1
|
Larrieux A, Sanjuán R. Murine colon cancer derived cells exhibit heterogeneous resistance profiles against an oncolytic virus. Sci Rep 2024; 14:27209. [PMID: 39516525 PMCID: PMC11549347 DOI: 10.1038/s41598-024-78313-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Oncolytic virotherapy has shown efficacy in various animal models and a few human cancers. However, there are still significant limitations for the implementation of these therapies. One such limitation is the emergence of cellular resistances, which may appear rapidly considering the high genetic heterogeneity of most tumors. We previously showed that cellular resistance to an oncolytic virus can be mediated by the chronic activation of innate immunity. Here, we explored the existence of additional resistance mechanisms in murine colon cancer-derived cells. For this purpose, we isolated two cellular clones that were resistant to the oncolytic virus VSV-D51. While one of the clones showed a strong resistance profile associated with increased cytokine-mediated antiviral responses, the other clone showed a lower level of resistance that involves cytoskeletal reorganization, signaling by small GTPases, and cell structural changes. These results demonstrate the capacity of tumor cells to deploy heterogeneous mechanisms of resistance to oncolytic viruses.
Collapse
Affiliation(s)
- Alejandra Larrieux
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46980, València, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46980, València, Spain.
| |
Collapse
|
2
|
Zinovieva M, Ryapolova A, Karabelsky A, Minskaia E. Oncolytic Vesicular Stomatitis Virus: Optimisation Strategies for Anti-Cancer Therapies. FRONT BIOSCI-LANDMRK 2024; 29:374. [PMID: 39614430 DOI: 10.31083/j.fbl2911374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 12/01/2024]
Abstract
Oncolytic viruses (OVs) represent a targeted anti-cancer therapy approach due to their ability not only to selectively infect and destroy malignant cells but also to induce an immune response. Vesicular stomatitis virus (VSV) offers a promising platform due to its low prevalence and pathogenicity in humans, lack of pre-existing immunity, easily manipulated genome, rapid growth to high titers in a broad range of cell lines, and inability to integrate into the host genome. However, despite its many advantages, many unresolved problems remain: problematic production based on the reverse genetics system, oncological selectivity, and the overall effectiveness of VSV monotherapy. This review will discuss various attempts at viral genome modifications aimed at improving the oncolytic properties of VSV. These strategies include inhibition of viral genes, modification of genes responsible for targeting cancer cells over healthy ones, insertion of foreign genes for boosting immune response, and changing the order of viral and inserted foreign genes. In addition, possible ways to improve VSV-based anti-tumor therapy and achieve higher efficiency will be considered by evaluating the effectiveness of various delivery methods as well as discussing treatment options by combining VSV with other groups of anticancer drugs.
Collapse
Affiliation(s)
- Margarita Zinovieva
- Department of Gene Therapy, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Anastasia Ryapolova
- Department of Gene Therapy, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Alexander Karabelsky
- Department of Gene Therapy, Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Ekaterina Minskaia
- Department of Gene Therapy, Sirius University of Science and Technology, 354340 Sochi, Russia
| |
Collapse
|
3
|
Zhang G, Wang Q, Yuan R, Zhang Y, Chen K, Yu J, Ye T, Jia X, Zhou Y, Li G, Chen K. Oncolytic vaccinia virus harboring aphrocallistes vastus lectin exerts anti-tumor effects by directly oncolysis and inducing immune response through enhancing ROS in human ovarian cancer. Biochem Biophys Res Commun 2024; 730:150355. [PMID: 38996784 DOI: 10.1016/j.bbrc.2024.150355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
Aphrocallistes vastus lectin (AVL) is a Ca2+ dependent C-type lectin produced by sponges. Previous studies have demonstrated that oncolytic vaccinia virus harboring AVL (oncoVV-AVL) effectively triggers cell death in various tumors. However, the effects of oncoVV-AVL on human ovarian cancer (OV) remain unknown. This study aims to investigate the mechanism-of-action of oncoVV-AVL in human OV cell lines and in tumor-bearing nude mice. We found that oncoVV-AVL could directly induce apoptosis and autophagy in ovarian cancer cells. Additionally, our results showed that oncoVV-AVL increased the serum levels of mouse IFN-γ (mIFN-γ), leading to the activation of M1-polarized macrophages. Conversely, NADPH, a reducing agent by providing reducing equivalents, reduced the production of mIFN-γ, and suppressed M1-polarization of macrophage. Based on these findings, we propose that oncoVV-AVL not only contributes to direct cytolysis, but also enhances host immune response by promoting ROS levels.
Collapse
Affiliation(s)
- Guohui Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qiang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Rentao Yuan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yanan Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ke Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jianlei Yu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ting Ye
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaoyuan Jia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yanrong Zhou
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Gongchu Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China; Hangzhou Gongchu Biotechnology Co., Ltd., Hangzhou, China.
| | - Kan Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
| |
Collapse
|
4
|
Rahman MA, Ali MM. Recent Treatment Strategies and Molecular Pathways in Resistance Mechanisms of Antiangiogenic Therapies in Glioblastoma. Cancers (Basel) 2024; 16:2975. [PMID: 39272834 PMCID: PMC11394361 DOI: 10.3390/cancers16172975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Malignant gliomas present great difficulties in treatment, with little change over the past 30 years in the median survival time of 15 months. Current treatment options include surgery, radiotherapy (RT), and chemotherapy. New therapies aimed at suppressing the formation of new vasculature (antiangiogenic treatments) or destroying formed tumor vasculature (vascular disrupting agents) show promise. This study summarizes the existing knowledge regarding the processes by which glioblastoma (GBM) tumors acquire resistance to antiangiogenic treatments. The discussion encompasses the activation of redundant proangiogenic pathways, heightened tumor cell invasion and metastasis, resistance induced by hypoxia, creation of vascular mimicry channels, and regulation of the tumor immune microenvironment. Subsequently, we explore potential strategies to overcome this resistance, such as combining antiangiogenic therapies with other treatment methods, personalizing treatments for each patient, focusing on new therapeutic targets, incorporating immunotherapy, and utilizing drug delivery systems based on nanoparticles. Additionally, we would like to discuss the limitations of existing methods and potential future directions to enhance the beneficial effects of antiangiogenic treatments for patients with GBM. Therefore, this review aims to enhance the research outcome for GBM and provide a more promising opportunity by thoroughly exploring the mechanisms of resistance and investigating novel therapeutic strategies.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | - Meser M Ali
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| |
Collapse
|
5
|
Kang Q, He L, Zhang Y, Zhong Z, Tan W. Immune-inflammatory modulation by natural products derived from edible and medicinal herbs used in Chinese classical prescriptions. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155684. [PMID: 38788391 DOI: 10.1016/j.phymed.2024.155684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Edible and medicinal herbs1 (EMHs) refer to a class of substances with dual attribution of food and medicine. These substances are traditionally used as food and also listed in many international pharmacopoeias, including the European Pharmacopoeia, the United States Pharmacopoeia, and the Chinese Pharmacopoeia. Some classical formulas that are widely used in traditional Chinese medicine include a series of EMHs, which have been shown to be effective with obvious characteristics and advantages. Notably, these EMHs and Chinese classical prescriptions2 (CCPs) have also attracted attention in international herbal medicine research because of their low toxicity and high efficiency as well as the rich body of experience for their long-term clinical use. PURPOSE Our purpose is to explore the potential therapeutic effect of EMHs with immune-inflammatory modulation for the study of modern cancer drugs. STUDY DESIGN In the present study, we present a detailed account of some EMHs used in CCPs that have shown considerable research potential in studies exploring modern drugs with immune-inflammatory modulation. METHODS Approximately 500 publications in the past 30 years were collected from PubMed, Web of Science and ScienceDirect using the keywords, such as natural products, edible and medicinal herbs, Chinese medicine, classical prescription, immune-inflammatory, tumor microenvironment and some related synonyms. The active ingredients instead of herbal extracts or botanical mixtures were focused on and the research conducted over the past decade were discussed emphatically and analyzed comprehensively. RESULTS More than ten natural products derived from EMHs used in CCPs are discussed and their immune-inflammatory modulation activities, including enhancing antitumor immunity, regulating inflammatory signaling pathways, lowering the proportion of immunosuppressive cells, inhibiting the secretion of proinflammatory cytokines, immunosuppressive factors, and inflammatory mediators, are summarized. CONCLUSION Our findings demonstrate the immune-inflammatory modulating role of those EMHs used in CCPs and provide new ideas for cancer treatment in clinical settings.
Collapse
Affiliation(s)
- Qianming Kang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Luying He
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yang Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
6
|
Wu Y, Yu G, Jin K, Qian J. Advancing non-small cell lung cancer treatment: the power of combination immunotherapies. Front Immunol 2024; 15:1349502. [PMID: 39015563 PMCID: PMC11250065 DOI: 10.3389/fimmu.2024.1349502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) remains an unsolved challenge in oncology, signifying a substantial global health burden. While considerable progress has been made in recent years through the emergence of immunotherapy modalities, such as immune checkpoint inhibitors (ICIs), monotherapies often yield limited clinical outcomes. The rationale behind combining various immunotherapeutic or other anticancer agents, the mechanistic underpinnings, and the clinical evidence supporting their utilization is crucial in NSCLC therapy. Regarding the synergistic potential of combination immunotherapies, this study aims to provide insights to help the landscape of NSCLC treatment and improve clinical outcomes. In addition, this review article discusses the challenges and considerations of combination regimens, including toxicity management and patient selection.
Collapse
Affiliation(s)
- Yuanlin Wu
- Department of Thoracic Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Guangmao Yu
- Department of Thoracic Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Ketao Jin
- Department of Gastrointestinal, Colorectal and Anal Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People’s Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang, China
| |
Collapse
|
7
|
Lang X, Wang X, Han M, Guo Y. Nanoparticle-Mediated Synergistic Chemoimmunotherapy for Cancer Treatment. Int J Nanomedicine 2024; 19:4533-4568. [PMID: 38799699 PMCID: PMC11127654 DOI: 10.2147/ijn.s455213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Until now, there has been a lack of effective strategies for cancer treatment. Immunotherapy has high potential in treating several cancers but its efficacy is limited as a monotherapy. Chemoimmunotherapy (CIT) holds promise to be widely used in cancer treatment. Therefore, identifying their involvement and potential synergy in CIT approaches is decisive. Nano-based drug delivery systems (NDDSs) are ideal delivery systems because they can simultaneously target immune cells and cancer cells, promoting drug accumulation, and reducing the toxicity of the drug. In this review, we first introduce five current immunotherapies, including immune checkpoint blocking (ICB), adoptive cell transfer therapy (ACT), cancer vaccines, oncolytic virus therapy (OVT) and cytokine therapy. Subsequently, the immunomodulatory effects of chemotherapy by inducing immunogenic cell death (ICD), promoting tumor killer cell infiltration, down-regulating immunosuppressive cells, and inhibiting immune checkpoints have been described. Finally, the NDDSs-mediated collaborative drug delivery systems have been introduced in detail, and the development of NDDSs-mediated CIT nanoparticles has been prospected.
Collapse
Affiliation(s)
- Xiaoxue Lang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, People’s Republic of China
| |
Collapse
|
8
|
Mitra A, Kumar A, Amdare NP, Pathak R. Current Landscape of Cancer Immunotherapy: Harnessing the Immune Arsenal to Overcome Immune Evasion. BIOLOGY 2024; 13:307. [PMID: 38785789 PMCID: PMC11118874 DOI: 10.3390/biology13050307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Cancer immune evasion represents a leading hallmark of cancer, posing a significant obstacle to the development of successful anticancer therapies. However, the landscape of cancer treatment has significantly evolved, transitioning into the era of immunotherapy from conventional methods such as surgical resection, radiotherapy, chemotherapy, and targeted drug therapy. Immunotherapy has emerged as a pivotal component in cancer treatment, harnessing the body's immune system to combat cancer and offering improved prognostic outcomes for numerous patients. The remarkable success of immunotherapy has spurred significant efforts to enhance the clinical efficacy of existing agents and strategies. Several immunotherapeutic approaches have received approval for targeted cancer treatments, while others are currently in preclinical and clinical trials. This review explores recent progress in unraveling the mechanisms of cancer immune evasion and evaluates the clinical effectiveness of diverse immunotherapy strategies, including cancer vaccines, adoptive cell therapy, and antibody-based treatments. It encompasses both established treatments and those currently under investigation, providing a comprehensive overview of efforts to combat cancer through immunological approaches. Additionally, the article emphasizes the current developments, limitations, and challenges in cancer immunotherapy. Furthermore, by integrating analyses of cancer immunotherapy resistance mechanisms and exploring combination strategies and personalized approaches, it offers valuable insights crucial for the development of novel anticancer immunotherapeutic strategies.
Collapse
Affiliation(s)
- Ankita Mitra
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY 10016, USA
| | - Anoop Kumar
- Molecular Diagnostic Laboratory, National Institute of Biologicals, Noida 201309, Uttar Pradesh, India
| | - Nitin P. Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| |
Collapse
|
9
|
Sonoda-Fukuda E, Takeuchi Y, Ogawa N, Noguchi S, Takarada T, Kasahara N, Kubo S. Targeted Suicide Gene Therapy with Retroviral Replicating Vectors for Experimental Canine Cancers. Int J Mol Sci 2024; 25:2657. [PMID: 38473904 DOI: 10.3390/ijms25052657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Cancer in dogs has increased in recent years and is a leading cause of death. We have developed a retroviral replicating vector (RRV) that specifically targets cancer cells for infection and replication. RRV carrying a suicide gene induced synchronized killing of cancer cells when administered with a prodrug after infection. In this study, we evaluated two distinct RRVs derived from amphotropic murine leukemia virus (AMLV) and gibbon ape leukemia virus (GALV) in canine tumor models both in vitro and in vivo. Despite low infection rates in normal canine cells, both RRVs efficiently infected and replicated within all the canine tumor cells tested. The efficient intratumoral spread of the RRVs after their intratumoral injection was also demonstrated in nude mouse models of subcutaneous canine tumor xenografts. When both RRVs encoded a yeast cytosine deaminase suicide gene, which converts the prodrug 5-fluorocytosine (5-FC) to the active drug 5-fluorouracil, they caused tumor-cell-specific 5-FC-induced killing of the canine tumor cells in vitro. Furthermore, in the AZACF- and AZACH-cell subcutaneous tumor xenograft models, both RRVs exerted significant antitumor effects. These results suggest that RRV-mediated suicide gene therapy is a novel therapeutic approach to canine cancers.
Collapse
Affiliation(s)
- Emiko Sonoda-Fukuda
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Nishinomiya 663-8501, Japan
| | - Yuya Takeuchi
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Nishinomiya 663-8501, Japan
- Departments of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda 669-1330, Japan
| | - Nao Ogawa
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Nishinomiya 663-8501, Japan
- Departments of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda 669-1330, Japan
| | - Shunsuke Noguchi
- Laboratory of Veterinary Radiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano 598-8531, Japan
| | - Toru Takarada
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Nishinomiya 663-8501, Japan
- Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan
| | - Noriyuki Kasahara
- Departments of Neurological Surgery and Radiation Oncology, University of California, San Francisco, CA 94143, USA
| | - Shuji Kubo
- Laboratory of Molecular and Genetic Therapeutics, Institute of Advanced Medical Science, Hyogo Medical University, Nishinomiya 663-8501, Japan
| |
Collapse
|