1
|
Chen L, Yin J, Xu K, Cui Y, Zhu S, Li T, Lv T, Song Y, Zhan P. Novel bioengineered drugs with immunotherapies for malignant pleural effusion: Remodulate tumor immune microenvironment and activate immune system. Crit Rev Oncol Hematol 2025; 211:104717. [PMID: 40194717 DOI: 10.1016/j.critrevonc.2025.104717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/21/2025] [Accepted: 03/31/2025] [Indexed: 04/09/2025] Open
Abstract
Malignant pleural effusion (MPE) remains a clinical issue since it is associated with advanced-stage cancers and dismal survival, with immunosuppressive tumor microenvironment (TME) and ineffective drug delivery. Conventional therapies such as thoracentesis and pleurodesis are for symptom relief but palliative, without inducing immunity and prolonging survival. Emerging new bioengineered drugs, synergizing with immunotherapies, offer a new paradigm by dual-targeting TME remodeling and immune activation. These technologies leverage nanotechnology, gene editing, and biomaterials to offer precise spatiotemporal control. This review illustrates the molecular mechanism of the immunosuppressive TME in MPE. It examines the newest bioengineering platforms-such as cytokine-encapsulated nanoparticles and oncolytic viruses-that can reactivate immune mechanisms. We highlight preclinical and clinical evidence of the effectiveness of combinatorial strategies in overcoming local immune tolerance and potential risks in adverse events. While the clinical transformation challenge remains, future directions necessitate cross-disciplinary convergence to engineer intelligent delivery vehicles and predictive biomarkers for patient stratification. By integrating immunotherapy with bioengineering, this strategy not only restores antitumor immunity but also portends a new epoch of precision medicine for MPE.
Collapse
Affiliation(s)
- Lu Chen
- Department of Respiratory and Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jie Yin
- Department of Respiratory and Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ke Xu
- Department of Respiratory and Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - YuTing Cui
- Department of Respiratory and Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - SuHua Zhu
- Department of Respiratory and Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tian Li
- Tianjin Key Laboratory of Acute Abdomen Disease-Associated Organ Injury and ITCWM Repair, Institute of Integrative Medicine of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, 8 Changjiang Avenue, Tianjin 300100, China.
| | - Tangfeng Lv
- Department of Respiratory and Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Yong Song
- Department of Respiratory and Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Ping Zhan
- Department of Respiratory and Critical Care Medicine, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Sultan MH, Zhan Q, Jin H, Jia X, Wang Y. Epigenetic modulation by oncolytic viruses: Implications for cancer therapeutic efficacy. Biochim Biophys Acta Rev Cancer 2025; 1880:189270. [PMID: 39855579 DOI: 10.1016/j.bbcan.2025.189270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Among various therapeutic agents, Oncolytic Viruses (OVs) are the most promising anticancer therapeutics because of their tumor-specific targeting and capability to mediate an antitumor immune response. In this review, we will discuss how epigenetic reprogramming of both the host and tumor can facilitate increased sensitivity of tumors to OV therapy. OVs infect tumor cells and modulate epigenetic landscapes, including DNA methylation, histone modifications, and chromatin remodeling, as well as non-coding RNA expression that consequently induces immune responses. These epigenetic changes, including hypermethylation of tumor-associated antigen genes and chromatin accessibility alterations, enhance the immunogenicity of tumors to facilitate recognition by the immune system. Here, we provide a general review addressing this question by discussing the potential benefits of combining OVs with epigenetic drugs to combat resistance and promote treatment efficacy. This information illustrates the importance of personalized OV therapy regarding epigenome in individual profiles and transitions. Still, it extends difficulty in inducing with acquisitions of viral-induced changes globally and making translatable steps by creating cancer-specific predictive treatment models.
Collapse
Affiliation(s)
- Muhammad Haris Sultan
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qi Zhan
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hao Jin
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaoyuan Jia
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yigang Wang
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
| |
Collapse
|
3
|
Vazaios K, Hernández López P, Aarts-Riemens T, Daudeij A, Kemp V, Hoeben RC, Straetemans T, Hulleman E, Calkoen FG, van der Lugt J, Kuball J. Unusual Partners: γδ-TCR-Based T Cell Therapy in Combination with Oncolytic Virus Treatment for Diffuse Midline Gliomas. Int J Mol Sci 2025; 26:2167. [PMID: 40076788 PMCID: PMC11900589 DOI: 10.3390/ijms26052167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Due to the minimal survival benefits of existing therapies for pediatric diffuse midline glioma (DMG) patients, new therapeutic modalities are being investigated. Immunotherapies such as CAR-T cells and oncolytic viruses (OVs) are part of these efforts, as evidenced by the increasing number of clinical trials. αβ T cells engineered with a high-affinity γ9δ2 T-cell receptor (TEGs) are immune cells designed to target metabolic changes in malignant or virally infected cells via BTN2A1 and BTN3A. Because the expression of BTN2A1 and BTN3A can be altered in tumor and infected cells, combining TEGs and OVs could potentially enhance the anti-tumor response. We investigated this hypothesis in the following study. We demonstrate that TEGs can indeed target DMG, which expresses BTN2A1 and BTN3A at varying levels, and that OVs can further enhance the expression of BTN3A-but not BTN2A1-in DMG. Functionally, TEGs killed DMG cell cultures, and this killing was further increased after OV infection of the DMGs with either adenovirus Δ24-RGD or reovirus R124 under suboptimal conditions. However, this additive effect was lost when γ9δ2 TCR-ligand interaction was boosted by pamidronate. This study demonstrates the additive effect of combining OVs and Vγ9Vδ2 TCR-engineered immune cells under suboptimal conditions and supports a combination strategy to enhance the efficacy of both therapeutic modalities.
Collapse
MESH Headings
- Humans
- Glioma/therapy
- Glioma/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Oncolytic Virotherapy/methods
- Oncolytic Viruses/genetics
- Oncolytic Viruses/physiology
- Immunotherapy, Adoptive/methods
- Cell Line, Tumor
- Combined Modality Therapy
- Brain Neoplasms/therapy
- Brain Neoplasms/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Butyrophilins/genetics
- Butyrophilins/metabolism
Collapse
Affiliation(s)
- Konstantinos Vazaios
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (K.V.); (E.H.); (F.G.C.)
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands; (P.H.L.); (T.A.-R.); (A.D.); (T.S.)
| | - Patricia Hernández López
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands; (P.H.L.); (T.A.-R.); (A.D.); (T.S.)
| | - Tineke Aarts-Riemens
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands; (P.H.L.); (T.A.-R.); (A.D.); (T.S.)
| | - Annet Daudeij
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands; (P.H.L.); (T.A.-R.); (A.D.); (T.S.)
| | - Vera Kemp
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden University, 2333 ZC Leiden, The Netherlands; (V.K.); (R.C.H.)
| | - Rob C. Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden University, 2333 ZC Leiden, The Netherlands; (V.K.); (R.C.H.)
| | - Trudy Straetemans
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands; (P.H.L.); (T.A.-R.); (A.D.); (T.S.)
| | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (K.V.); (E.H.); (F.G.C.)
| | - Friso G. Calkoen
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (K.V.); (E.H.); (F.G.C.)
| | - Jasper van der Lugt
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands; (K.V.); (E.H.); (F.G.C.)
| | - Jürgen Kuball
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, The Netherlands; (P.H.L.); (T.A.-R.); (A.D.); (T.S.)
- Department of Hematology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
4
|
Demir T, Moloney C, Mahalingam D. Threading the Needle: Navigating Novel Immunotherapeutics in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2025; 17:715. [PMID: 40075563 PMCID: PMC11898821 DOI: 10.3390/cancers17050715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/08/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with a poor prognosis. Currently, chemotherapy is the only option for most patients with advanced-stage PDAC. Further, conventional immunotherapies and targeted therapies improve survival outcomes only in rare PDAC patient subgroups. To date, combinatory immunotherapeutic strategies to overcome the immune-hostile PDAC tumor microenvironment (TME) have resulted in limited efficacy in clinical studies. However, efforts are ongoing to develop new treatment strategies for patients with PDAC with the evolving knowledge of the TME, molecular characterization, and immune resistance mechanisms. Further, the growing arsenal of various immunotherapeutic agents, including novel classes of immune checkpoint inhibitors and oncolytic, chimeric antigen receptor T cell, and vaccine therapies, reinforces these efforts. This review will focus on the place of immunotherapy and future possible strategies in PDAC.
Collapse
Affiliation(s)
| | | | - Devalingam Mahalingam
- Developmental Therapeutics, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (T.D.); (C.M.)
| |
Collapse
|
5
|
Du W, Na J, Zhong L, Zhang P. Advances in preclinical and clinical studies of oncolytic virus combination therapy. Front Oncol 2025; 15:1545542. [PMID: 39990685 PMCID: PMC11842258 DOI: 10.3389/fonc.2025.1545542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/09/2025] [Indexed: 02/25/2025] Open
Abstract
Oncolytic viruses represent a distinct class of viruses that selectively infect and destroy tumor cells while sparing normal cells. Despite their potential, oncolytic viruses encounter several challenges as standalone therapies. Consequently, the combination of oncolytic viruses with other therapeutic modalities has emerged as a prominent research focus. This paper summarizes the tumor-killing mechanisms of oncolytic viruses, explores their integration with radiotherapy, chemotherapy, immune checkpoint inhibitors, CAR-T, and CAR-NK therapies, and provides an overview of related clinical trials. By synthesizing these advancements, this study seeks to offer valuable insights for the clinical translation of oncolytic virus combination therapies.
Collapse
Affiliation(s)
- Wenlong Du
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, China
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, China
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
| | - Pumin Zhang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning, China
| |
Collapse
|
6
|
Borella F, Carosso M, Chiparo MP, Ferraioli D, Bertero L, Gallio N, Preti M, Cusato J, Valabrega G, Revelli A, Marozio L, Cosma S. Oncolytic Viruses in Ovarian Cancer: Where Do We Stand? A Narrative Review. Pathogens 2025; 14:140. [PMID: 40005517 PMCID: PMC11858389 DOI: 10.3390/pathogens14020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Ovarian cancer (OC) remains the most lethal gynecologic malignancy with limited effective treatment options. Oncolytic viruses (OVs) have emerged as a promising therapeutic approach for cancer treatment, capable of selectively infecting and lysing cancer cells while stimulating anti-tumor immune responses. Preclinical studies have demonstrated significant tumor regression and prolonged survival in OC models using various OVs, such as herpes simplex. Early-phase clinical trials have shown a favorable safety profile, though the impact on patient survival has been modest. Current research focuses on combining OVs with other treatments like immune checkpoint inhibitors to enhance their efficacy. We provide a comprehensive overview of the current understanding and future directions for utilizing OVs in the management of OC.
Collapse
Affiliation(s)
- Fulvio Borella
- Gynecology and Obstetrics 1U, Departments of Surgical Sciences, University of Turin, 10126 Turin, Italy; (M.C.); (M.P.C.); (L.M.); (S.C.)
| | - Marco Carosso
- Gynecology and Obstetrics 1U, Departments of Surgical Sciences, University of Turin, 10126 Turin, Italy; (M.C.); (M.P.C.); (L.M.); (S.C.)
| | - Maria Pia Chiparo
- Gynecology and Obstetrics 1U, Departments of Surgical Sciences, University of Turin, 10126 Turin, Italy; (M.C.); (M.P.C.); (L.M.); (S.C.)
| | - Domenico Ferraioli
- Department of Gynecology, Léon Bérard, Comprehensive Cancer Centre, 69008 Lyon, France;
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy;
| | - Niccolò Gallio
- Gynecology and Obstetrics 2U, Departments of Surgical Sciences, University of Turin, 10126 Turin, Italy; (N.G.); (A.R.)
| | - Mario Preti
- Gynecology and Obstetrics 1U, Departments of Surgical Sciences, University of Turin, 10126 Turin, Italy; (M.C.); (M.P.C.); (L.M.); (S.C.)
| | - Jessica Cusato
- Laboratory of Clinical Pharmacology and Pharmacogenetics, Department of Medical Sciences, University of Turin, 10149 Turin, Italy;
| | - Giorgio Valabrega
- Department of Oncology, University of Turin, Medical Oncology, Ordine Mauriziano Hospital, 10128 Turin, Italy;
| | - Alberto Revelli
- Gynecology and Obstetrics 2U, Departments of Surgical Sciences, University of Turin, 10126 Turin, Italy; (N.G.); (A.R.)
| | - Luca Marozio
- Gynecology and Obstetrics 1U, Departments of Surgical Sciences, University of Turin, 10126 Turin, Italy; (M.C.); (M.P.C.); (L.M.); (S.C.)
| | - Stefano Cosma
- Gynecology and Obstetrics 1U, Departments of Surgical Sciences, University of Turin, 10126 Turin, Italy; (M.C.); (M.P.C.); (L.M.); (S.C.)
| |
Collapse
|
7
|
Erickson NJ, Stavarache M, Tekedereli I, Kaplitt MG, Markert JM. Herpes Simplex Oncolytic Viral Therapy for Malignant Glioma and Mechanisms of Delivery. World Neurosurg 2025; 194:123595. [PMID: 39710201 DOI: 10.1016/j.wneu.2024.123595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/14/2024] [Indexed: 12/24/2024]
Abstract
The authors present a comprehensive review on the history and development of oncolytic herpes simplex viral therapies for malignant glioma with a focus on mechanisms of delivery in prior and ongoing clinical trials. This review highlights the advancements made with regard to delivering these therapies to a highly complex immunologic environment in the setting of the blood-brain and blood-tumor barrier in a safe and effective manner.
Collapse
Affiliation(s)
- Nicholas J Erickson
- Department of Neurosurgery, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mihaela Stavarache
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Ibrahim Tekedereli
- Department of Neurosurgery, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael G Kaplitt
- Laboratory of Molecular Neurosurgery, Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA
| | - James M Markert
- Department of Neurosurgery, The University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
8
|
Zeng F, Huang Y, Xu B, Yao L, Zhang Y, Gao Z, Luo Y. A Novel Oncolytic Virus Formulation Based on Mesenchymal Stem Cell-Derived Vesicles for Tumor Therapy. J Cancer 2025; 16:700-707. [PMID: 39781350 PMCID: PMC11705066 DOI: 10.7150/jca.104066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/12/2024] [Indexed: 01/12/2025] Open
Abstract
Developing new drug delivery systems is crucial for enhancing the efficacy of oncolytic virus (OV) therapies in cancer treatment. In this study, mesenchymal stem cell (MSC)-derived vesicles and oncolytic viruses are exploited to construct a novel formulation. It has been hypothesized that vesicle-coated OVs could amplify cytotoxic effects through superior internalization by tumor cells. MSC vesicles possess natural tumor homing ability and biocompatibility, which can enhance the targeting, uptake, and therapeutic effects of OVs on tumor cells. Experimental results indicated that this treatment system has increased the apoptosis of tumor cells. Furthermore, flow cytometry analysis demonstrated that the uptake of tumor cells by OVs coated with MSC vesicles soared away compared to uncoated OVs, being 1.5 times than that of the uncoated group. Additionally, the confocal laser scanning microscopy also showed that the fluorescence intensity within tumor cells pretreated with MSC-coated OVs was greater. Meanwhile, propidium iodide (PI) staining revealed that MSC-coated Ovs exposed to tumor cells accelerating the apoptosis of the latter. According to the statistics, the number of dead cells was increased, and the flow cytometry testified that the apoptosis in the MSC-coated OV group was as high as 23.78%. These findings highlight the potential of MSC vesicle-coated OVs in enhancing the delivery and efficacy of oncolytic virus therapy, providing a promising strategy for cancer treatment.
Collapse
Affiliation(s)
- Fanjun Zeng
- Department of General Practice, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yucheng Huang
- School of Medicine, South China University of Technology, Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510006, China
| | - Bin Xu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 510006, China
| | - Lintong Yao
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yiqing Zhang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhiping Gao
- Department of General Practice, Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China
| | - Yingli Luo
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
9
|
Elsner L, Dieringer B, Geisler A, Girod M, Van Linthout S, Kurreck J, Fechner H. Optimized Directed Virus Evolution to Accelerate the Generation of Oncolytic Coxsackievirus B3 Adapted to Resistant Colorectal Cancer Cells. Viruses 2024; 16:1958. [PMID: 39772264 PMCID: PMC11680246 DOI: 10.3390/v16121958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Recently, we demonstrated that the oncolytic Coxsackievirus B3 (CVB3) strain PD-H can be efficiently adapted to resistant colorectal cancer cells through dose-dependent passaging in colorectal cancer cells. However, the method is time-consuming, which limits its clinical applicability. Here, we investigated whether the manufacturing time of the adapted virus can be reduced by replacing the dose-based passaging with volume-based passaging. For this purpose, the murine colorectal carcinoma cell line MC38, resistant to PD-H-induced lysis, was initially infected with PD-H at 0.1 multiplicity of infection (MOI). For subsequent passages, 15-30 µL of a 1:10 dilution of the cell culture supernatant was transferred to fresh MC38 cells early after virus-induced cell lysis became visible. By virus passage 10, complete cell lysis of MC38 cells was achieved. Sequencing of the passage 10 virus (P-10) revealed two nucleotide substitutions in the 5' UTR and six amino acid changes in the viral polyprotein compared to the PD-H founder. P-10, however, consisted of a heterogeneous virus population. Therefore, the detected mutations were introduced into the cDNA of PD-H, from which the recombinant virus PD-MC38 was generated. PD-MC38 exhibited significantly enhanced replication and lytic activity in MC38 cells compared to PD-H, whereas its oncolytic activity in other colorectal cancer cell lines was comparable to or even lower than that of PD-H. These findings demonstrate that volume-based passaging is suitable to generate tumor cell-specific adapted PD-H. Moreover, compared to the dose-dependent passaging, volume-based passaging significantly reduced the time required to generate the adapted virus.
Collapse
Affiliation(s)
- Leslie Elsner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; (L.E.); (B.D.); (A.G.); (M.G.); (J.K.)
| | - Babette Dieringer
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; (L.E.); (B.D.); (A.G.); (M.G.); (J.K.)
| | - Anja Geisler
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; (L.E.); (B.D.); (A.G.); (M.G.); (J.K.)
| | - Maxim Girod
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; (L.E.); (B.D.); (A.G.); (M.G.); (J.K.)
| | - Sophie Van Linthout
- Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), 13353 Berlin, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, 13092 Berlin, Germany
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; (L.E.); (B.D.); (A.G.); (M.G.); (J.K.)
| | - Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany; (L.E.); (B.D.); (A.G.); (M.G.); (J.K.)
| |
Collapse
|
10
|
Ammour Y, Nikolaeva E, Sagimbaeva O, Shamsutdinov P, Astapenko A, Zhelaeva Y, Gavrilova M, Susova O, Mitrofanov A, Bekyashev A, Nasedkina T, Svitich O, Faizuloev E, Zverev V. Human Melanoma and Glioblastoma Cells Express Cathepsins Supporting Reovirus Moscow Strain Infection. Viruses 2024; 16:1944. [PMID: 39772250 PMCID: PMC11680368 DOI: 10.3390/v16121944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
This study evaluates the oncolytic potential of the Moscow strain of reovirus against human metastatic melanoma and glioblastoma cells. The Moscow strain effectively infects and replicates within human melanoma cell lines and primary glioblastoma cells, while sparing non-malignant human cells. Infection leads to the selective destruction of neoplastic cells, mediated by functional viral replication. A positive correlation was identified between viral RNA accumulation and tumor cell death, with no replication observed in non-malignant cells. This study highlights the critical roles of cathepsins B, L, and S as mediators of the oncolytic process. The pharmacological inhibition of these enzymes significantly attenuated reovirus-induced cytotoxicity in melanoma and glioblastoma cells. Conversely, PKR production analysis revealed minimal activation in reovirus-infected tumor cells, suggesting that the hyperactivation of the RAS-signaling pathway and subsequent PKR inhibition do not directly contribute to the selective efficacy of reovirus. Moreover, infected tumor cells exhibited features of both apoptotic and non-apoptotic death, emphasizing the intricate mechanisms of reovirus-mediated oncolysis. These findings underscore the therapeutic promise of the Moscow strain of reovirus as a selective and potent oncolytic agent for targeting melanoma and glioblastoma cells.
Collapse
Affiliation(s)
- Yulia Ammour
- I.I. Mechnikov Research Institute for Vaccines and Sera, 105064 Moscow, Russia; (E.N.); (O.S.); (P.S.); (A.A.); (Y.Z.); (M.G.); (O.S.); (E.F.); (V.Z.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Eugenia Nikolaeva
- I.I. Mechnikov Research Institute for Vaccines and Sera, 105064 Moscow, Russia; (E.N.); (O.S.); (P.S.); (A.A.); (Y.Z.); (M.G.); (O.S.); (E.F.); (V.Z.)
| | - Olesya Sagimbaeva
- I.I. Mechnikov Research Institute for Vaccines and Sera, 105064 Moscow, Russia; (E.N.); (O.S.); (P.S.); (A.A.); (Y.Z.); (M.G.); (O.S.); (E.F.); (V.Z.)
| | - Pavel Shamsutdinov
- I.I. Mechnikov Research Institute for Vaccines and Sera, 105064 Moscow, Russia; (E.N.); (O.S.); (P.S.); (A.A.); (Y.Z.); (M.G.); (O.S.); (E.F.); (V.Z.)
| | - Anastasia Astapenko
- I.I. Mechnikov Research Institute for Vaccines and Sera, 105064 Moscow, Russia; (E.N.); (O.S.); (P.S.); (A.A.); (Y.Z.); (M.G.); (O.S.); (E.F.); (V.Z.)
| | - Yulia Zhelaeva
- I.I. Mechnikov Research Institute for Vaccines and Sera, 105064 Moscow, Russia; (E.N.); (O.S.); (P.S.); (A.A.); (Y.Z.); (M.G.); (O.S.); (E.F.); (V.Z.)
| | - Marina Gavrilova
- I.I. Mechnikov Research Institute for Vaccines and Sera, 105064 Moscow, Russia; (E.N.); (O.S.); (P.S.); (A.A.); (Y.Z.); (M.G.); (O.S.); (E.F.); (V.Z.)
| | - Olga Susova
- N.N. Blokhin Russian Cancer Research Center of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (O.S.); (A.M.); (A.B.)
| | - Aleksey Mitrofanov
- N.N. Blokhin Russian Cancer Research Center of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (O.S.); (A.M.); (A.B.)
| | - Ali Bekyashev
- N.N. Blokhin Russian Cancer Research Center of the Ministry of Health of the Russian Federation, 115478 Moscow, Russia; (O.S.); (A.M.); (A.B.)
| | - Tatiana Nasedkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia;
| | - Oxana Svitich
- I.I. Mechnikov Research Institute for Vaccines and Sera, 105064 Moscow, Russia; (E.N.); (O.S.); (P.S.); (A.A.); (Y.Z.); (M.G.); (O.S.); (E.F.); (V.Z.)
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 119146 Moscow, Russia
| | - Evgeny Faizuloev
- I.I. Mechnikov Research Institute for Vaccines and Sera, 105064 Moscow, Russia; (E.N.); (O.S.); (P.S.); (A.A.); (Y.Z.); (M.G.); (O.S.); (E.F.); (V.Z.)
| | - Vitaly Zverev
- I.I. Mechnikov Research Institute for Vaccines and Sera, 105064 Moscow, Russia; (E.N.); (O.S.); (P.S.); (A.A.); (Y.Z.); (M.G.); (O.S.); (E.F.); (V.Z.)
- I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, 119146 Moscow, Russia
| |
Collapse
|
11
|
Larrieux A, Sanjuán R. Murine colon cancer derived cells exhibit heterogeneous resistance profiles against an oncolytic virus. Sci Rep 2024; 14:27209. [PMID: 39516525 PMCID: PMC11549347 DOI: 10.1038/s41598-024-78313-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Oncolytic virotherapy has shown efficacy in various animal models and a few human cancers. However, there are still significant limitations for the implementation of these therapies. One such limitation is the emergence of cellular resistances, which may appear rapidly considering the high genetic heterogeneity of most tumors. We previously showed that cellular resistance to an oncolytic virus can be mediated by the chronic activation of innate immunity. Here, we explored the existence of additional resistance mechanisms in murine colon cancer-derived cells. For this purpose, we isolated two cellular clones that were resistant to the oncolytic virus VSV-D51. While one of the clones showed a strong resistance profile associated with increased cytokine-mediated antiviral responses, the other clone showed a lower level of resistance that involves cytoskeletal reorganization, signaling by small GTPases, and cell structural changes. These results demonstrate the capacity of tumor cells to deploy heterogeneous mechanisms of resistance to oncolytic viruses.
Collapse
Affiliation(s)
- Alejandra Larrieux
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46980, València, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46980, València, Spain.
| |
Collapse
|
12
|
Zinovieva M, Ryapolova A, Karabelsky A, Minskaia E. Oncolytic Vesicular Stomatitis Virus: Optimisation Strategies for Anti-Cancer Therapies. FRONT BIOSCI-LANDMRK 2024; 29:374. [PMID: 39614430 DOI: 10.31083/j.fbl2911374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 12/01/2024]
Abstract
Oncolytic viruses (OVs) represent a targeted anti-cancer therapy approach due to their ability not only to selectively infect and destroy malignant cells but also to induce an immune response. Vesicular stomatitis virus (VSV) offers a promising platform due to its low prevalence and pathogenicity in humans, lack of pre-existing immunity, easily manipulated genome, rapid growth to high titers in a broad range of cell lines, and inability to integrate into the host genome. However, despite its many advantages, many unresolved problems remain: problematic production based on the reverse genetics system, oncological selectivity, and the overall effectiveness of VSV monotherapy. This review will discuss various attempts at viral genome modifications aimed at improving the oncolytic properties of VSV. These strategies include inhibition of viral genes, modification of genes responsible for targeting cancer cells over healthy ones, insertion of foreign genes for boosting immune response, and changing the order of viral and inserted foreign genes. In addition, possible ways to improve VSV-based anti-tumor therapy and achieve higher efficiency will be considered by evaluating the effectiveness of various delivery methods as well as discussing treatment options by combining VSV with other groups of anticancer drugs.
Collapse
Affiliation(s)
- Margarita Zinovieva
- Department of Gene Therapy, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Anastasia Ryapolova
- Department of Gene Therapy, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Alexander Karabelsky
- Department of Gene Therapy, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Ekaterina Minskaia
- Department of Gene Therapy, Sirius University of Science and Technology, 354340 Sochi, Russia
| |
Collapse
|
13
|
Zhang G, Wang Q, Yuan R, Zhang Y, Chen K, Yu J, Ye T, Jia X, Zhou Y, Li G, Chen K. Oncolytic vaccinia virus harboring aphrocallistes vastus lectin exerts anti-tumor effects by directly oncolysis and inducing immune response through enhancing ROS in human ovarian cancer. Biochem Biophys Res Commun 2024; 730:150355. [PMID: 38996784 DOI: 10.1016/j.bbrc.2024.150355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
Aphrocallistes vastus lectin (AVL) is a Ca2+ dependent C-type lectin produced by sponges. Previous studies have demonstrated that oncolytic vaccinia virus harboring AVL (oncoVV-AVL) effectively triggers cell death in various tumors. However, the effects of oncoVV-AVL on human ovarian cancer (OV) remain unknown. This study aims to investigate the mechanism-of-action of oncoVV-AVL in human OV cell lines and in tumor-bearing nude mice. We found that oncoVV-AVL could directly induce apoptosis and autophagy in ovarian cancer cells. Additionally, our results showed that oncoVV-AVL increased the serum levels of mouse IFN-γ (mIFN-γ), leading to the activation of M1-polarized macrophages. Conversely, NADPH, a reducing agent by providing reducing equivalents, reduced the production of mIFN-γ, and suppressed M1-polarization of macrophage. Based on these findings, we propose that oncoVV-AVL not only contributes to direct cytolysis, but also enhances host immune response by promoting ROS levels.
Collapse
Affiliation(s)
- Guohui Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qiang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Rentao Yuan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yanan Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ke Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jianlei Yu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ting Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaoyuan Jia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yanrong Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Gongchu Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China; Hangzhou Gongchu Biotechnology Co., Ltd., Hangzhou, China.
| | - Kan Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
| |
Collapse
|
14
|
Rahman MA, Ali MM. Recent Treatment Strategies and Molecular Pathways in Resistance Mechanisms of Antiangiogenic Therapies in Glioblastoma. Cancers (Basel) 2024; 16:2975. [PMID: 39272834 PMCID: PMC11394361 DOI: 10.3390/cancers16172975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Malignant gliomas present great difficulties in treatment, with little change over the past 30 years in the median survival time of 15 months. Current treatment options include surgery, radiotherapy (RT), and chemotherapy. New therapies aimed at suppressing the formation of new vasculature (antiangiogenic treatments) or destroying formed tumor vasculature (vascular disrupting agents) show promise. This study summarizes the existing knowledge regarding the processes by which glioblastoma (GBM) tumors acquire resistance to antiangiogenic treatments. The discussion encompasses the activation of redundant proangiogenic pathways, heightened tumor cell invasion and metastasis, resistance induced by hypoxia, creation of vascular mimicry channels, and regulation of the tumor immune microenvironment. Subsequently, we explore potential strategies to overcome this resistance, such as combining antiangiogenic therapies with other treatment methods, personalizing treatments for each patient, focusing on new therapeutic targets, incorporating immunotherapy, and utilizing drug delivery systems based on nanoparticles. Additionally, we would like to discuss the limitations of existing methods and potential future directions to enhance the beneficial effects of antiangiogenic treatments for patients with GBM. Therefore, this review aims to enhance the research outcome for GBM and provide a more promising opportunity by thoroughly exploring the mechanisms of resistance and investigating novel therapeutic strategies.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | - Meser M Ali
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
15
|
Kang Q, He L, Zhang Y, Zhong Z, Tan W. Immune-inflammatory modulation by natural products derived from edible and medicinal herbs used in Chinese classical prescriptions. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155684. [PMID: 38788391 DOI: 10.1016/j.phymed.2024.155684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Edible and medicinal herbs1 (EMHs) refer to a class of substances with dual attribution of food and medicine. These substances are traditionally used as food and also listed in many international pharmacopoeias, including the European Pharmacopoeia, the United States Pharmacopoeia, and the Chinese Pharmacopoeia. Some classical formulas that are widely used in traditional Chinese medicine include a series of EMHs, which have been shown to be effective with obvious characteristics and advantages. Notably, these EMHs and Chinese classical prescriptions2 (CCPs) have also attracted attention in international herbal medicine research because of their low toxicity and high efficiency as well as the rich body of experience for their long-term clinical use. PURPOSE Our purpose is to explore the potential therapeutic effect of EMHs with immune-inflammatory modulation for the study of modern cancer drugs. STUDY DESIGN In the present study, we present a detailed account of some EMHs used in CCPs that have shown considerable research potential in studies exploring modern drugs with immune-inflammatory modulation. METHODS Approximately 500 publications in the past 30 years were collected from PubMed, Web of Science and ScienceDirect using the keywords, such as natural products, edible and medicinal herbs, Chinese medicine, classical prescription, immune-inflammatory, tumor microenvironment and some related synonyms. The active ingredients instead of herbal extracts or botanical mixtures were focused on and the research conducted over the past decade were discussed emphatically and analyzed comprehensively. RESULTS More than ten natural products derived from EMHs used in CCPs are discussed and their immune-inflammatory modulation activities, including enhancing antitumor immunity, regulating inflammatory signaling pathways, lowering the proportion of immunosuppressive cells, inhibiting the secretion of proinflammatory cytokines, immunosuppressive factors, and inflammatory mediators, are summarized. CONCLUSION Our findings demonstrate the immune-inflammatory modulating role of those EMHs used in CCPs and provide new ideas for cancer treatment in clinical settings.
Collapse
Affiliation(s)
- Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Luying He
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
16
|
Wu Y, Yu G, Jin K, Qian J. Advancing non-small cell lung cancer treatment: the power of combination immunotherapies. Front Immunol 2024; 15:1349502. [PMID: 39015563 PMCID: PMC11250065 DOI: 10.3389/fimmu.2024.1349502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) remains an unsolved challenge in oncology, signifying a substantial global health burden. While considerable progress has been made in recent years through the emergence of immunotherapy modalities, such as immune checkpoint inhibitors (ICIs), monotherapies often yield limited clinical outcomes. The rationale behind combining various immunotherapeutic or other anticancer agents, the mechanistic underpinnings, and the clinical evidence supporting their utilization is crucial in NSCLC therapy. Regarding the synergistic potential of combination immunotherapies, this study aims to provide insights to help the landscape of NSCLC treatment and improve clinical outcomes. In addition, this review article discusses the challenges and considerations of combination regimens, including toxicity management and patient selection.
Collapse
Affiliation(s)
- Yuanlin Wu
- Department of Thoracic Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Guangmao Yu
- Department of Thoracic Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Ketao Jin
- Department of Gastrointestinal, Colorectal and Anal Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People’s Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang, China
| |
Collapse
|
17
|
Lang X, Wang X, Han M, Guo Y. Nanoparticle-Mediated Synergistic Chemoimmunotherapy for Cancer Treatment. Int J Nanomedicine 2024; 19:4533-4568. [PMID: 38799699 PMCID: PMC11127654 DOI: 10.2147/ijn.s455213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Until now, there has been a lack of effective strategies for cancer treatment. Immunotherapy has high potential in treating several cancers but its efficacy is limited as a monotherapy. Chemoimmunotherapy (CIT) holds promise to be widely used in cancer treatment. Therefore, identifying their involvement and potential synergy in CIT approaches is decisive. Nano-based drug delivery systems (NDDSs) are ideal delivery systems because they can simultaneously target immune cells and cancer cells, promoting drug accumulation, and reducing the toxicity of the drug. In this review, we first introduce five current immunotherapies, including immune checkpoint blocking (ICB), adoptive cell transfer therapy (ACT), cancer vaccines, oncolytic virus therapy (OVT) and cytokine therapy. Subsequently, the immunomodulatory effects of chemotherapy by inducing immunogenic cell death (ICD), promoting tumor killer cell infiltration, down-regulating immunosuppressive cells, and inhibiting immune checkpoints have been described. Finally, the NDDSs-mediated collaborative drug delivery systems have been introduced in detail, and the development of NDDSs-mediated CIT nanoparticles has been prospected.
Collapse
Affiliation(s)
- Xiaoxue Lang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, People’s Republic of China
| |
Collapse
|
18
|
Mitra A, Kumar A, Amdare NP, Pathak R. Current Landscape of Cancer Immunotherapy: Harnessing the Immune Arsenal to Overcome Immune Evasion. BIOLOGY 2024; 13:307. [PMID: 38785789 PMCID: PMC11118874 DOI: 10.3390/biology13050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Cancer immune evasion represents a leading hallmark of cancer, posing a significant obstacle to the development of successful anticancer therapies. However, the landscape of cancer treatment has significantly evolved, transitioning into the era of immunotherapy from conventional methods such as surgical resection, radiotherapy, chemotherapy, and targeted drug therapy. Immunotherapy has emerged as a pivotal component in cancer treatment, harnessing the body's immune system to combat cancer and offering improved prognostic outcomes for numerous patients. The remarkable success of immunotherapy has spurred significant efforts to enhance the clinical efficacy of existing agents and strategies. Several immunotherapeutic approaches have received approval for targeted cancer treatments, while others are currently in preclinical and clinical trials. This review explores recent progress in unraveling the mechanisms of cancer immune evasion and evaluates the clinical effectiveness of diverse immunotherapy strategies, including cancer vaccines, adoptive cell therapy, and antibody-based treatments. It encompasses both established treatments and those currently under investigation, providing a comprehensive overview of efforts to combat cancer through immunological approaches. Additionally, the article emphasizes the current developments, limitations, and challenges in cancer immunotherapy. Furthermore, by integrating analyses of cancer immunotherapy resistance mechanisms and exploring combination strategies and personalized approaches, it offers valuable insights crucial for the development of novel anticancer immunotherapeutic strategies.
Collapse
Affiliation(s)
- Ankita Mitra
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, Uttar Pradesh, India
| | - Nitin P. Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
19
|
Sonoda-Fukuda E, Takeuchi Y, Ogawa N, Noguchi S, Takarada T, Kasahara N, Kubo S. Targeted Suicide Gene Therapy with Retroviral Replicating Vectors for Experimental Canine Cancers. Int J Mol Sci 2024; 25:2657. [PMID: 38473904 DOI: 10.3390/ijms25052657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Cancer in dogs has increased in recent years and is a leading cause of death. We have developed a retroviral replicating vector (RRV) that specifically targets cancer cells for infection and replication. RRV carrying a suicide gene induced synchronized killing of cancer cells when administered with a prodrug after infection. In this study, we evaluated two distinct RRVs derived from amphotropic murine leukemia virus (AMLV) and gibbon ape leukemia virus (GALV) in canine tumor models both in vitro and in vivo. Despite low infection rates in normal canine cells, both RRVs efficiently infected and replicated within all the canine tumor cells tested. The efficient intratumoral spread of the RRVs after their intratumoral injection was also demonstrated in nude mouse models of subcutaneous canine tumor xenografts. When both RRVs encoded a yeast cytosine deaminase suicide gene, which converts the prodrug 5-fluorocytosine (5-FC) to the active drug 5-fluorouracil, they caused tumor-cell-specific 5-FC-induced killing of the canine tumor cells in vitro. Furthermore, in the AZACF- and AZACH-cell subcutaneous tumor xenograft models, both RRVs exerted significant antitumor effects. These results suggest that RRV-mediated suicide gene therapy is a novel therapeutic approach to canine cancers.
Collapse
Affiliation(s)
- Emiko Sonoda-Fukuda
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Yuya Takeuchi
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Nishinomiya 663-8501, Japan
- Departments of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda 669-1330, Japan
| | - Nao Ogawa
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Nishinomiya 663-8501, Japan
- Departments of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda 669-1330, Japan
| | - Shunsuke Noguchi
- Laboratory of Veterinary Radiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano 598-8531, Japan
| | - Toru Takarada
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Nishinomiya 663-8501, Japan
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Noriyuki Kasahara
- Departments of Neurological Surgery and Radiation Oncology, University of California, San Francisco, CA 94143, USA
| | - Shuji Kubo
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Nishinomiya 663-8501, Japan
| |
Collapse
|