
- Laboratory of Health and Life Science, Graduate School of Health and Sports Science, Juntendo University, Inzai 270-1695, Japan
| | - Yuko Fukunaga
- Department of Animal Risk Management, Faculty of Risk and Crisis Management, Chiba Institute of Science, Choshi 288-0025, Japan;
| | - Ayako Shigenaga
- Institute of Health and Sports Science & Medicine, Juntendo University, Inzai 270-1695, Japan;
| | - Haruhisa Kikuchi
- Division of Natural Medicines, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan;
| |
Collapse
|