1
|
Sing AK, Guderjan L, Lemke K, Wiemers M, Schmitt T, Wendt M. Different ecological demands shape differences in population structure and behaviour among the two generations of the small pearl-bordered fritillary. PeerJ 2024; 12:e16965. [PMID: 38426142 PMCID: PMC10903349 DOI: 10.7717/peerj.16965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
The population structure and behaviour of univoltine butterfly species have been studied intensively. However, much less is known about bivoltine species. In particular, in-depth studies of the differences in population structure, behaviour, and ecology between these two generations are largely lacking. Therefore, we here present a mark-release-recapture study of two successive generations of the fritillary butterfly Boloria selene performed in eastern Brandenburg (Germany). We revealed intersexual and intergenerational differences regarding behaviour, dispersal, population characteristics, and protandry. The observed population densities were higher in the second generation. The flight activity of females decreased in the second generation, but remained unchanged in males. This was further supported by the rate of wing decay. The first generation displayed a linear correlation between wing decay and passed time in both sexes, whereas the linear correlation was lost in second-generation females. The proportion of resting individuals in both sexes increased in the second generation, as well as the number of nectaring females. The choice of plant genera used for nectaring seems to be more specialised in the first and more opportunistic in the second generation. The average flight distances were generally higher for females than for males and overall higher in the first generation. Predictions of long-distance movements based on the inverse power function were also generally higher in females than in males but lower in the first generation. Additionally, we found protandry only in the first but not in the second generation, which might correlate with the different developmental pathways of the two generations. These remarkable differences between both generations might reflect an adaptation to the different ecological demands during the flight season and the different tasks they have, i.e., growth in the spring season; dispersal and colonisation of new habitats during the summer season.
Collapse
Affiliation(s)
- Ann-Kathrin Sing
- Senckenberg German Entomological Institute, Müncheberg, Germany
- Institute of Earth and Environmental Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Laura Guderjan
- Senckenberg German Entomological Institute, Müncheberg, Germany
- Institute of Geoecology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Klara Lemke
- Senckenberg German Entomological Institute, Müncheberg, Germany
- Faculty of Natural and Environmental Sciences, Zittau/Görlitz University of Applied Sciences, Zittau/Görlitz, Germany
| | - Martin Wiemers
- Senckenberg German Entomological Institute, Müncheberg, Germany
| | - Thomas Schmitt
- Senckenberg German Entomological Institute, Müncheberg, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Martin Wendt
- Senckenberg German Entomological Institute, Müncheberg, Germany
- Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| |
Collapse
|
2
|
Pioltelli E, Guzzetti L, Larbi MO, Celano R, Piccinelli AL, Galimberti A, Biella P, Labra M. Land use influences the nutrient concentration and composition of pollen and nectar rewards of wildflowers in human-dominated landscapes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168130. [PMID: 37907100 DOI: 10.1016/j.scitotenv.2023.168130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023]
Abstract
Plant biodiversity is crucial to satisfy the trophic needs of pollinators, mainly through nectar and pollen rewards. However, a few studies have been directed to ascertain the intraspecific variation of chemical features and the nutritional value of nectar and pollen floral rewards in relation to the alteration of landscapes due to human activities. In this study, by using an existing scenario of land use gradients as an open air laboratory, we tested the variation in pollen and nectar nutrient profiles along gradients of urbanization and agriculture intensity, by focusing on sugar, aminoacids of nectar and phytochemicals of pollen from local wild plants. We also highlighted bioactive compounds from plants primary and secondary metabolism due to their importance for insect wellbeing and pollinator health. We surveyed 7 different meadow species foraged by pollinators and common in the main land uses studied. The results indicated that significant variations of nutritional components occur in relation to different land uses, and specifically that the agricultural intensification decreases the sugars and increases the antioxidant content of flower rewards, while the urbanization is positively associated with the total flavonoid content in pollen. These effects are more evident in some species than in others, such as Lotus corniculatus L. (Fabaceae) and Malva sylvestris L. (Malvaceae), as shown by the untargeted metabolomic investigation. This study is crucial for understanding the nutritional landscape quality for pollinators in association to different land uses and sets a base for landscape management and planning of pollinator-friendly strategies by improving the quality of plant rewards to provide benefits to pollinator health in various environmental contexts.
Collapse
Affiliation(s)
- Emiliano Pioltelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Lorenzo Guzzetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Malika Ouled Larbi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Rita Celano
- NBFC, National Biodiversity Future Center, Palermo, 90133, Italy; Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Salerno, Italy
| | - Anna Lisa Piccinelli
- NBFC, National Biodiversity Future Center, Palermo, 90133, Italy; Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Salerno, Italy
| | - Andrea Galimberti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Paolo Biella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy.
| | - Massimo Labra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| |
Collapse
|
3
|
Russo L, Ruedenauer F, Gronert A, Van de Vreken I, Vanderplanck M, Michez D, Klein A, Leonhardt S, Stout JC. Fertilizer and herbicide alter nectar and pollen quality with consequences for pollinator floral choices. PeerJ 2023; 11:e15452. [PMID: 37334137 PMCID: PMC10269573 DOI: 10.7717/peerj.15452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/03/2023] [Indexed: 06/20/2023] Open
Abstract
Background Pollinating insects provide economically and ecologically valuable services, but are threatened by a variety of anthropogenic changes. The availability and quality of floral resources may be affected by anthropogenic land use. For example, flower-visiting insects in agroecosystems rely on weeds on field edges for foraging resources, but these weeds are often exposed to agrochemicals that may compromise the quality of their floral resources. Methods We conducted complementary field and greenhouse experiments to evaluate the: (1) effect of low concentrations of agrochemical exposure on nectar and pollen quality and (2) relationship between floral resource quality and insect visitation. We applied the same agrochemcial treatments (low concentrations of fertilizer, low concentrations of herbicide, a combination of both, and a control of just water) to seven plant species in the field and greenhouse. We collected data on floral visitation by insects in the field experiment for two field seasons and collected pollen and nectar from focal plants in the greenhouse to avoid interfering with insect visitation in the field. Results We found pollen amino acid concentrations were lower in plants exposed to low concentrations of herbicide, and pollen fatty acid concentrations were lower in plants exposed to low concentrations of fertilizer, while nectar amino acids were higher in plants exposed to low concentrations of either fertilizer or herbicide. Exposure to low fertilizer concentrations also increased the quantity of pollen and nectar produced per flower. The responses of plants exposed to the experimental treatments in the greenhouse helped explain insect visitation in the field study. The insect visitation rate correlated with nectar amino acids, pollen amino acids, and pollen fatty acids. An interaction between pollen protein and floral display suggested pollen amino acid concentrations drove insect preference among plant species when floral display sizes were large. We show that floral resource quality is sensitive to agrochemical exposure and that flower-visiting insects are sensitive to variation in floral resource quality.
Collapse
Affiliation(s)
- Laura Russo
- University of Tennessee, Knoxville, United States of America
- Trinity College Dublin, Dublin, Ireland
| | | | - Angela Gronert
- Chair of Nature Conservation and Landscape Ecology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | | | | | | | - Alexandra Klein
- Chair of Nature Conservation and Landscape Ecology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
4
|
Brzosko E, Bajguz A, Burzyńska J, Chmur M. In Which Way Do the Flower Properties of the Specialist Orchid Goodyera repens Meet the Requirements of Its Generalist Pollinators? Int J Mol Sci 2023; 24:ijms24108602. [PMID: 37239948 DOI: 10.3390/ijms24108602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
This article is the next part of a series of studies documenting the influence of flower traits on the reproductive success (RS) of orchids. Knowledge of factors influencing RS helps to understand the mechanisms and processes crucial for shaping plant-pollinator interactions. The aim of the present study was to determine the role of flower structure and nectar composition in shaping the RS of the specialist orchid Goodyea repens, which is pollinated by generalist bumblebees. We found a high level of pollinaria removal (PR) and female reproductive success (fruiting, FRS) as well as a high level of variation between populations, although in certain populations pollination efficiency was low. Floral display traits, mainly inflorescence length, influenced FRS in certain populations. Among the flower traits, only the height of flowers was correlated with FRS in one population, suggesting that the flower structure of this orchid is well adapted to pollination by bumblebees. The nectar of G. repens is diluted and dominated by hexoses. Sugars were less important in shaping RS than amino acids. At the species level, twenty proteogenic and six non-proteogenic AAs were noted, along with their differentiated amounts and participation in particular populations. We found that distinct AAs or their groups mainly shaped PR, especially when correlations were considered at the species level. Our results suggest that both the individual nectar components and the ratios between them have an impact on G. repens RS. Because different nectar components influence the RS parameters in different ways (i.e., negatively or positively), we suggest that different Bombus species play the role of main pollinators in distinct populations.
Collapse
Affiliation(s)
- Emilia Brzosko
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland
| | - Andrzej Bajguz
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland
| | - Justyna Burzyńska
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland
| | - Magdalena Chmur
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland
| |
Collapse
|
5
|
Brzosko E, Bajguz A, Burzyńska J, Chmur M. Does Reproductive Success in Natural and Anthropogenic Populations of Generalist Epipactis helleborine Depend on Flower Morphology and Nectar Composition? Int J Mol Sci 2023; 24:4276. [PMID: 36901705 PMCID: PMC10001846 DOI: 10.3390/ijms24054276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
The purpose of our study was to determine the role of flower structure and nectar composition in shaping the reproductive success (RS) of the generalist orchid Epipactis helleborine in natural and anthropogenic populations. We supposed that the distinct character of two groups of habitats creates different conditions for plant-pollinator relationships, thus influencing reproductive success in E. helleborine populations. Both pollinaria removal (PR) and fruiting (FRS) were differentiated between the populations. On average, FRS was almost two times higher in the anthropogenic than in the natural populations. The difference between the two population groups in PR was smaller but still statistically significant. RS parameters were correlated with some floral display and flower traits. Floral display influenced RS only in three anthropogenic populations. Flower traits had a weak influence on RS (10 of the 192 cases analyzed). The more important trait in shaping RS was nectar chemistry. The nectar of E. helleborine is relatively diluted with a lower sugar concentration in the anthropogenic than in the natural populations. In the natural populations, domination of sucrose over hexoses was found, while in the anthropogenic populations, hexoses were more abundant and the participation of sugars was balanced. In some populations, sugars influenced RS. In E. helleborine nectar, 20 proteogenic and 7 non-proteogenic amino acids (AAs) were found with a clear domination of glutamic acid. We noted relationships between some AAs and RS, but distinct AAs shaped RS in different populations, and their impact was independent of their participation. Our results indicate that the flower structure and nectar composition of E. helleborine reflect its generalistic character and meet the requirements of a wide range of pollinators. Simultaneously, the differentiation of flower traits suggests a variation in pollinator assemblages in particular populations. Knowledge about the factors influencing RS in distinct habitats helps to understand the evolutionary potential of species and to understand mechanisms and processes crucial for shaping interactions between plants and pollinators.
Collapse
Affiliation(s)
- Emilia Brzosko
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland
| | | | | | | |
Collapse
|
6
|
Venjakob C, Ruedenauer FA, Klein AM, Leonhardt SD. Variation in nectar quality across 34 grassland plant species. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:134-144. [PMID: 34618397 DOI: 10.1111/plb.13343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Floral nectar is considered the most important floral reward for attracting pollinators. It contains large amounts of carbohydrates besides variable concentrations of amino acids and thus represents an important food source for many pollinators. Its nutrient content and composition can, however, strongly vary within and between plant species. The factors driving this variation in nectar quality are still largely unclear. We investigated factors underlying interspecific variation in macronutrient composition of floral nectar in 34 different grassland plant species. Specifically, we tested for correlations between the phylogenetic relatedness and morphology of plants and the carbohydrate (C) and total amino acid (AA) composition and C:AA ratios of nectar. We found that compositions of carbohydrates and (essential) amino acids as well as C:AA ratios in nectar varied significantly within and between plant species. They showed no clear phylogenetic signal. Moreover, variation in carbohydrate composition was related to family-specific structural characteristics and combinations of morphological traits. Plants with nectar-exposing flowers, bowl- or parabolic-shaped flowers, as often found in the Apiaceae and Asteraceae, had nectar with higher proportions of hexoses, indicating a selective pressure to decelerate evaporation by increasing nectar osmolality. Our study suggests that variation in nectar nutrient composition is, among others, affected by family-specific combinations of morphological traits. However, even within species, variation in nectar quality is high. As nectar quality can strongly affect visitation patterns of pollinators and thus pollination success, this intra- and interspecific variation requires more studies to fully elucidate the underlying causes and the consequences for pollinator behaviour.
Collapse
Affiliation(s)
- C Venjakob
- Institute of Ecology, Ecosystem Functions, Leuphana University of Lüneburg, Lüneburg, Germany
- Agroecology, DNPW, University of Göttingen, Göttingen, Germany
| | - F A Ruedenauer
- Plant-Insect Interactions, TUM School of Life Science Systems, Technical University of Munich, Freising, Germany
| | - A-M Klein
- Faculty of Environment and Natural Resources, Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany
| | - S D Leonhardt
- Plant-Insect Interactions, TUM School of Life Science Systems, Technical University of Munich, Freising, Germany
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
7
|
Parreño MA, Alaux C, Brunet JL, Buydens L, Filipiak M, Henry M, Keller A, Klein AM, Kuhlmann M, Leroy C, Meeus I, Palmer-Young E, Piot N, Requier F, Ruedenauer F, Smagghe G, Stevenson PC, Leonhardt SD. Critical links between biodiversity and health in wild bee conservation. Trends Ecol Evol 2021; 37:309-321. [PMID: 34955328 DOI: 10.1016/j.tree.2021.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/29/2022]
Abstract
Wild bee populations are declining due to human activities, such as land use change, which strongly affect the composition and diversity of available plants and food sources. The chemical composition of food (i.e., nutrition) in turn determines the health, resilience, and fitness of bees. For pollinators, however, the term 'health' is recent and is subject to debate, as is the interaction between nutrition and wild bee health. We define bee health as a multidimensional concept in a novel integrative framework linking bee biological traits (physiology, stoichiometry, and disease) and environmental factors (floral diversity and nutritional landscapes). Linking information on tolerated nutritional niches and health in different bee species will allow us to better predict their distribution and responses to environmental change, and thus support wild pollinator conservation.
Collapse
Affiliation(s)
- M A Parreño
- Plant-Insect Interactions, TUM School of Life Science Systems, Technical University of Munich (TUM), Freising, Germany.
| | - C Alaux
- INRAE, Abeilles et Environnement, Avignon, France
| | - J-L Brunet
- INRAE, Abeilles et Environnement, Avignon, France
| | - L Buydens
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - M Filipiak
- Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - M Henry
- INRAE, Abeilles et Environnement, Avignon, France
| | - A Keller
- Center for Computational and Theoretical Biology, and Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - A-M Klein
- Chair of Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany
| | - M Kuhlmann
- Zoological Museum of Kiel University, Kiel, Germany
| | - C Leroy
- INRAE, Abeilles et Environnement, Avignon, France
| | - I Meeus
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - E Palmer-Young
- US Department of Agriculture (USDA) Agricultural Research Service Bee Research Laboratory, Beltsville, MD, USA
| | - N Piot
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - F Requier
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement, et Écologie, 91198 Gif-sur-Yvette, France
| | - F Ruedenauer
- Plant-Insect Interactions, TUM School of Life Science Systems, Technical University of Munich (TUM), Freising, Germany
| | - G Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - P C Stevenson
- Royal Botanic Gardens, Kew, Surrey TW9 3AE, UK; University of Greenwich, London, UK
| | - S D Leonhardt
- Plant-Insect Interactions, TUM School of Life Science Systems, Technical University of Munich (TUM), Freising, Germany.
| |
Collapse
|
8
|
van der Kooi CJ, Vallejo-Marín M, Leonhardt SD. Mutualisms and (A)symmetry in Plant-Pollinator Interactions. Curr Biol 2021; 31:R91-R99. [PMID: 33497641 DOI: 10.1016/j.cub.2020.11.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The majority of flowering plants relies on animal pollinators for sexual reproduction and many animal pollinators rely on floral resources. However, interests of plants and pollinators are often not the same, resulting in an asymmetric relationship that ranges from mutualistic to parasitic interactions. Our understanding of the processes that underlie this asymmetry remains fragmentary. In this Review, we bring together evidence from evolutionary biology, plant chemistry, biomechanics, sensory ecology and behaviour to illustrate that the degree of symmetry often depends on the perspective taken. We also highlight variation in (a)symmetry within and between plant and pollinator species as well as between geographic locations. Through taking different perspectives from the plant and pollinator sides we provide new ground for studies on the maintenance and evolution of animal pollination and on the (a)symmetry in plant-pollinator interactions.
Collapse
Affiliation(s)
- Casper J van der Kooi
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands.
| | | | - Sara D Leonhardt
- Department of Ecology and Ecosystem Management, Technical University of Munich, Freising, Germany
| |
Collapse
|
9
|
How Are the Flower Structure and Nectar Composition of the Generalistic Orchid Neottia ovata Adapted to a Wide Range of Pollinators? Int J Mol Sci 2021; 22:ijms22042214. [PMID: 33672302 PMCID: PMC7926835 DOI: 10.3390/ijms22042214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/05/2021] [Accepted: 02/19/2021] [Indexed: 11/16/2022] Open
Abstract
Plant-pollinator interactions significantly influence reproductive success (RS) and drive the evolution of pollination syndromes. In the context of RS, mainly the role of flower morphology is touched. The importance of nectar properties is less studied, despite its significance in pollination effectiveness. Therefore, the aim of this study was to test selection on flower morphology and nectar chemistry in the generalistic orchid Neottia ovata. In 2019–2020, we measured three floral displays and six flower traits, pollinaria removal (PR), female reproductive success (FRS), and determined the soil properties. The sugars and amino acids (AAs) were analyzed using the HPLC method. Data were analyzed using multiple statistical methods (boxplots, ternary plot, one-way ANOVA, Kruskal-Wallis test, and PCA). Variation of flower structure and nectar chemistry and their weak correlation with RS confirms the generalistic character of N. ovata. In particular populations, different traits were under selection. PR was high and similar in all populations in both years, while FRS was lower and varied among populations. Nectar was dominated by glucose, fructose, and included 28 AAs (Ala and Glu have the highest content). Sugars and AAs influenced mainly FRS. Among soil parameters, carbon and carbon:nitrogen ratio seems to be the most important in shaping flower structure and nectar chemistry.
Collapse
|
10
|
Descamps C, Quinet M, Jacquemart AL. Climate Change-Induced Stress Reduce Quantity and Alter Composition of Nectar and Pollen From a Bee-Pollinated Species ( Borago officinalis, Boraginaceae). FRONTIERS IN PLANT SCIENCE 2021; 12:755843. [PMID: 34707633 PMCID: PMC8542702 DOI: 10.3389/fpls.2021.755843] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/20/2021] [Indexed: 05/14/2023]
Abstract
In temperate ecosystems, elevated temperatures, and drought occur especially during spring and summer, which are crucial periods for flowering, pollination, and reproduction of a majority of temperate plants. While many mechanisms may underlie pollinator decline in the wake of climate change, the interactive effects of temperature and water stress on the quantity and quality of floral nectar and pollen resources remain poorly studied. We investigated the impact of temperature rise (+3 and +6°C) and water stress (soil humidity lower than 15%) on the floral resources produced by the bee-pollinated species Borago officinalis. Nectar volume decreased with both temperature rise and water stress (6.1 ± 0.5 μl per flower under control conditions, 0.8 ± 0.1 μl per flower under high temperature and water stress conditions), resulting in a 60% decrease in the total quantity of nectar sugars (mg) produced per flower. Temperature rise but not water stress also induced a 50% decrease in pollen weight per flower but a 65% increase in pollen polypeptide concentration. Both temperature rise and water stress increased the total amino acid concentration and the essential amino acid percentage in nectar but not in pollen. In both pollen and nectar, the relative percentage of the different amino acids were modified under stresses. We discuss these modifications in floral resources in regards to plant-pollinator interactions and consequences on plant pollination success and on insect nutritional needs.
Collapse
|
11
|
Leonhardt SD, Lihoreau M, Spaethe J. Mechanisms of Nutritional Resource Exploitation by Insects. INSECTS 2020; 11:insects11090570. [PMID: 32854218 PMCID: PMC7564569 DOI: 10.3390/insects11090570] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 11/16/2022]
Abstract
Insects have evolved an extraordinary range of nutritional adaptations to exploit other animals, plants, bacteria, fungi and soils as resources in terrestrial and aquatic environments. This special issue provides some new insights into the mechanisms underlying these adaptations. Contributions comprise lab and field studies investigating the chemical, physiological, cognitive and behavioral mechanisms that enable resource exploitation and nutrient intake regulation in insects. The collection of papers highlights the need for more studies on the comparative sensory ecology, underlying nutritional quality assessment, cue perception and decision making to fully understand how insects adjust resource selection and exploitation in response to environmental heterogeneity and variability.
Collapse
Affiliation(s)
- Sara D. Leonhardt
- Plant-Insect-Interactions Group, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany
- Correspondence:
| | - Mathieu Lihoreau
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI); CNRS, University Paul Sabatier - Toulouse III, 31062 Toulouse, France;
| | - Johannes Spaethe
- Department of Behavioral Physiology and Sociobiology, Biozentrum, University of Würzburg, Biozentrum, Am Hubland, 97074 Würzburg, Germany;
| |
Collapse
|