1
|
Bogusz R, Nowacka M, Bryś J, Rybak K, Szulc K. Quality assessment of yellow mealworm (Tenebrio molitor L.) powders processed by pulsed electric field and convective drying. Sci Rep 2024; 14:27792. [PMID: 39537731 PMCID: PMC11561349 DOI: 10.1038/s41598-024-79412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Edible insects offer opportunities for food production, as they are an interesting source of many nutrients. In this study, the effect of pulsed electric field (PEF) and convective drying on the chemical composition with emphasizing the fat properties as well as physical, techno-functional, and thermal properties of yellow mealworm powders was investigated. The chemical composition of the yellow mealworm powders differed by PEF. When PEF was applied at 20 and 40 kJ/kg, the moisture, ash, and protein content were significantly lower, while the fat extraction yield significantly increased compared to the control sample. Furthermore, the fat extracted from these samples was characterized by a higher proportion of saturated and monounsaturated fatty acids as well as a higher thrombogenicity index, which is not beneficial from a nutritional point of view. After treatment with PEF at 5 kJ/kg, the powder was the lightest, redness and yellowness. Moreover, the highest hygroscopicity, water activity, and water and oil binding capacity for this powder were determined. The results revealed that yellow mealworm powders are a good source of macronutrients and exhibit beneficial techno-functional properties, nevertheless, the drawback is their high cohesiveness (1.27-1.44), which can be difficult to apply under industrial conditions.
Collapse
Affiliation(s)
- Radosław Bogusz
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, Warsaw, 02-776, Poland
| | - Małgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, Warsaw, 02-776, Poland.
| | - Joanna Bryś
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, Warsaw, 02-776, Poland
| | - Katarzyna Rybak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, Warsaw, 02-776, Poland
| | - Karolina Szulc
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, Warsaw, 02-776, Poland
| |
Collapse
|
2
|
Li A, Dewettinck K, Verheust Y, Van de Walle D, Raes K, Diehl B, Tzompa-Sosa DA. Edible insects as a novel source of lecithin: Extraction and lipid characterization of black soldier fly larvae and yellow mealworm. Food Chem 2024; 452:139391. [PMID: 38713980 DOI: 10.1016/j.foodchem.2024.139391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 05/09/2024]
Abstract
Edible insects with high fat and phosphorus content are a potential novel source of lecithin, however, studies on their minor lipids are limited. In this study, lecithin was extracted from black soldier fly larvae and yellow mealworm. Herein, the effects of lecithin extraction method, matrix and ultrasound pretreatment were explored based on the fatty acid composition and phospholipid profile with soy lecithin as a reference. The use of a wet matrix and ultrasound pretreatment increased the extraction efficiency of total PLs from both insects. Insect lecithin contained a considerable amount of sphingomyelin compared to soy lecithin. In insect lecithin, a total of 47 glycerophospholipid and sphingomyelin molecular species, as well as four molecular species of fatty acyl esters of hydroxy fatty acid, were detected. This study is the first comprehensive investigation of insects as a new source of lecithin with applications in food, cosmetics and in the pharmaceutical industry.
Collapse
Affiliation(s)
- An Li
- Food Structure and Function research group, Department of Food Technology, Safety, and Health, Ghent University, Ghent 9000, Belgium
| | - Koen Dewettinck
- Food Structure and Function research group, Department of Food Technology, Safety, and Health, Ghent University, Ghent 9000, Belgium
| | - Yannick Verheust
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Ghent University, 8500 Kortrijk, Belgium
| | - Davy Van de Walle
- Food Structure and Function research group, Department of Food Technology, Safety, and Health, Ghent University, Ghent 9000, Belgium
| | - Katleen Raes
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Ghent University, 8500 Kortrijk, Belgium
| | - Bernd Diehl
- Spectral Service AG, Emil-Hoffmann-Straße 33, 50996 Cologne, Germany
| | - Daylan A Tzompa-Sosa
- Food Structure and Function research group, Department of Food Technology, Safety, and Health, Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
3
|
Bogusz R, Bryś J, Onopiuk A, Pobiega K, Tomczak A, Kowalczewski PŁ, Rybak K, Nowacka M. The Impact of Drying Methods on the Quality of Blanched Yellow Mealworm ( Tenebrio molitor L.) Larvae. Molecules 2024; 29:3679. [PMID: 39125083 PMCID: PMC11314216 DOI: 10.3390/molecules29153679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The growing world population necessitates the implementation of appropriate processing technologies for edible insects. The objective of this study was to examine the impact of distinct drying techniques, including convective drying at 70 °C (70CD) and 90 °C (90CD) and freeze-drying (FD), on the drying kinetics, physical characteristics (water activity, color), chemical characteristics (chemical composition, amino acid profile, oil properties, total polyphenol content and antioxidant activity, mineral composition, FTIR), and presence of hazards (allergens, microorganisms) of blanched yellow mealworm larvae. The freeze-drying process results in greater lightness and reduced moisture content and water activity. The study demonstrated that the freeze-dried insects exhibited lower contents of protein and essential amino acids as compared to the convective-dried insects. The lowest content of total polyphenols was found in the freeze-dried yellow mealworm larvae; however, the highest antioxidant activity was determined for those insects. Although the oil isolated from the freeze-dried insects exhibited the lowest acid and peroxide values, it proved to have the lowest PUFA content and oxidative stability. All the samples met the microbiological criteria for dried insects. The results of the study demonstrate that a high temperature during the CD method does not result in the anticipated undesirable changes. It appears that freeze-drying is not the optimal method for preserving the nutritional value of insects, particularly with regard to the quality of protein and oil.
Collapse
Affiliation(s)
- Radosław Bogusz
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Joanna Bryś
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Anna Onopiuk
- Department of Technique and Food Development, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Katarzyna Pobiega
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Aneta Tomczak
- Department of Food Analysis and Biochemistry, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 28, 60-623 Poznan, Poland;
| | - Przemysław Łukasz Kowalczewski
- Department of Food Technology of Plant Origin, Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznan, Poland;
| | - Katarzyna Rybak
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| | - Małgorzata Nowacka
- Department of Food Engineering and Process Management, Institute of Food Sciences, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159c, 02-776 Warsaw, Poland;
| |
Collapse
|
4
|
Robinson K, Duffield KR, Ramirez JL, Cohnstaedt LW, Ashworth A, Jesudhasan PR, Arsi K, Morales Ramos JA, Rojas MG, Crippen TL, Shanmugasundaram R, Vaughan M, Webster C, Sealey W, Purswell JL, Oppert B, Neven L, Cook K, Donoghue AM. MINIstock: Model for INsect Inclusion in sustainable agriculture: USDA-ARS's research approach to advancing insect meal development and inclusion in animal diets. JOURNAL OF ECONOMIC ENTOMOLOGY 2024:toae130. [PMID: 38961669 DOI: 10.1093/jee/toae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 07/05/2024]
Abstract
Animal agriculture is under pressure to increase efficiency, sustainability, and innovation to meet the demands of a rising global population while decreasing adverse environmental effects. Feed cost and availability are 2 of the biggest hurdles to sustainable production. Current diets depend on sources of grain and animal byproduct protein for essential amino acids which have limited sustainability. Insects have arisen as an attractive, sustainable alternative protein source for animal diets due to their favorable nutrient composition, low space and water requirements, and natural role in animal diets. Additionally, insects are capable of bioremediating waste streams including agricultural and food waste, manure, and plastics helping to increase their sustainability. The insect rearing industry has grown rapidly in recent years and shows great economic potential. However, state-of-the-art research is urgently needed to overcome barriers to adoption in commercial animal diets such as regulatory restrictions, production scale issues, and food safety concerns. To address this need, the USDA Agricultural Research Service "MINIstoc: Model for INsect Inclusion" project was created to bring together diverse scientists from across the world to synergistically advance insect meal production and inclusion in animal diets. Here, we provide a short review of insects as feed while describing the MINIstock project which serves as the inspiration for the Journal of Economic Entomology Special Collection "Insects as feed: sustainable solutions for food waste and animal production practices."
Collapse
Affiliation(s)
| | - Kristin R Duffield
- USDA-ARS, National Center for Agricultural Utilization Research, Crop Bioprotection Research, Peoria, IL, USA
| | - José L Ramirez
- USDA-ARS, National Center for Agricultural Utilization Research, Crop Bioprotection Research, Peoria, IL, USA
| | - Lee W Cohnstaedt
- USDA-ARS, National Bio and Agro-Defense Facility, Foreign Arthropod Borne Animal Disease Research, Manhattan, KS, USA
| | - Amanda Ashworth
- USDA-ARS, Poultry Production and Product Safety Research, Fayetteville, AR, USA
| | - Palmy R Jesudhasan
- USDA-ARS, Poultry Production and Product Safety Research, Fayetteville, AR, USA
| | - Komala Arsi
- USDA-ARS, Poultry Production and Product Safety Research, Fayetteville, AR, USA
| | - Juan A Morales Ramos
- USDA-ARS, National Biological Control Laboratory, Biological Control of Pests Research, Stoneville, MS, USA
| | - M Guadalupe Rojas
- USDA-ARS, National Biological Control Laboratory, Biological Control of Pests Research, Stoneville, MS, USA
| | - Tawni L Crippen
- USDA-ARS, Food and Feed Safety Research, College Station, TX, USA
| | | | - Martha Vaughan
- USDA-ARS, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research, Peoria, IL, USA
| | - Carl Webster
- USDA-ARS, Aquatic Animal Health Research, Auburn, AL, USA
| | - Wendy Sealey
- USDA-ARS, Bozeman Fish Technology Center, Bozeman, MT, USA
| | | | - Brenda Oppert
- USDA-ARS, Center for Grain and Animal Health Research, Stored Product Insect and Engineering Research, Manhattan, KS, USA
| | - Lisa Neven
- USDA-ARS, Temperate Tree Fruit and Vegetable Research, Wapato, WA, USA
| | - Kim Cook
- USDA-ARS, Beltsville, Beltsville, MD, USA
| | - Annie M Donoghue
- USDA-ARS, Poultry Production and Product Safety Research, Fayetteville, AR, USA
| |
Collapse
|
5
|
Islam SMM, Siddik MAB, Sørensen M, Brinchmann MF, Thompson KD, Francis DS, Vatsos IN. Insect meal in aquafeeds: A sustainable path to enhanced mucosal immunity in fish. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109625. [PMID: 38740231 DOI: 10.1016/j.fsi.2024.109625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
The mucosal surfaces of fish, including their intestines, gills, and skin, are constantly exposed to various environmental threats, such as water quality fluctuations, pollutants, and pathogens. However, various cells and microbiota closely associated with these surfaces work in tandem to create a functional protective barrier against these conditions. Recent research has shown that incorporating specific feed ingredients into fish diets can significantly boost their mucosal and general immune response. Among the various ingredients being investigated, insect meal has emerged as one of the most promising options, owing to its high protein content and immunomodulatory properties. By positively influencing the structure and function of mucosal surfaces, insect meal (IM) has the potential to enhance the overall immune status of fish. This review provides a comprehensive overview of the potential benefits of incorporating IM into aquafeed as a feed ingredient for augmenting the mucosal immune response of fish.
Collapse
Affiliation(s)
- S M Majharul Islam
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | - Muhammad A B Siddik
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3216, Australia
| | - Mette Sørensen
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway
| | | | - Kim D Thompson
- Aquaculture Research Group, Moredun Research Institute, Edinburgh, UK
| | - David S Francis
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC, 3216, Australia
| | - Ioannis N Vatsos
- Faculty of Biosciences and Aquaculture, Nord University, 8026, Bodø, Norway.
| |
Collapse
|
6
|
Shelomi M. Mitigation Strategies against Food Safety Contaminant Transmission from Black Soldier Fly Larva Bioconversion. Animals (Basel) 2024; 14:1590. [PMID: 38891637 PMCID: PMC11171339 DOI: 10.3390/ani14111590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
The black soldier fly larva, Hermetia illucens, can efficiently convert organic waste into biomatter for use in animal feed. This circularity comes with a risk of contaminating downstream consumers of the larval products with microbes, heavy metals, and other hazards potentially present in the initial substrate. This review examines research on mitigation techniques to manage these contaminants, from pretreatment of the substrate to post-treatment of the larvae. While much research has been done on such techniques, little of it focused on their effects on food safety contaminants. Cheap and low-technology heat treatment can reduce substrate and larval microbial load. Emptying the larval gut through starvation is understudied but promising. Black soldier fly larvae accumulate certain heavy metals like cadmium, and their ability to process certain hazards is unknown, which is why some government authorities are erring on the side of caution regarding how larval bioconversion can be used within feed production. Different substrates have different risks and some mitigation strategies may affect larval rearing performance and the final products negatively, so different producers will need to choose the right strategy for their system to balance cost-effectiveness with sustainability and safety.
Collapse
Affiliation(s)
- Matan Shelomi
- Department of Entomology, National Taiwan University, 106319 Taipei, Taiwan
| |
Collapse
|
7
|
Chew LY, Teng SK, Neo YP, Sim YY, Chew SC. The Potential of Roselle (Hibiscus sabdariffa) Plant in Industrial Applications: A Promising Source of Functional Compounds. J Oleo Sci 2024; 73:275-292. [PMID: 38432993 DOI: 10.5650/jos.ess23111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
Roselle is an annual botanical plant that widely planted in different countries worldwide. Its different parts, including seeds, leaves, and calyces, can offer multi-purpose applications with economic importance. The present review discusses the detailed profile of bioactive compounds present in roselle seeds, leaves, and calyces, as well as their extraction and processing, to explore their potential application in pharmaceutical, cosmetic, nutraceutical, food and other industries. Roselle seeds with high phenolics, fiber, and protein contents, which are suitable to use in functional food product development. Besides, roselle seeds can yield 17-20% of roselle seed oil with high content of linoleic acid (35.0-45.3%) and oleic acid (27.1- 36.9%). This unique fatty acid composition of roselle seed oil makes it suitable to use as edible oil to offer the health benefits of essential fatty acid. Moreover, high contents of tocopherols, phenolics, and phytosterols were detected in roselle seed oil to provide nutritional, pharmaceutical, and therapeutic properties. On the other hand, roselle leaves with valuable contents of phenols, flavonoids, organic acid, and tocopherols can be applied in silver nanoparticles, food product development, and the pharmaceutical industry. Roselle calyces with high content of anthocyanins, protocatechuic acids, and organic acids are widely applied in food and colorant industries.
Collapse
Affiliation(s)
- Lye Yee Chew
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus
| | | | - Yun Ping Neo
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University Lakeside Campus
| | | | - Sook Chin Chew
- School of Foundation Studies, Xiamen University Malaysia Campus
| |
Collapse
|
8
|
Gnana Moorthy Eswaran U, Karunanithi S, Gupta RK, Rout S, Srivastav PP. Edible insects as emerging food products-processing and product development perspective. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2105-2120. [PMID: 37273559 PMCID: PMC10232397 DOI: 10.1007/s13197-022-05489-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/12/2022] [Accepted: 05/15/2022] [Indexed: 06/06/2023]
Abstract
Edible insects (EI) are also becoming as a part of the diet due to their nutritional value and health benefits in many regions of the world. These EI are inexhaustible sources accessible by garnering from the wild with high feed conversion efficiency. Appreciating the budding of EI in justifiable food production, enlightening food security and biodiversity conversion, is promising a sufficient supply of the insect resource for future food to the world. These insects are processed to develop new products, improve organoleptic and nutritional parameters as well as the extension of shelf life. In this review, we discuss the edible insect characteristics, the potential application of EI in food industry, processing, pretreatments, drying, extraction of edible compounds like protein, lipid and chitin various food products formulation, safety regulation. Availability of broad nutritional spectrum of EI includes protein, mono and poly unsaturaturated fatty acids, amino acids, vitamins, amino aids and minerals has been used as an ingredient in development of various forms of food products such as flours in the form of whole insect powder, protein isolate, canned products, extruded products, hard candies, spreads, liquor infusion, cookies and other products.
Collapse
Affiliation(s)
- U. Gnana Moorthy Eswaran
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, 721302 West Bengal India
| | - Sangeetha Karunanithi
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, 721302 West Bengal India
| | - Rakesh Kumar Gupta
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, 721302 West Bengal India
| | - Srutee Rout
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, 721302 West Bengal India
| | - Prem Prakash Srivastav
- Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, 721302 West Bengal India
| |
Collapse
|
9
|
Dandadzi M, Musundire R, Muriithi A, Ngadze RT. Effects of drying on the nutritional, sensory and microbiological quality of edible stinkbug (Encosternumdelgorguei). Heliyon 2023; 9:e18642. [PMID: 37576258 PMCID: PMC10413077 DOI: 10.1016/j.heliyon.2023.e18642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/10/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023] Open
Abstract
Entomophagy has recently gained attention as a potential solution to the problems of food and nutritional security. One example is the consumption of edible stinkbug. Different drying techniques may affect the nutritional, microbiological and sensory properties of the edible stinkbugs. Thus, the study assessed the effects of toasting, microwave, oven and sun drying on the nutritional composition, microbiological quality and sensory attributes of processed edible stinkbugs. Drying significantly (p < 0.05) increased the crude protein and fat content of the edible stink bugs with the highest values being recorded for the toasted samples (66.65 & 37.17% respectively). Highest Ca, K, Zn, Mg, Fe and P values were recorded after microwave drying. Reduction of 2.94 and 2.99 log cycles of the total viable count (TVC) was observed in oven and microwave dried edible stinkbugs. Toasting and microwave drying eliminated the yeasts and moulds, Enterobacteriaceae and lactic acid bacteria (LAB) in edible stinkbugs. The appearance, aroma, taste, texture and overall acceptability scores were in the same order for toasted > oven dried > microwave dried > sun dried edible stinkbugs. Toasting, oven and microwave drying can be used for processing of edible stinkbugs.
Collapse
Affiliation(s)
- Melania Dandadzi
- School of Agricultural and Food Sciences, Jaramogi Oginga Odinga University of Science and Technology, P. O. Box 210-40601, Bondo, Kenya
- Department of Food Science and Technology, Chinhoyi University of Technology, P. O Box 7724, Chinhoyi, Zimbabwe
| | - Robert Musundire
- Research and Postgraduate Studies, Chinhoyi University of Technology, P. Bag 7724, Chinhoyi, Zimbabwe
| | - Alice Muriithi
- School of Agricultural and Food Sciences, Jaramogi Oginga Odinga University of Science and Technology, P. O. Box 210-40601, Bondo, Kenya
| | - Ruth T. Ngadze
- Department of Food Science and Technology, Chinhoyi University of Technology, P. O Box 7724, Chinhoyi, Zimbabwe
| |
Collapse
|
10
|
Mohd Zaini NS, Lim EJ, Ahmad NH, Gengatharan A, Wan-Mohtar WAAQI, Abd Rahim MH. The Review of Cooking, Drying, and Green Extraction Methods on General Nutritional Properties of Mealworms and Locusts. FOOD BIOPROCESS TECH 2023; 16:1-15. [PMID: 36844636 PMCID: PMC9940687 DOI: 10.1007/s11947-023-03020-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 02/05/2023] [Indexed: 02/23/2023]
Abstract
The processing of edible insects as an alternative source of nutrition may be a key driver in the development of a sustainable food and feed system. This review will study two industrial types of insects-mealworms and locusts-and summarize evidence related to the impact of processing on their micro- and macronutritional characteristics. The focus will be on their potential use as food for human consumption as opposed to animal feed. Literature has indicated that these two insects have the potential to provide protein and fat qualities comparable to or better than traditional mammalian sources. For example, mealworms-the larval form of the yellow mealworm beetlepossess a higher fat content, while adult locusts are rich in fibers, especially chitin. However, due to the different matrix and nutrient compositions, the processing of mealworms or locusts at a commercial scale needs to be tailored to minimize nutritional loss and maximize cost efficiency. The stages of preprocessing, cooking, drying, and extraction are the most critical control points for nutritional preservation. Thermal cooking applications such as microwave technology have demonstrated promising results, but the generation of heat may contribute to a certain nutritional loss. In an industrial context, drying using freeze dry is the preferred choice due to its uniformity, but it can be costly while increasing lipid peroxidation. During the extraction of nutrients, the use of green emerging technologies such as high hydrostatic pressure, pulsed electric field, and ultrasound may provide an alternative method to enhance nutrient preservation. Graphical Abstract
Collapse
Affiliation(s)
- Nurul Solehah Mohd Zaini
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Elicia Jitming Lim
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Nurul Hawa Ahmad
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Ashwini Gengatharan
- Faculty of Bioeconomics and Health Sciences, Geomatika University College, 54200 Kuala Lumpur, Malaysia
| | - Wan Abd Al Qadr Imad Wan-Mohtar
- Functional Omics and Bioprocess Development Laboratory, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Muhamad Hafiz Abd Rahim
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| |
Collapse
|
11
|
Yan X, Laurent S, Hue I, Cabon S, Grua-Priol J, Jury V, Federighi M, Boué G. Quality of Tenebrio molitor Powders: Effects of Four Processes on Microbiological Quality and Physicochemical Factors. Foods 2023; 12:foods12030572. [PMID: 36766101 PMCID: PMC9914264 DOI: 10.3390/foods12030572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023] Open
Abstract
Tenebrio molitor, the first edible insect approved as a novel food in the EU, is a promising candidate for alternative protein sources, implementing circular and sustainable production systems. This study aims to determine the microbiological quality and physicochemical properties of mealworm powders obtained by four different processing pathways. Contents of dry matter, protein, fat, ash, water activity (aw) and a range of microbial counts were measured and analyzed by one-way ANOVA with Tukey's test. Results showed small differences in the proximate composition of the powder samples (protein 55.62-57.90% and fat 23.63-28.21% of dry matter, DM), except for the one that underwent a defatting step (protein 70.04% and fat 16.84%), p < 0.05. A level of water activity of less than 0.2 was reached for all pathways. Fresh mealworm samples had high total aerobic counts (8.4 log CFU/g) but were free of foodborne pathogens. Heat treatments applied during transformation were sufficient to kill vegetative cells (reduction of 2.8-5.1 log CFU/g) rather than bacterial endospores (reduction of 0.3-1.8 log CFU/g). Results were confirmed by predictive microbiology. This study validated the efficacy of a boiling step as critical control points (CCPs) of insect powder processing, providing primary data for the implementation of HACCP plans.
Collapse
Affiliation(s)
- Xin Yan
- Oniris, INRAE, SECALIM, 44300 Nantes, France
| | - Sophie Laurent
- Oniris, Université de Nantes, CNRS, GEPEA UMR 6144, 44322 Nantes, France
| | | | | | - Joelle Grua-Priol
- Oniris, Université de Nantes, CNRS, GEPEA UMR 6144, 44322 Nantes, France
| | - Vanessa Jury
- Oniris, Université de Nantes, CNRS, GEPEA UMR 6144, 44322 Nantes, France
| | - Michel Federighi
- Oniris, INRAE, SECALIM, 44300 Nantes, France
- EnvA, ANSES, LSA, 94700 Maison-Alfort, France
| | - Geraldine Boué
- Oniris, INRAE, SECALIM, 44300 Nantes, France
- Correspondence:
| |
Collapse
|
12
|
Xie X, Yuan Z, Fu K, An J, Deng L. Effect of Partial Substitution of Flour with Mealworm ( Tenebrio molitor L.) Powder on Dough and Biscuit Properties. Foods 2022; 11:2156. [PMID: 35885398 PMCID: PMC9316987 DOI: 10.3390/foods11142156] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
Mealworm (Tenebrio molitor L.) is a type of edible insect rich in protein that has become popular as a protein-alternative ingredient in flour-based products to improve the nutritional properties of baking products. The mealworm powder substitution affected the pasting, farinograph, extensograph properties of wheat flour and the texture, nutritional, and sensory properties of the resulting soda biscuit. The pasting parameters (peak viscosity, trough viscosity, breakdown viscosity, final viscosity, and setback viscosity) and the water absorption decreased with the increased mealworm powder substitution level, which was ascribed to the dilution effect of mealworm powder. The farinograph parameters remained similar up to 15% substitution level. The extensograph results showed that mealworm powder substitution decreased the elastic properties of wheat dough as indicated by the consistently decreased extensibility, stretching energy, and stretching resistance, resulting in a significantly decreased baking expansion ratio of the soda biscuit. The protein, lipid, and dietary fiber content of the biscuits increased accordingly with the increased mealworm powder substitution level. The protein content of the soda biscuit was gradually increased from 9.13/100 g for the control (M0) to 16.0/100 g for that supplemented with 20% mealworm powder (M20), accompanied with the significantly increased essential amino acid content. Meanwhile, the fat and dietary fiber content of M20 exhibited 20.5 and 21.7% increase compared to those of M0. The score of the sensory attributes showed no significant difference up to 15% substitution level. The results demonstrated the 15% mealworm powder substitution level would not significantly affect the farinograph property, microstructure of wheat dough, and sensory acceptability.
Collapse
Affiliation(s)
| | | | | | | | - Lingli Deng
- Hubei Key Laboratory of Biological Resources Protection and Utilization, College of Biological Science and Technology, Hubei Minzu University, Enshi 445000, China; (X.X.); (Z.Y.); (K.F.); (J.A.)
| |
Collapse
|
13
|
Bogusz R, Smetana S, Wiktor A, Parniakov O, Pobiega K, Rybak K, Nowacka M. The selected quality aspects of infrared-dried black soldier fly (Hermetia illucens) and yellow mealworm (Tenebrio molitor) larvae pre-treated by pulsed electric field. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Riekkinen K, Väkeväinen K, Korhonen J. The Effect of Substrate on the Nutrient Content and Fatty Acid Composition of Edible Insects. INSECTS 2022; 13:insects13070590. [PMID: 35886766 PMCID: PMC9321513 DOI: 10.3390/insects13070590] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary The search of new sustainably produced protein sources for food and feed is vigorously under investigation. One promising possibility is to increase the use of edible insects as a part of our diet. The nutrient content of edible insects, in particular, a high content of good quality protein and unsaturated fatty acids with essential fatty acids, is an important health aspect when screening the most potential insect species for human consumption. Based on this review, the substrate affects the nutrient content of insects. Moreover, our correlation calculations demonstrated that the fatty acid content of the substrate influences the nutritional value of insects. In general, high content of unsaturated fatty acids in the substrate increased the amount of unsaturated fatty acids in insects. For example, the content of essential fatty acids, linoleic and alpha linolenic acids, can be raised by feeding insects with modified substrate. Thus, edible insects can be a healthy protein source to ease the increased demand for high quality food. Abstract Demand for new food sources and production methods is increasing due to overall population growth, as well as the aim towards more sustainable use of natural resources and circular economy. Edible insects already used in many parts of the world have recently attracted interest as a new protein source in Europe, and novel food acceptance procedures are ongoing in the European Union for several insect species. In this paper, the effects of substate on the nutritional value, especially the fatty acid composition, of edible insects were reviewed and correlation calculations performed. The nutritional value of edible insects is an important health aspect, in particular, a high content of good-quality protein and unsaturated fatty acids with essential fatty acids, and an optimal fatty acid n6/n3 ratio. On the basis of our findings, the nutrient content of insects can be modified by using a feed substrate carefully designed for each individual insect species. In addition, our correlation calculations demonstrated that the contents of linoleic and alpha linolenic acids in insects reflected the contents of these acids in the substrate. In conclusion, optimizing the composition and structure of the substrate and rearing conditions and duration for each insect species might also aid standardization of the nutritional composition of edible insects.
Collapse
|
15
|
Leong SY, Yap VH, Kutty SRM. Optimization of Drying Parameters for
Hermetia illucens
Using Oven Drying. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202200028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Siew Yoong Leong
- Universiti Tunku Abdul Rahman Department of Petrochemical Engineering, Faculty of Engineering and Green Technology Jalan Universiti, Bandar Barat 31900 Kampar Perak Darul Ridzuan Malaysia
| | - Venn Hsien Yap
- Universiti Tunku Abdul Rahman Department of Petrochemical Engineering, Faculty of Engineering and Green Technology Jalan Universiti, Bandar Barat 31900 Kampar Perak Darul Ridzuan Malaysia
| | - Shamsul Rahman Mohamed Kutty
- Universiti Teknologi PETRONAS Department of Civil and Environmental Engineering 32610 Seri Iskandar Perak Darul Ridzuan Malaysia
| |
Collapse
|
16
|
Arévalo Arévalo HA, Menjura Rojas EM, Barragan Fonseca KB, Vásquez Mejía SM. Implementation of the HACCP system for production of Tenebrio molitor larvae meal. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
17
|
Potentiality of Tenebrio molitor larva-based ingredients for the food industry: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Meat Quality Parameters of Boschveld Indigenous Chickens as Influenced by Dietary Yellow Mealworm Meal. Foods 2021; 10:foods10123094. [PMID: 34945645 PMCID: PMC8701880 DOI: 10.3390/foods10123094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/08/2023] Open
Abstract
An experiment was conducted to examine the effects of yellow mealworm larvae (Tenebrio molitor) meal inclusion in diets of indigenous chickens. A total of 160 mixed-sex indigenous Boschveld chickens were randomly divided into four categories: control soybean meal (SBM) and yellow mealworm with percentage levels of 5, 10 and 15 (TM5, TM10 and TM15, respectively). Five replicate pens per treatment were used, with eight birds per pen/replicate. On day 60, two birds from each replicate were slaughtered and eviscerated. Meat quality parameters were measured out on raw carcass and cooked breast meat. The carcass weight, breast weight and gizzard weight of the control group was higher (p < 0.05) than the treatment group (TM15). The cooking loss was lower (p < 0.05) in the SBM control group but higher in the TM15 group. Colour characteristics of breast meat before cooking was lighter in the TM10 and TM15 group, ranged from 61.7 to 69.3 for L* and was significant (p < 0.05). The TM10 and TM15 groups showed a lighter colour than the SBM and TM5 groups. The breast meat pH taken after slaughter was different (p < 0.05) in TM5 and TM15, with the highest reading (pH 6.0) in the TM5 group. In conclusion, our experiment indicated that dietary Tenebrio molitor in growing Boschveld indigenous chickens’ diets could be considered a promising protein source for Boschveld indigenous chickens.
Collapse
|