1
|
Islam N, Mohsin ASM, Choudhury SH, Shaer TP, Islam MA, Sadat O, Taz NH. COVID-19 and Pneumonia detection and web deployment from CT scan and X-ray images using deep learning. PLoS One 2024; 19:e0302413. [PMID: 38976703 PMCID: PMC11230556 DOI: 10.1371/journal.pone.0302413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 04/03/2024] [Indexed: 07/10/2024] Open
Abstract
During the COVID-19 pandemic, pneumonia was the leading cause of respiratory failure and death. In addition to SARS-COV-2, it can be caused by several other bacterial and viral agents. Even today, variants of SARS-COV-2 are endemic and COVID-19 cases are common in many places. The symptoms of COVID-19 are highly diverse and robust, ranging from invisible to severe respiratory failure. Current detection methods for the disease are time-consuming and expensive with low accuracy and precision. To address such situations, we have designed a framework for COVID-19 and Pneumonia detection using multiple deep learning algorithms further accompanied by a deployment scheme. In this study, we have utilized four prominent deep learning models, which are VGG-19, ResNet-50, Inception V3 and Xception, on two separate datasets of CT scan and X-ray images (COVID/Non-COVID) to identify the best models for the detection of COVID-19. We achieved accuracies ranging from 86% to 99% depending on the model and dataset. To further validate our findings, we have applied the four distinct models on two more supplementary datasets of X-ray images of bacterial pneumonia and viral pneumonia. Additionally, we have implemented a flask app to visualize the outcome of our framework to show the identified COVID and Non-COVID images. The findings of this study will be helpful to develop an AI-driven automated tool for the cost effective and faster detection and better management of COVID-19 patients.
Collapse
Affiliation(s)
- Nahid Islam
- Department of Electrical and Electronics Engineering, Nanotechnology, IoT and Machine Learning Research Group, BRAC University, Dhaka, Bangladesh
| | - Abu S M Mohsin
- Department of Electrical and Electronics Engineering, Nanotechnology, IoT and Machine Learning Research Group, BRAC University, Dhaka, Bangladesh
| | - Shadab Hafiz Choudhury
- Department of Electrical and Electronics Engineering, Nanotechnology, IoT and Machine Learning Research Group, BRAC University, Dhaka, Bangladesh
| | - Tazwar Prodhan Shaer
- Department of Electrical and Electronics Engineering, Nanotechnology, IoT and Machine Learning Research Group, BRAC University, Dhaka, Bangladesh
| | - Md Adnan Islam
- Department of Electrical and Electronics Engineering, Nanotechnology, IoT and Machine Learning Research Group, BRAC University, Dhaka, Bangladesh
| | - Omar Sadat
- Department of Electrical and Electronics Engineering, Nanotechnology, IoT and Machine Learning Research Group, BRAC University, Dhaka, Bangladesh
| | - Nahid Hossain Taz
- Department of Electrical and Electronics Engineering, Nanotechnology, IoT and Machine Learning Research Group, BRAC University, Dhaka, Bangladesh
| |
Collapse
|
2
|
Ayalew AM, Salau AO, Tamyalew Y, Abeje BT, Woreta N. X-Ray image-based COVID-19 detection using deep learning. MULTIMEDIA TOOLS AND APPLICATIONS 2023:1-19. [PMID: 37362655 PMCID: PMC10131539 DOI: 10.1007/s11042-023-15389-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/30/2022] [Accepted: 04/18/2023] [Indexed: 06/28/2023]
Abstract
COVID-19 is a type of respiratory infection that primarily affects the lungs. Obtaining a chest X-ray is one of the most important steps in detecting and treating COVID-19 occurrences. Our study's goal is to detect COVID-19 from chest X-ray images using a Convolutional Neural Network (CNN). This study presents an effective method for categorizing chest X-ray images as Normal or COVID-19 infected. We used CNN, activation functions dropout, batch normalization, and Keras parameters to build this model. The classification method was implemented using open source tools "Python" and "OpenCV," both of which are freely available. The acquired images are transmitted through a series of convolutional and max pooling layers activated with the Rectified Linear Unit (ReLU) activation function, and then fed into the neurons of the dense layers, and finally activated with the sigmoidal function. Thereafter, SVM was used for classification using the knowledge from the learning model to classify the images into a predefined class (COVID-19 or Normal). As the model learns, its accuracy improves while its loss decreases. The findings of the study indicate that all models produced promising results, with augmentation, image segmentation, and image cropping producing the most efficient results, with a training accuracy of 99.8% and a test accuracy of 99.1%. As a result, the findings show that deep features provided consistent and reliable features for COVID-19 detection. Therefore, the proposed method aids in faster diagnosis of COVID-19 and the screening of COVID-19 patients by radiologists.
Collapse
Affiliation(s)
- Aleka Melese Ayalew
- Department of Information Technology, University of Gondar, Gondar, Ethiopia
| | - Ayodeji Olalekan Salau
- Department of Electrical/Electronics and Computer Engineering, Afe Babalola University, Ado-Ekiti, Nigeria
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Yibeltal Tamyalew
- Department of Information Technology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Bekalu Tadele Abeje
- Department of Information Technology, Haramaya University, Dire Dawa, Ethiopia
| | - Nigus Woreta
- Department of Information Technology, Dabark University, Debark, Ethiopia
| |
Collapse
|
3
|
Cai C, Gou B, Khishe M, Mohammadi M, Rashidi S, Moradpour R, Mirjalili S. Improved deep convolutional neural networks using chimp optimization algorithm for Covid19 diagnosis from the X-ray images. EXPERT SYSTEMS WITH APPLICATIONS 2023; 213:119206. [PMID: 36348736 PMCID: PMC9633109 DOI: 10.1016/j.eswa.2022.119206] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/17/2022] [Accepted: 10/31/2022] [Indexed: 05/11/2023]
Abstract
Applying Deep Learning (DL) in radiological images (i.e., chest X-rays) is emerging because of the necessity of having accurate and fast COVID-19 detectors. Deep Convolutional Neural Networks (DCNN) have been typically used as robust COVID-19 positive case detectors in these approaches. Such DCCNs tend to utilize Gradient Descent-Based (GDB) algorithms as the last fully-connected layers' trainers. Although GDB training algorithms have simple structures and fast convergence rates for cases with large training samples, they suffer from the manual tuning of numerous parameters, getting stuck in local minima, large training samples set requirements, and inherently sequential procedures. It is exceedingly challenging to parallelize them with Graphics Processing Units (GPU). Consequently, the Chimp Optimization Algorithm (ChOA) is presented for training the DCNN's fully connected layers in light of the scarcity of a big COVID-19 training dataset and for the purpose of developing a fast COVID-19 detector with the capability of parallel implementation. In addition, two publicly accessible datasets termed COVID-Xray-5 k and COVIDetectioNet are used to benchmark the proposed detector known as DCCN-Chimp. In order to make a fair comparison, two structures are proposed: i-6c-2 s-12c-2 s and i-8c-2 s-16c-2 s, all of which have had their hyperparameters fine-tuned. The outcomes are evaluated in comparison to standard DCNN, Hybrid DCNN plus Genetic Algorithm (DCNN-GA), and Matched Subspace classifier with Adaptive Dictionaries (MSAD). Due to the large variation in results, we employ a weighted average of the ensemble of ten trained DCNN-ChOA, with the validation accuracy of the weights being used to determine the final weights. The validation accuracy for the mixed ensemble DCNN-ChOA is 99.11%. LeNet-5 DCNN's ensemble detection accuracy on COVID-19 is 84.58%. Comparatively, the suggested DCNN-ChOA yields over 99.11% accurate detection with a false alarm rate of less than 0.89%. The outcomes show that the DCCN-Chimp can deliver noticeably superior results than the comparable detectors. The Class Activation Map (CAM) is another tool used in this study to identify probable COVID-19-infected areas. Results show that highlighted regions are completely connected with clinical outcomes, which has been verified by experts.
Collapse
Affiliation(s)
- Chengfeng Cai
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Bingchen Gou
- School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Mohammad Khishe
- Departement of Electrical Engineering, Imam Khomeini Marine Science University, Nowshahr, Iran
| | - Mokhtar Mohammadi
- Department of Information Technology, College of Engineering and Computer Science, Lebanese French University, Kurdistan Region, Iraq
| | - Shima Rashidi
- Department of Computer Science, College of Science and Technology, University of Human Development, Sulaymaniyah, Kurdistan Region, Iraq
| | - Reza Moradpour
- Departement of Electrical Engineering, Imam Khomeini Marine Science University, Nowshahr, Iran
| | - Seyedali Mirjalili
- Centre for Artificial Intelligence Research and Optimization, Torrens University, Australia
- University Research and Innovation Center, Obuda University, 1034 Budapest, Hungary
| |
Collapse
|
4
|
Khan A, Khan SH, Saif M, Batool A, Sohail A, Waleed Khan M. A Survey of Deep Learning Techniques for the Analysis of COVID-19 and their usability for Detecting Omicron. J EXP THEOR ARTIF IN 2023. [DOI: 10.1080/0952813x.2023.2165724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Asifullah Khan
- Pattern Recognition Lab, Department of Computer & Information Sciences, Pakistan Institute of Engineering & Applied Sciences, Nilore, Islamabad, Pakistan
- PIEAS Artificial Intelligence Center (PAIC), Pakistan Institute of Engineering & Applied Sciences, Islamabad, Pakistan
- Center for Mathematical Sciences, Pakistan Institute of Engineering & Applied Sciences, Islamabad, Pakistan
| | - Saddam Hussain Khan
- Pattern Recognition Lab, Department of Computer & Information Sciences, Pakistan Institute of Engineering & Applied Sciences, Nilore, Islamabad, Pakistan
- Department of Computer Systems Engineering, University of Engineering and Applied Sciences (UEAS), Swat, Pakistan
| | - Mahrukh Saif
- Pattern Recognition Lab, Department of Computer & Information Sciences, Pakistan Institute of Engineering & Applied Sciences, Nilore, Islamabad, Pakistan
| | - Asiya Batool
- Pattern Recognition Lab, Department of Computer & Information Sciences, Pakistan Institute of Engineering & Applied Sciences, Nilore, Islamabad, Pakistan
| | - Anabia Sohail
- Pattern Recognition Lab, Department of Computer & Information Sciences, Pakistan Institute of Engineering & Applied Sciences, Nilore, Islamabad, Pakistan
- Department of Computer Science, Faculty of Computing & Artificial Intelligence, Air University, Islamabad, Pakistan
| | - Muhammad Waleed Khan
- Pattern Recognition Lab, Department of Computer & Information Sciences, Pakistan Institute of Engineering & Applied Sciences, Nilore, Islamabad, Pakistan
- Department of Mechanical and Aerospace Engineering, Columbus, OH, USA
| |
Collapse
|
5
|
Podder P, Das SR, Mondal MRH, Bharati S, Maliha A, Hasan MJ, Piltan F. LDDNet: A Deep Learning Framework for the Diagnosis of Infectious Lung Diseases. SENSORS (BASEL, SWITZERLAND) 2023; 23:480. [PMID: 36617076 PMCID: PMC9824583 DOI: 10.3390/s23010480] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
This paper proposes a new deep learning (DL) framework for the analysis of lung diseases, including COVID-19 and pneumonia, from chest CT scans and X-ray (CXR) images. This framework is termed optimized DenseNet201 for lung diseases (LDDNet). The proposed LDDNet was developed using additional layers of 2D global average pooling, dense and dropout layers, and batch normalization to the base DenseNet201 model. There are 1024 Relu-activated dense layers and 256 dense layers using the sigmoid activation method. The hyper-parameters of the model, including the learning rate, batch size, epochs, and dropout rate, were tuned for the model. Next, three datasets of lung diseases were formed from separate open-access sources. One was a CT scan dataset containing 1043 images. Two X-ray datasets comprising images of COVID-19-affected lungs, pneumonia-affected lungs, and healthy lungs exist, with one being an imbalanced dataset with 5935 images and the other being a balanced dataset with 5002 images. The performance of each model was analyzed using the Adam, Nadam, and SGD optimizers. The best results have been obtained for both the CT scan and CXR datasets using the Nadam optimizer. For the CT scan images, LDDNet showed a COVID-19-positive classification accuracy of 99.36%, a 100% precision recall of 98%, and an F1 score of 99%. For the X-ray dataset of 5935 images, LDDNet provides a 99.55% accuracy, 73% recall, 100% precision, and 85% F1 score using the Nadam optimizer in detecting COVID-19-affected patients. For the balanced X-ray dataset, LDDNet provides a 97.07% classification accuracy. For a given set of parameters, the performance results of LDDNet are better than the existing algorithms of ResNet152V2 and XceptionNet.
Collapse
Affiliation(s)
- Prajoy Podder
- Institute of Information and Communication Technology, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| | - Sanchita Rani Das
- Institute of Information and Communication Technology, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| | - M. Rubaiyat Hossain Mondal
- Institute of Information and Communication Technology, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| | - Subrato Bharati
- Institute of Information and Communication Technology, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh
| | - Azra Maliha
- Faculty of Engineering and IT, The British University in Dubai, Dubai P.O. Box 345015, United Arab Emirates
| | - Md Junayed Hasan
- National Subsea Centre, Robert Gordon University, Aberdeen AB10 7AQ, UK
| | - Farzin Piltan
- Ulsan Industrial Artificial Intelligence (UIAI) Lab, Department of Electrical, Electronics and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea
| |
Collapse
|
6
|
COVID-19 diagnostics: Molecular biology to nanomaterials. Clin Chim Acta 2023; 538:139-156. [PMID: 36403665 PMCID: PMC9673061 DOI: 10.1016/j.cca.2022.11.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2022]
Abstract
The SARS-CoV-2 pandemic has claimed around 6.4 million lives worldwide. The disease symptoms range from mild flu-like infection to life-threatening complications. The widespread infection demands rapid, simple, and accurate diagnosis. Currently used methods include molecular biology-based approaches that consist of conventional amplification by RT-PCR, isothermal amplification-based techniques such as RT-LAMP, and gene editing tools like CRISPR-Cas. Other methods include immunological detection including ELISA, lateral flow immunoassay, chemiluminescence, etc. Radiological-based approaches are also being used. Despite good analytical performance of these current methods, there is an unmet need for less costly and simpler tests that may be performed at point of care. Accordingly, nanomaterial-based testing has been extensively pursued. In this review, we discuss the currently used diagnostic techniques for SARS-CoV-2, their usefulness, and limitations. In addition, nanoparticle-based approaches have been highlighted as another potential means of detection. The review provides a deep insight into the current diagnostic methods and future trends to combat this deadly menace.
Collapse
|
7
|
Hamza A, Khan MA, Alhaisoni M, Al Hejaili A, Shaban KA, Alsubai S, Alasiry A, Marzougui M. D 2BOF-COVIDNet: A Framework of Deep Bayesian Optimization and Fusion-Assisted Optimal Deep Features for COVID-19 Classification Using Chest X-ray and MRI Scans. Diagnostics (Basel) 2022; 13:101. [PMID: 36611393 PMCID: PMC9818184 DOI: 10.3390/diagnostics13010101] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND OBJECTIVE In 2019, a corona virus disease (COVID-19) was detected in China that affected millions of people around the world. On 11 March 2020, the WHO declared this disease a pandemic. Currently, more than 200 countries in the world have been affected by this disease. The manual diagnosis of this disease using chest X-ray (CXR) images and magnetic resonance imaging (MRI) is time consuming and always requires an expert person; therefore, researchers introduced several computerized techniques using computer vision methods. The recent computerized techniques face some challenges, such as low contrast CTX images, the manual initialization of hyperparameters, and redundant features that mislead the classification accuracy. METHODS In this paper, we proposed a novel framework for COVID-19 classification using deep Bayesian optimization and improved canonical correlation analysis (ICCA). In this proposed framework, we initially performed data augmentation for better training of the selected deep models. After that, two pre-trained deep models were employed (ResNet50 and InceptionV3) and trained using transfer learning. The hyperparameters of both models were initialized through Bayesian optimization. Both trained models were utilized for feature extractions and fused using an ICCA-based approach. The fused features were further optimized using an improved tree growth optimization algorithm that finally was classified using a neural network classifier. RESULTS The experimental process was conducted on five publically available datasets and achieved an accuracy of 99.6, 98.5, 99.9, 99.5, and 100%. CONCLUSION The comparison with recent methods and t-test-based analysis showed the significance of this proposed framework.
Collapse
Affiliation(s)
- Ameer Hamza
- Department of Computer Science, HITEC University, Taxila 47080, Pakistan
| | | | - Majed Alhaisoni
- Computer Sciences Department, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Abdullah Al Hejaili
- Faculty of Computers & Information Technology, Computer Science Department, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Khalid Adel Shaban
- Computer Science Department, College of Computing and Informatics, Saudi Electronic University, Riyadh 11673, Saudi Arabia
| | - Shtwai Alsubai
- College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia
| | - Areej Alasiry
- College of Computer Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Mehrez Marzougui
- College of Computer Science, King Khalid University, Abha 61413, Saudi Arabia
| |
Collapse
|
8
|
Hamza A, Attique Khan M, Wang SH, Alhaisoni M, Alharbi M, Hussein HS, Alshazly H, Kim YJ, Cha J. COVID-19 classification using chest X-ray images based on fusion-assisted deep Bayesian optimization and Grad-CAM visualization. Front Public Health 2022; 10:1046296. [PMID: 36408000 PMCID: PMC9672507 DOI: 10.3389/fpubh.2022.1046296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
The COVID-19 virus's rapid global spread has caused millions of illnesses and deaths. As a result, it has disastrous consequences for people's lives, public health, and the global economy. Clinical studies have revealed a link between the severity of COVID-19 cases and the amount of virus present in infected people's lungs. Imaging techniques such as computed tomography (CT) and chest x-rays can detect COVID-19 (CXR). Manual inspection of these images is a difficult process, so computerized techniques are widely used. Deep convolutional neural networks (DCNNs) are a type of machine learning that is frequently used in computer vision applications, particularly in medical imaging, to detect and classify infected regions. These techniques can assist medical personnel in the detection of patients with COVID-19. In this article, a Bayesian optimized DCNN and explainable AI-based framework is proposed for the classification of COVID-19 from the chest X-ray images. The proposed method starts with a multi-filter contrast enhancement technique that increases the visibility of the infected part. Two pre-trained deep models, namely, EfficientNet-B0 and MobileNet-V2, are fine-tuned according to the target classes and then trained by employing Bayesian optimization (BO). Through BO, hyperparameters have been selected instead of static initialization. Features are extracted from the trained model and fused using a slicing-based serial fusion approach. The fused features are classified using machine learning classifiers for the final classification. Moreover, visualization is performed using a Grad-CAM that highlights the infected part in the image. Three publically available COVID-19 datasets are used for the experimental process to obtain improved accuracies of 98.8, 97.9, and 99.4%, respectively.
Collapse
Affiliation(s)
- Ameer Hamza
- Department of Computer Science, HITEC University, Taxila, Pakistan
| | - Muhammad Attique Khan
- Department of Computer Science, HITEC University, Taxila, Pakistan,*Correspondence: Muhammad Attique Khan
| | - Shui-Hua Wang
- Department of Mathematics, University of Leicester, Leicester, United Kingdom
| | - Majed Alhaisoni
- Computer Sciences Department, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Meshal Alharbi
- Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Hany S. Hussein
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia,Electrical Engineering Department, Faculty of Engineering, Aswan University, Aswan, Egypt
| | - Hammam Alshazly
- Faculty of Computers and Information, South Valley University, Qena, Egypt
| | - Ye Jin Kim
- Department of Computer Science, Hanyang University, Seoul, South Korea
| | - Jaehyuk Cha
- Department of Computer Science, Hanyang University, Seoul, South Korea,Jaehyuk Cha
| |
Collapse
|
9
|
Chowdhury D, Banerjee S, Sannigrahi M, Chakraborty A, Das A, Dey A, Dwivedi AD. Federated learning based Covid-19 detection. EXPERT SYSTEMS 2022; 40:e13173. [PMID: 36718211 PMCID: PMC9877822 DOI: 10.1111/exsy.13173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/22/2022] [Accepted: 10/10/2022] [Indexed: 05/11/2023]
Abstract
The world is affected by COVID-19, an infectious disease caused by the SARS-CoV-2 virus. Tests are necessary for everyone as the number of COVID-19 affected individual's increases. So, the authors developed a basic sequential CNN model based on deep and federated learning that focuses on user data security while simultaneously enhancing test accuracy. The proposed model helps users detect COVID-19 in a few seconds by uploading a single chest X-ray image. A deep learning-aided architecture that can handle client and server sides efficiently has been proposed in this work. The front-end part has been developed using StreamLit, and the back-end uses a Flower framework. The proposed model has achieved a global accuracy of 99.59% after being trained for three federated communication rounds. The detailed analysis of this paper provides the robustness of this work. In addition, the Internet of Medical Things (IoMT) will improve the ease of access to the aforementioned health services. IoMT tools and services are rapidly changing healthcare operations for the better. Hopefully, it will continue to do so in this difficult time of the COVID-19 pandemic and will help to push the envelope of this work to a different extent.
Collapse
Affiliation(s)
- Deepraj Chowdhury
- Department of Electronics and CommunicationInternational Institute of Information Technology Naya RaipurNaya RaipurChhattisgarhIndia
| | - Soham Banerjee
- Department of Electronics and CommunicationInternational Institute of Information Technology Naya RaipurNaya RaipurChhattisgarhIndia
| | | | | | - Anik Das
- Department of Computer ScienceRCCIITKolkataWest BengalIndia
| | - Ajoy Dey
- Department of Electronics and TelecommunicationJadavpur UniversityKolkataWest BengalIndia
| | - Ashutosh Dhar Dwivedi
- Department of Digitalization, Centre for Business Data AnalyticsCopenhagen Business SchoolFrederiksbergDenmark
| |
Collapse
|
10
|
Karthik R, Menaka R, Hariharan M, Kathiresan GS. AI for COVID-19 Detection from Radiographs: Incisive Analysis of State of the Art Techniques, Key Challenges and Future Directions. Ing Rech Biomed 2022; 43:486-510. [PMID: 34336141 PMCID: PMC8312058 DOI: 10.1016/j.irbm.2021.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/14/2021] [Accepted: 07/19/2021] [Indexed: 12/24/2022]
Abstract
Background and objective In recent years, Artificial Intelligence has had an evident impact on the way research addresses challenges in different domains. It has proven to be a huge asset, especially in the medical field, allowing for time-efficient and reliable solutions. This research aims to spotlight the impact of deep learning and machine learning models in the detection of COVID-19 from medical images. This is achieved by conducting a review of the state-of-the-art approaches proposed by the recent works in this field. Methods The main focus of this study is the recent developments of classification and segmentation approaches to image-based COVID-19 detection. The study reviews 140 research papers published in different academic research databases. These papers have been screened and filtered based on specified criteria, to acquire insights prudent to image-based COVID-19 detection. Results The methods discussed in this review include different types of imaging modality, predominantly X-rays and CT scans. These modalities are used for classification and segmentation tasks as well. This review seeks to categorize and discuss the different deep learning and machine learning architectures employed for these tasks, based on the imaging modality utilized. It also hints at other possible deep learning and machine learning architectures that can be proposed for better results towards COVID-19 detection. Along with that, a detailed overview of the emerging trends and breakthroughs in Artificial Intelligence-based COVID-19 detection has been discussed as well. Conclusion This work concludes by stipulating the technical and non-technical challenges faced by researchers and illustrates the advantages of image-based COVID-19 detection with Artificial Intelligence techniques.
Collapse
Affiliation(s)
- R Karthik
- Centre for Cyber Physical Systems, Vellore Institute of Technology, Chennai, India
| | - R Menaka
- Centre for Cyber Physical Systems, Vellore Institute of Technology, Chennai, India
| | - M Hariharan
- School of Computing Sciences and Engineering, Vellore Institute of Technology, Chennai, India
| | - G S Kathiresan
- School of Electronics Engineering, Vellore Institute of Technology, Chennai, India
| |
Collapse
|
11
|
Ahmad M, Sadiq S, Eshmawi AA, Alluhaidan AS, Umer M, Ullah S, Nappi M. Industry 4.0 technologies and their applications in fighting COVID-19 pandemic using deep learning techniques. Comput Biol Med 2022; 145:105418. [PMID: 35334315 PMCID: PMC8935962 DOI: 10.1016/j.compbiomed.2022.105418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022]
Abstract
The disease known as COVID-19 has turned into a pandemic and spread all over the world. The fourth industrial revolution known as Industry 4.0 includes digitization, the Internet of Things, and artificial intelligence. Industry 4.0 has the potential to fulfil customized requirements during the COVID-19 emergency crises. The development of a prediction framework can help health authorities to react appropriately and rapidly. Clinical imaging like X-rays and computed tomography (CT) can play a significant part in the early diagnosis of COVID-19 patients that will help with appropriate treatment. The X-ray images could help in developing an automated system for the rapid identification of COVID-19 patients. This study makes use of a deep convolutional neural network (CNN) to extract significant features and discriminate X-ray images of infected patients from non-infected ones. Multiple image processing techniques are used to extract a region of interest (ROI) from the entire X-ray image. The ImageDataGenerator class is used to overcome the small dataset size and generate ten thousand augmented images. The performance of the proposed approach has been compared with state-of-the-art VGG16, AlexNet, and InceptionV3 models. Results demonstrate that the proposed CNN model outperforms other baseline models with high accuracy values: 97.68% for two classes, 89.85% for three classes, and 84.76% for four classes. This system allows COVID-19 patients to be processed by an automated screening system with minimal human contact.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Department of Information Security, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Saima Sadiq
- Department of Computer Science, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan.
| | - Ala' Abdulmajid Eshmawi
- Department of Cybersecurity, College of Computer Science and Engineering, University of Jeddah, Saudi Arabia
| | - Ala Saleh Alluhaidan
- Department of Information Systems, College of Computer and Information Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Muhammad Umer
- Department of Computer Science & Information Technology, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Saleem Ullah
- Department of Computer Science, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan.
| | - Michele Nappi
- Department of Computer Science, University of Salerno, Fisciano, Italy.
| |
Collapse
|
12
|
Alharbi AH, Hosni Mahmoud HA. Pneumonia Transfer Learning Deep Learning Model from Segmented X-rays. Healthcare (Basel) 2022; 10:987. [PMID: 35742039 PMCID: PMC9223174 DOI: 10.3390/healthcare10060987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/11/2022] [Accepted: 05/23/2022] [Indexed: 12/04/2022] Open
Abstract
Pneumonia is a common disease that occurs in many countries, more specifically, in poor countries. This disease is an obstructive pneumonia which has the same impression on pulmonary radiographs as other pulmonary diseases, which makes it hard to distinguish even for medical radiologists. Lately, image processing and deep learning models are established to rapidly and precisely diagnose pneumonia disease. In this research, we have predicted pneumonia diseases dependably from the X-ray images, employing image segmentation and machine learning models. A public labelled database is utilized with 4000 pneumonia disease X-rays and 4000 healthy X-rays. ImgNet and SqueezeNet are utilized for transfer learning from their previous computed weights. The proposed deep learning models are trained for classifying pneumonia and non-pneumonia cases. The following processes are presented in this paper: X-ray segmentation utilizing BoxENet architecture, X-ray classification utilizing the segmented chest images. We propose the improved BoxENet model by incorporating transfer learning from both ImgNet and SqueezeNet using a majority fusion model. Performance metrics such as accuracy, specificity, sensitivity and Dice are evaluated. The proposed Improved BoxENet model outperforms the other models in binary and multi-classification models. Additionally, the Improved BoxENet has higher speed compared to other models in both training and classification.
Collapse
Affiliation(s)
- Amal H. Alharbi
- Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Hanan A. Hosni Mahmoud
- Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| |
Collapse
|
13
|
Meraihi Y, Gabis AB, Mirjalili S, Ramdane-Cherif A, Alsaadi FE. Machine Learning-Based Research for COVID-19 Detection, Diagnosis, and Prediction: A Survey. SN COMPUTER SCIENCE 2022; 3:286. [PMID: 35578678 PMCID: PMC9096341 DOI: 10.1007/s42979-022-01184-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/30/2022] [Indexed: 12/12/2022]
Abstract
The year 2020 experienced an unprecedented pandemic called COVID-19, which impacted the whole world. The absence of treatment has motivated research in all fields to deal with it. In Computer Science, contributions mainly include the development of methods for the diagnosis, detection, and prediction of COVID-19 cases. Data science and Machine Learning (ML) are the most widely used techniques in this area. This paper presents an overview of more than 160 ML-based approaches developed to combat COVID-19. They come from various sources like Elsevier, Springer, ArXiv, MedRxiv, and IEEE Xplore. They are analyzed and classified into two categories: Supervised Learning-based approaches and Deep Learning-based ones. In each category, the employed ML algorithm is specified and a number of used parameters is given. The parameters set for each of the algorithms are gathered in different tables. They include the type of the addressed problem (detection, diagnosis, or detection), the type of the analyzed data (Text data, X-ray images, CT images, Time series, Clinical data,...) and the evaluated metrics (accuracy, precision, sensitivity, specificity, F1-Score, and AUC). The study discusses the collected information and provides a number of statistics drawing a picture about the state of the art. Results show that Deep Learning is used in 79% of cases where 65% of them are based on the Convolutional Neural Network (CNN) and 17% use Specialized CNN. On his side, supervised learning is found in only 16% of the reviewed approaches and only Random Forest, Support Vector Machine (SVM) and Regression algorithms are employed.
Collapse
Affiliation(s)
- Yassine Meraihi
- LIST Laboratory, University of M’Hamed Bougara Boumerdes, Avenue of Independence, 35000 Boumerdes, Algeria
| | - Asma Benmessaoud Gabis
- Ecole nationale Supérieure d’Informatique, Laboratoire des Méthodes de Conception des Systèmes, BP 68 M, 16309 Oued-Smar, Alger Algeria
| | - Seyedali Mirjalili
- Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Fortitude Valley, Brisbane, QLD 4006 Australia
- Yonsei Frontier Lab, Yonsei University, Seoul, Korea
| | - Amar Ramdane-Cherif
- LISV Laboratory, University of Versailles St-Quentin-en-Yvelines, 10-12 Avenue of Europe, 78140 Velizy, France
| | - Fawaz E. Alsaadi
- Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
14
|
Explainable Artificial Intelligence Approach for the Early Prediction of Ventilator Support and Mortality in COVID-19 Patients. COMPUTATION 2022. [DOI: 10.3390/computation10030036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Early prediction of mortality and risk of deterioration in COVID-19 patients can reduce mortality and increase the opportunity for better and more timely treatment. In the current study, the DL model and explainable artificial intelligence (EAI) were combined to identify the impact of certain attributes on the prediction of mortality and ventilatory support in COVID-19 patients. Nevertheless, the DL model does not suffer from the curse of dimensionality, but in order to identify significant attributes, the EAI feature importance method was used. The DL model produced significant results; however, it lacks interpretability. The study was performed using COVID-19-hospitalized patients in King Abdulaziz Medical City, Riyadh. The dataset contains the patients’ demographic information, laboratory investigations, and chest X-ray (CXR) findings. The dataset used suffers from an imbalance; therefore, balanced accuracy, sensitivity, specificity, Youden index, and AUC measures were used to investigate the effectiveness of the proposed model. Furthermore, the experiments were conducted using original and SMOTE (over and under sampled) datasets. The proposed model outperforms the baseline study, with a balanced accuracy of 0.98 and an AUC of 0.998 for predicting mortality using the full-feature set. Meanwhile, for predicting ventilator support a highest balanced accuracy of 0.979 and an AUC of 0.981 was achieved. The proposed explainable prediction model will assist doctors in the early prediction of COVID-19 patients that are at risk of mortality or ventilatory support and improve the management of hospital resources.
Collapse
|
15
|
Khan IU, Aslam N, Anwar T, Alsaif HS, Chrouf SMB, Alzahrani NA, Alamoudi FA, Kamaleldin MMA, Awary KB. Using a Deep Learning Model to Explore the Impact of Clinical Data on COVID-19 Diagnosis Using Chest X-ray. SENSORS 2022; 22:s22020669. [PMID: 35062629 PMCID: PMC8779361 DOI: 10.3390/s22020669] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 12/18/2022]
Abstract
The coronavirus pandemic (COVID-19) is disrupting the entire world; its rapid global spread threatens to affect millions of people. Accurate and timely diagnosis of COVID-19 is essential to control the spread and alleviate risk. Due to the promising results achieved by integrating machine learning (ML), particularly deep learning (DL), in automating the multiple disease diagnosis process. In the current study, a model based on deep learning was proposed for the automated diagnosis of COVID-19 using chest X-ray images (CXR) and clinical data of the patient. The aim of this study is to investigate the effects of integrating clinical patient data with the CXR for automated COVID-19 diagnosis. The proposed model used data collected from King Fahad University Hospital, Dammam, KSA, which consists of 270 patient records. The experiments were carried out first with clinical data, second with the CXR, and finally with clinical data and CXR. The fusion technique was used to combine the clinical features and features extracted from images. The study found that integrating clinical data with the CXR improves diagnostic accuracy. Using the clinical data and the CXR, the model achieved an accuracy of 0.970, a recall of 0.986, a precision of 0.978, and an F-score of 0.982. Further validation was performed by comparing the performance of the proposed system with the diagnosis of an expert. Additionally, the results have shown that the proposed system can be used as a tool that can help the doctors in COVID-19 diagnosis.
Collapse
Affiliation(s)
- Irfan Ullah Khan
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (I.U.K.); (S.M.B.C.); (N.A.A.); (F.A.A.); (M.M.A.K.)
| | - Nida Aslam
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (I.U.K.); (S.M.B.C.); (N.A.A.); (F.A.A.); (M.M.A.K.)
- Correspondence:
| | - Talha Anwar
- School of Computing, National University of Computer and Emerging Sciences, Islamabad 44000, Pakistan;
| | - Hind S. Alsaif
- Radiology Department, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (H.S.A.); (K.B.A.)
| | - Sara Mhd. Bachar Chrouf
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (I.U.K.); (S.M.B.C.); (N.A.A.); (F.A.A.); (M.M.A.K.)
| | - Norah A. Alzahrani
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (I.U.K.); (S.M.B.C.); (N.A.A.); (F.A.A.); (M.M.A.K.)
- National Center for Artificial Intelligence (NCAI), Saudi Data and Artificial Intelligence Authority (SDAIA), Riyadh 12391, Saudi Arabia
| | - Fatimah Ahmed Alamoudi
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (I.U.K.); (S.M.B.C.); (N.A.A.); (F.A.A.); (M.M.A.K.)
| | - Mariam Moataz Aly Kamaleldin
- Department of Computer Science, College of Computer Science and Information Technology, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (I.U.K.); (S.M.B.C.); (N.A.A.); (F.A.A.); (M.M.A.K.)
| | - Khaled Bassam Awary
- Radiology Department, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (H.S.A.); (K.B.A.)
| |
Collapse
|
16
|
Loey M, El-Sappagh S, Mirjalili S. Bayesian-based optimized deep learning model to detect COVID-19 patients using chest X-ray image data. Comput Biol Med 2022; 142:105213. [PMID: 35026573 PMCID: PMC8730711 DOI: 10.1016/j.compbiomed.2022.105213] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/21/2021] [Accepted: 01/02/2022] [Indexed: 12/12/2022]
Abstract
Coronavirus Disease 2019 (COVID-19) is extremely infectious and rapidly spreading around the globe. As a result, rapid and precise identification of COVID-19 patients is critical. Deep Learning has shown promising performance in a variety of domains and emerged as a key technology in Artificial Intelligence. Recent advances in visual recognition are based on image classification and artefacts detection within these images. The purpose of this study is to classify chest X-ray images of COVID-19 artefacts in changed real-world situations. A novel Bayesian optimization-based convolutional neural network (CNN) model is proposed for the recognition of chest X-ray images. The proposed model has two main components. The first one utilizes CNN to extract and learn deep features. The second component is a Bayesian-based optimizer that is used to tune the CNN hyperparameters according to an objective function. The used large-scale and balanced dataset comprises 10,848 images (i.e., 3616 COVID-19, 3616 normal cases, and 3616 Pneumonia). In the first ablation investigation, we compared Bayesian optimization to three distinct ablation scenarios. We used convergence charts and accuracy to compare the three scenarios. We noticed that the Bayesian search-derived optimal architecture achieved 96% accuracy. To assist qualitative researchers, address their research questions in a methodologically sound manner, a comparison of research method and theme analysis methods was provided. The suggested model is shown to be more trustworthy and accurate in real world.
Collapse
Affiliation(s)
- Mohamed Loey
- Department of Computer Science, Faculty of Computers and Artificial Intelligence, Benha University, Benha, 13518, Egypt; Information Technology Program, New Cairo Technological University, New Cairo, Egypt; Computer Engineering Department, Cybersecurity Department, Engineering and Information Technology College, Buraydah Colleges, Buraydah, Al-Qassim, Saudi Arabia.
| | - Shaker El-Sappagh
- Department of Information Systems, Faculty of Computers and Artificial Intelligence, Benha University, Benha, 13518, Egypt; Faculty of Computer Science and Engineering, Galala University, Suez 435611, Egypt.
| | - Seyedali Mirjalili
- Center for Artificial Intelligence Research and Optimization, Torrens University Australia, Fortitude Valley, Brisbane, QLD, 4006, Australia; Yonsei Frontier Lab, Yonsei University, Seoul, South Korea.
| |
Collapse
|
17
|
Gudigar A, Raghavendra U, Nayak S, Ooi CP, Chan WY, Gangavarapu MR, Dharmik C, Samanth J, Kadri NA, Hasikin K, Barua PD, Chakraborty S, Ciaccio EJ, Acharya UR. Role of Artificial Intelligence in COVID-19 Detection. SENSORS (BASEL, SWITZERLAND) 2021; 21:8045. [PMID: 34884045 PMCID: PMC8659534 DOI: 10.3390/s21238045] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022]
Abstract
The global pandemic of coronavirus disease (COVID-19) has caused millions of deaths and affected the livelihood of many more people. Early and rapid detection of COVID-19 is a challenging task for the medical community, but it is also crucial in stopping the spread of the SARS-CoV-2 virus. Prior substantiation of artificial intelligence (AI) in various fields of science has encouraged researchers to further address this problem. Various medical imaging modalities including X-ray, computed tomography (CT) and ultrasound (US) using AI techniques have greatly helped to curb the COVID-19 outbreak by assisting with early diagnosis. We carried out a systematic review on state-of-the-art AI techniques applied with X-ray, CT, and US images to detect COVID-19. In this paper, we discuss approaches used by various authors and the significance of these research efforts, the potential challenges, and future trends related to the implementation of an AI system for disease detection during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Anjan Gudigar
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - U Raghavendra
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Sneha Nayak
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Chui Ping Ooi
- School of Science and Technology, Singapore University of Social Sciences, Singapore 599494, Singapore;
| | - Wai Yee Chan
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Mokshagna Rohit Gangavarapu
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Chinmay Dharmik
- Department of Instrumentation and Control Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; (A.G.); (S.N.); (M.R.G.); (C.D.)
| | - Jyothi Samanth
- Department of Cardiovascular Technology, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal 576104, India;
| | - Nahrizul Adib Kadri
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (N.A.K.); (K.H.)
| | - Khairunnisa Hasikin
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; (N.A.K.); (K.H.)
| | - Prabal Datta Barua
- Cogninet Brain Team, Cogninet Australia, Sydney, NSW 2010, Australia;
- School of Business (Information Systems), Faculty of Business, Education, Law & Arts, University of Southern Queensland, Toowoomba, QLD 4350, Australia
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Subrata Chakraborty
- Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW 2007, Australia;
- Faculty of Science, Agriculture, Business and Law, University of New England, Armidale, NSW 2351, Australia
| | - Edward J. Ciaccio
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA;
| | - U. Rajendra Acharya
- School of Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore;
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|
18
|
Shazia A, Xuan TZ, Chuah JH, Usman J, Qian P, Lai KW. A comparative study of multiple neural network for detection of COVID-19 on chest X-ray. EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING 2021; 2021:50. [PMID: 34335736 PMCID: PMC8314263 DOI: 10.1186/s13634-021-00755-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/23/2021] [Indexed: 05/26/2023]
Abstract
Coronavirus disease of 2019 or COVID-19 is a rapidly spreading viral infection that has affected millions all over the world. With its rapid spread and increasing numbers, it is becoming overwhelming for the healthcare workers to rapidly diagnose the condition and contain it from spreading. Hence it has become a necessity to automate the diagnostic procedure. This will improve the work efficiency as well as keep the healthcare workers safe from getting exposed to the virus. Medical image analysis is one of the rising research areas that can tackle this issue with higher accuracy. This paper conducts a comparative study of the use of the recent deep learning models (VGG16, VGG19, DenseNet121, Inception-ResNet-V2, InceptionV3, Resnet50, and Xception) to deal with the detection and classification of coronavirus pneumonia from pneumonia cases. This study uses 7165 chest X-ray images of COVID-19 (1536) and pneumonia (5629) patients. Confusion metrics and performance metrics were used to analyze each model. Results show DenseNet121 (99.48% of accuracy) showed better performance when compared with the other models in this study.
Collapse
Affiliation(s)
- Anis Shazia
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Tan Zi Xuan
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Joon Huang Chuah
- Department of Electrical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Juliana Usman
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Pengjiang Qian
- School of Artificial Intelligence and Computer Science, Jiangnan University, 1800 Lihu Avenue, Jiangsu 214122 Wuxi, People’s Republic of China
| | - Khin Wee Lai
- Department of Biomedical Engineering, Faculty of Engineering, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Owais M, Lee YW, Mahmood T, Haider A, Sultan H, Park KR. Multilevel Deep-Aggregated Boosted Network to Recognize COVID-19 Infection from Large-Scale Heterogeneous Radiographic Data. IEEE J Biomed Health Inform 2021; 25:1881-1891. [PMID: 33835928 PMCID: PMC8545161 DOI: 10.1109/jbhi.2021.3072076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present epidemic of the coronavirus disease 2019 (COVID-19), radiological imaging modalities, such as X-ray and computed tomography (CT), have been identified as effective diagnostic tools. However, the subjective assessment of radiographic examination is a time-consuming task and demands expert radiologists. Recent advancements in artificial intelligence have enhanced the diagnostic power of computer-aided diagnosis (CAD) tools and assisted medical specialists in making efficient diagnostic decisions. In this work, we propose an optimal multilevel deep-aggregated boosted network to recognize COVID-19 infection from heterogeneous radiographic data, including X-ray and CT images. Our method leverages multilevel deep-aggregated features and multistage training via a mutually beneficial approach to maximize the overall CAD performance. To improve the interpretation of CAD predictions, these multilevel deep features are visualized as additional outputs that can assist radiologists in validating the CAD results. A total of six publicly available datasets were fused to build a single large-scale heterogeneous radiographic collection that was used to analyze the performance of the proposed technique and other baseline methods. To preserve generality of our method, we selected different patient data for training, validation, and testing, and consequently, the data of same patient were not included in training, validation, and testing subsets. In addition, fivefold cross-validation was performed in all the experiments for a fair evaluation. Our method exhibits promising performance values of 95.38%, 95.57%, 92.53%, 98.14%, 93.16%, and 98.55% in terms of average accuracy, F-measure, specificity, sensitivity, precision, and area under the curve, respectively and outperforms various state-of-the-art methods.
Collapse
|
20
|
COVID-19 Detection from Chest X-ray Images Using Feature Fusion and Deep Learning. SENSORS 2021; 21:s21041480. [PMID: 33672585 PMCID: PMC8078171 DOI: 10.3390/s21041480] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/15/2022]
Abstract
Currently, COVID-19 is considered to be the most dangerous and deadly disease for the human body caused by the novel coronavirus. In December 2019, the coronavirus spread rapidly around the world, thought to be originated from Wuhan in China and is responsible for a large number of deaths. Earlier detection of the COVID-19 through accurate diagnosis, particularly for the cases with no obvious symptoms, may decrease the patient's death rate. Chest X-ray images are primarily used for the diagnosis of this disease. This research has proposed a machine vision approach to detect COVID-19 from the chest X-ray images. The features extracted by the histogram-oriented gradient (HOG) and convolutional neural network (CNN) from X-ray images were fused to develop the classification model through training by CNN (VGGNet). Modified anisotropic diffusion filtering (MADF) technique was employed for better edge preservation and reduced noise from the images. A watershed segmentation algorithm was used in order to mark the significant fracture region in the input X-ray images. The testing stage considered generalized data for performance evaluation of the model. Cross-validation analysis revealed that a 5-fold strategy could successfully impair the overfitting problem. This proposed feature fusion using the deep learning technique assured a satisfactory performance in terms of identifying COVID-19 compared to the immediate, relevant works with a testing accuracy of 99.49%, specificity of 95.7% and sensitivity of 93.65%. When compared to other classification techniques, such as ANN, KNN, and SVM, the CNN technique used in this study showed better classification performance. K-fold cross-validation demonstrated that the proposed feature fusion technique (98.36%) provided higher accuracy than the individual feature extraction methods, such as HOG (87.34%) or CNN (93.64%).
Collapse
|
21
|
Aslan MF, Unlersen MF, Sabanci K, Durdu A. CNN-based transfer learning-BiLSTM network: A novel approach for COVID-19 infection detection. Appl Soft Comput 2021; 98:106912. [PMID: 33230395 PMCID: PMC7673219 DOI: 10.1016/j.asoc.2020.106912] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023]
Abstract
Coronavirus disease 2019 (COVID-2019), which emerged in Wuhan, China in 2019 and has spread rapidly all over the world since the beginning of 2020, has infected millions of people and caused many deaths. For this pandemic, which is still in effect, mobilization has started all over the world, and various restrictions and precautions have been taken to prevent the spread of this disease. In addition, infected people must be identified in order to control the infection. However, due to the inadequate number of Reverse Transcription Polymerase Chain Reaction (RT-PCR) tests, Chest computed tomography (CT) becomes a popular tool to assist the diagnosis of COVID-19. In this study, two deep learning architectures have been proposed that automatically detect positive COVID-19 cases using Chest CT X-ray images. Lung segmentation (preprocessing) in CT images, which are given as input to these proposed architectures, is performed automatically with Artificial Neural Networks (ANN). Since both architectures contain AlexNet architecture, the recommended method is a transfer learning application. However, the second proposed architecture is a hybrid structure as it contains a Bidirectional Long Short-Term Memories (BiLSTM) layer, which also takes into account the temporal properties. While the COVID-19 classification accuracy of the first architecture is 98.14%, this value is 98.70% in the second hybrid architecture. The results prove that the proposed architecture shows outstanding success in infection detection and, therefore this study contributes to previous studies in terms of both deep architectural design and high classification success.
Collapse
Affiliation(s)
- Muhammet Fatih Aslan
- Electrical and Electronics Engineering, Karamanoglu Mehmetbey University, Karaman, Turkey
| | | | - Kadir Sabanci
- Electrical and Electronics Engineering, Karamanoglu Mehmetbey University, Karaman, Turkey
| | - Akif Durdu
- Electrical and Electronics Engineering, Konya Technical University, Konya, Turkey
| |
Collapse
|