1
|
Maingi FM, Akutse KS, Ajene IJ, Omolo KM, Khamis FM. Immunological responses and gut microbial shifts in Phthorimaea absoluta exposed to Metarhizium anisopliae isolates under different temperature regimes. Front Microbiol 2023; 14:1258662. [PMID: 38029135 PMCID: PMC10666277 DOI: 10.3389/fmicb.2023.1258662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
The invasive tomato leaf miner, Phthorimaea absoluta, is conventionally controlled through chemical insecticides. However, the rise of insecticide resistance has necessitated sustainable and eco-friendly alternatives. Entomopathogenic fungi (EPF) have shown potential due to their ability to overcome resistance and have minimal impact on non-target organisms. Despite this potential, the precise physiological mechanisms by which EPF acts on insect pests remain poorly understood. To attain a comprehensive understanding of the complex physiological processes that drive the successful control of P. absoluta adults through EPF, we investigated the impacts of different Metarhizium anisopliae isolates (ICIPE 665, ICIPE 20, ICIPE 18) on the pest's survival, cellular immune responses, and gut microbiota under varying temperatures. The study unveiled that ICIPE 18 caused the highest mortality rate among P. absoluta moths, while ICIPE 20 exhibited the highest significant reduction in total hemocyte counts after 10 days at 25°C. Moreover, both isolates elicited notable shifts in P. absoluta's gut microbiota. Our findings revealed that ICIPE 18 and ICIPE 20 compromised the pest's defense and physiological functions, demonstrating their potential as biocontrol agents against P. absoluta in tomato production systems.
Collapse
Affiliation(s)
- Felix Muendo Maingi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Komivi Senyo Akutse
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Unit for Environment Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Inusa Jacob Ajene
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Kevin Mbogo Omolo
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | | |
Collapse
|
2
|
Seib T, Fischer K, Sturm AM, Stephan D. Investigation on the Influence of Production and Incubation Temperature on the Growth, Virulence, Germination, and Conidial Size of Metarhizium brunneum for Granule Development. J Fungi (Basel) 2023; 9:668. [PMID: 37367604 DOI: 10.3390/jof9060668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
Important for the infection of an insect with an entomopathogenic fungus and its use as a plant protection agent are its growth, conidiation, germination, and virulence, which all depend on the environmental temperature. We investigated not only the effect of environmental temperature but also that of production temperature of the fungus. For this purpose, Metarhizium brunneum JKI-BI-1450 was produced and incubated at different temperatures, and the factors mentioned as well as conidial size were determined. The temperature at which the fungus was produced affects its subsequent growth and conidiation on granule formulation, the speed of germination, and the conidial width, but not its final germination or virulence. The growth and conidiation was at its highest when the fungus was produced at 25 °C, whereas when the germination was faster, the warmer the fungus was produced. The incubation temperature optimum of JKI-BI-1450 in relation to growth, speed of germination, and survival time was 25-30 °C and for conidiation 20-25 °C. Conidial length decreased with increasing incubation temperature. Although the fungus could not be adapted to unfavorable conditions by the production temperature, it was found that the quality of a biological control agent based on entomopathogenic fungi can be positively influenced by its production temperature.
Collapse
Affiliation(s)
- Tanja Seib
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Biological Control, Schwabenheimerstraße 101, 69221 Dossenheim, Germany
| | - Katharina Fischer
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Biological Control, Schwabenheimerstraße 101, 69221 Dossenheim, Germany
| | - Anna Maria Sturm
- Technical University Darmstadt, Department Biologie, Schnittspahnstraße 4, 64287 Darmstadt, Germany
| | - Dietrich Stephan
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Biological Control, Schwabenheimerstraße 101, 69221 Dossenheim, Germany
| |
Collapse
|
3
|
Peng ZY, Huang ST, Chen JT, Li N, Wei Y, Nawaz A, Deng SQ. An update of a green pesticide: Metarhizium anisopliae. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2147224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Zhe-Yu Peng
- Department of Pathogen Biology, the Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, People’s Republic of China
| | - Shu-Ting Huang
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jia-Ting Chen
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People’s Republic of China
| | - Ni Li
- Department of Pathogen Biology, the Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, People’s Republic of China
| | - Yong Wei
- Department of Pathogen Biology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, People’s Republic of China
| | - Asad Nawaz
- Department of Pathogen Biology, the Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, People’s Republic of China
| | - Sheng-Qun Deng
- Department of Pathogen Biology, the Key Laboratory of Microbiology and Parasitology of Anhui Province, the Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, People’s Republic of China
| |
Collapse
|
4
|
Onsongo SK, Mohamed SA, Akutse KS, Gichimu BM, Dubois T. The Entomopathogenic Fungi Metarhizium anisopliae and Beauveria bassiana for Management of the Melon Fly Zeugodacus cucurbitae: Pathogenicity, Horizontal Transmission, and Compatability with Cuelure. INSECTS 2022; 13:859. [PMID: 36292807 PMCID: PMC9604353 DOI: 10.3390/insects13100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
In the laboratory, the pathogenicity of thirteen isolates of Metarhizium anisopliae (Metschnikoff) Sorokin and two isolates of Beauveria bassiana (Balsamo) Vuillemin against the melon fly Zeugodacus cucurbitae (Coquillett) were assessed by exposing adults to 0.3 g of dry conidia (~3 × 109 conidia) of each isolate for 5 min and monitoring mortality for up to 5 days. Compatibility with a male pheromone, cuelure, (4-(p-acetoxyphenyl)-2-butanone), was determined by testing conidial germination and germ tube growth of the most promising isolate, M. anisopliae ICIPE 69, in the presence of cuelure at different temperatures. For horizontal transmission, the flies were separated by sex, separately exposed to M. anisopliae ICIPE 69, and subsequently mixed with non-exposed flies from the other sex. The most pathogenic isolates were M. anisopliae ICIPE 69, 18, and 30, causing mortalities of 94, 87, and 81%, with 5 days post-exposure, respectively. Metarhizium anisopliae ICIPE 69 caused the highest pupal mortality of 74%, with 15 days post-exposure. Horizontal transmission of M. anisopliae ICIPE 69 among male and female Z. cucurbitae was confirmed by 59 and 67% mortality after exposure to infected donor males and females, respectively. Metarhizium anisopliae ICIPE 69 affected the oviposition, but not hatchability, of infected Z. cucurbitae females. Metarhizium anisopliae ICIPE 69 is, therefore, a potential isolate for biopesticide development for Z. cucurbitae management in cucurbit production systems.
Collapse
Affiliation(s)
- Susan K. Onsongo
- International Centre of Insect Physiology and Ecology (icipe), Nairobi 00100, Kenya
- Department of Agricultural Resource Management, University of Embu, Embu 60100, Kenya
| | - Samira A. Mohamed
- International Centre of Insect Physiology and Ecology (icipe), Nairobi 00100, Kenya
| | - Komivi S. Akutse
- International Centre of Insect Physiology and Ecology (icipe), Nairobi 00100, Kenya
| | - Bernard M. Gichimu
- Department of Agricultural Resource Management, University of Embu, Embu 60100, Kenya
| | - Thomas Dubois
- International Centre of Insect Physiology and Ecology (icipe), Nairobi 00100, Kenya
| |
Collapse
|
5
|
Diouf EG, Brévault T, Ndiaye S, Faye E, Chailleux A, Diatta P, Piou C. An agent-based model to simulate the boosted Sterile Insect Technique for fruit fly management. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.109951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Agbessenou A, Akutse KS, Yusuf AA, Wekesa SW, Khamis FM. Temperature-dependent modelling and spatial prediction reveal suitable geographical areas for deployment of two Metarhizium anisopliae isolates for Tuta absoluta management. Sci Rep 2021; 11:23346. [PMID: 34857835 PMCID: PMC8639720 DOI: 10.1038/s41598-021-02718-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/22/2021] [Indexed: 11/30/2022] Open
Abstract
Tuta absoluta is one of the most devastating pests of Solanaceae crops in Africa. We previously demonstrated the efficacy of Metarhizium anisopliae isolates ICIPE 18, ICIPE 20 and ICIPE 665 against adult T. absoluta. However, adequate strain selection and accurate spatial prediction are fundamental to optimize their efficacy and formulations before field deployment. This study therefore assessed the thermotolerance, conidial yield and virulence (between 15 and 35 °C) of these potent isolates. Over 90% of conidia germinated at 20, 25 and 30 °C while no germination occurred at 15 °C. Growth of the three isolates occurred at all temperatures, but was slower at 15, 33 and 35 °C as compared to 20, 25 and 30 °C. Optimum temperatures for mycelial growth and spore production were 30 and 25 °C, respectively. Furthermore, ICIPE 18 produced higher amount of spores than ICIPE 20 and ICIPE 665. The highest mortality occurred at 30 °C for all the three isolates, while the LT50 values of ICIPE 18 and ICIPE 20 were significantly lower at 25 and 30 °C compared to those of ICIPE 665. Subsequently, several nonlinear equations were fitted to the mortality data to model the virulence of ICIPE 18 and ICIPE 20 against adult T. absoluta using the Entomopathogenic Fungi Application (EPFA) software. Spatial prediction revealed suitable locations for ICIPE 18 and ICIPE 20 deployment against T. absoluta in Kenya, Tanzania and Uganda. Our findings suggest that ICIPE 18 and ICIPE 20 could be considered as effective candidate biopesticides for an improved T. absoluta management based on temperature and location-specific approach.
Collapse
Affiliation(s)
- Ayaovi Agbessenou
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya.,Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Komivi S Akutse
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya.
| | - Abdullahi A Yusuf
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa.,Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | - Sospeter W Wekesa
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Fathiya M Khamis
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
7
|
Amar Feldbaum R, Yaakov N, Ananth Mani K, Yossef E, Metbeev S, Zelinger E, Belausov E, Koltai H, Ment D, Mechrez G. Single cell encapsulation in a Pickering emulsion stabilized by TiO 2 nanoparticles provides protection against UV radiation for a biopesticide. Colloids Surf B Biointerfaces 2021; 206:111958. [PMID: 34237526 DOI: 10.1016/j.colsurfb.2021.111958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/10/2021] [Accepted: 06/28/2021] [Indexed: 11/25/2022]
Abstract
A new formulation for biological pest control with significant UV protection capability has been developed in this research. The formulation is based on individual encapsulation of fungal conidia in an oil/water Pickering emulsion. The droplets size of the emulsions was tuned to meet the demands of single conidia encapsulation in the oil droplets. The emulsions are stabilized by amine-functionalized TiO2 (titania) nanoparticles (NPs). The droplet size, stability, and structure of the emulsions were investigated at different TiO2 contents and oil/water phase ratios. Most of the emulsions remained stable for 6 months. The structural properties of the Pickering emulsions were characterized by confocal microscopy and high-resolution cryogenic scanning electron microscopy (cryo-HRSEM). The presence of the TiO2 particles at the interface was confirmed by both confocal microscopy and cryo-HRSEM. Metarhizium brunneum-7 (Mb7) conidia were added to the emulsions. The successful encapsulation of individual conidia in the oil droplets was confirmed by confocal microscopy. The individual encapsulation of the conidia in the emulsions was significantly improved by dispersing the conidia in a 0.02 % Triton X-100 solution prior to emulsification. In addition, the bioassay results have shown, that exposure of the encapsulated conidia to natural UV light did not change their germination rates, however, the unprotected conidia demonstrated a dramatic decrease in their germination rates. These results confirm the UV protection capability of the studied emulsions.
Collapse
Affiliation(s)
- Reut Amar Feldbaum
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon Letzion, 7505101, Israel; The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Noga Yaakov
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon Letzion, 7505101, Israel
| | - Karthik Ananth Mani
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon Letzion, 7505101, Israel; Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot, 7610001, Israel
| | - Eden Yossef
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon Letzion, 7505101, Israel
| | - Sabina Metbeev
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon Letzion, 7505101, Israel
| | - Einat Zelinger
- The Interdepartmental Equipment Unit, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, POB 12, Rehovot, 7610001, Israel
| | - Eduard Belausov
- Department of Ornamental Plants and Agricultural Biotechnology, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon Letzion, 7505101, Israel
| | - Hinanit Koltai
- Department of Ornamental Plants and Agricultural Biotechnology, Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon Letzion, 7505101, Israel
| | - Dana Ment
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon Letzion, 7505101, Israel
| | - Guy Mechrez
- Department of Food Sciences, Institute of Postharvest and Food Sciences, Agricultural Research Organization (ARO), Volcani Center, 68 HaMaccabim Road, Rishon Letzion, 7505101, Israel.
| |
Collapse
|
8
|
Peng Y, Tang J, Xie J. Transcriptomic Analysis of the Brown Planthopper, Nilaparvata lugens, at Different Stages after Metarhizium anisopliae Challenge. INSECTS 2020; 11:insects11020139. [PMID: 32102435 PMCID: PMC7073985 DOI: 10.3390/insects11020139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 01/24/2023]
Abstract
Nilaparvata lugens is one of the major pests of rice and results in substantial yield loss every year. Our previous study found that the entomopathogenic fungus Metarhizium anisopliae showed effective potential for controlling this pest. However, the mechanisms underlying M. anisopliae infection of N. lugens are not well known. In the present study, we further examined the transcriptome of N. lugens at 4 h, 8 h, 16 h, and 24 h after M. anisopliae infection by Illumina deep sequencing. In total, 174.17 Gb of data was collected after sequencing, from which 23,398 unigenes were annotated by various databases, including 3694 newly annotated genes. The results showed that there were 246 vs 75, 275 vs 586, 378 vs 1055, and 638 vs 182 up- and downregulated differentially expressed genes (DEGs) at 4 h, 8 h, 16 h, and 24 h after M. anisopliae infection, respectively. The biological functions and associated metabolic processes of these genes were determined with the Clusters of Orthologous Groups (COG), Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The DEGs data were verified using RT-qPCR. These results indicated that the DEGs during the initial fungal infection appropriately reflected the time course of the response to the fungal infection. Taken together, the results of this study provide new insights into the molecular mechanisms underlying the insect host response to fungal infection, especially during the initial stage of infection, and may improve the potential control strategies for N. lugens.
Collapse
Affiliation(s)
- Yifan Peng
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticides/Key Laboratory of Gene Function and Regulation Technology under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Jifeng Tang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Jiaqin Xie
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Chongqing Engineering Research Center for Fungal Insecticides/Key Laboratory of Gene Function and Regulation Technology under Chongqing Municipal Education Commission, Chongqing 401331, China
- Correspondence:
| |
Collapse
|
9
|
Prince G, Chandler D. Susceptibility of Myzus persicae, Brevicoryne brassicae and Nasonovia ribisnigri to Fungal Biopesticides in Laboratory and Field Experiments. INSECTS 2020; 11:insects11010055. [PMID: 31963410 PMCID: PMC7022964 DOI: 10.3390/insects11010055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 11/18/2022]
Abstract
The aim of this study was to evaluate the potential of entomopathogenic fungi (EPF) for the control of aphid pests of field vegetable crops. Four biopesticides based on the EPF Beauveria bassiana (Botanigard ES and Naturalis L), Cordyceps fumosorosea s.l. (Preferal WG), and Akanthomyces dipterigenus (Vertalec) were evaluated in a laboratory bioassay against peach-potato aphid Myzus persicae, cabbage aphid Brevicoryne brassicae, and currant-lettuce aphid Nasonoviaribisnigri. There was significant variation in the spore dose provided by the products, with Botanigard ES producing the highest dose (639 viable spores per mm2). Botanigard ES also caused more mortality than the other products. Combining Vertalec with the vegetable oil-based adjuvant Addit had an additive effect on the mortality of B.brassicae. All fungal products reduced the number of progeny produced by M. persicae but there was no effect with B. brassicae or N. ribisnigri. When aphid nymphs were treated with Botanigard ES and Preferal WG, both products reduced population development, with up to 86% reduction occurring for Botanigard ES against M. persicae. In a field experiment, Botanigard ES sprayed twice, at seven-day intervals, against B. brassicae on cabbage plants, reduced aphid numbers by 73%. In a second field experiment with B. brassicae, M. persicae, and N. ribisnigri, Botanigard ES reduced populations of B. brassicae and N. ribisnigri but there was no significant effect on M. persicae.
Collapse
|