1
|
Tegally H, Dellicour S, Poongavanan J, Mavian C, Dor G, Fonseca V, Tagliamonte MS, Dunaiski M, Moir M, Wilkinson E, de Albuquerque CFC, Frutuoso LCV, Holmes EC, Baxter C, Lessells R, Kraemer MU, Lourenço J, Alcantara LCJ, de Oliveira T, Giovanetti M. Dynamics and ecology of a multi-stage expansion of Oropouche virus in Brazil. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.29.24316328. [PMID: 39574858 PMCID: PMC11581102 DOI: 10.1101/2024.10.29.24316328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
In March 2024, the Pan American Health Organization (PAHO) issued an alert in response to a rapid increase in Oropouche fever cases across South America. Brazil has been particularly affected, reporting a novel reassortant lineage of the Oropouche virus (OROV) and expansion to previously non-endemic areas beyond the Amazon Basin. Utilising phylogeographic approaches, we reveal a multi-scale expansion process with both short and long-distance dispersal events, and diffusion velocities in line with human-mediated jumps. We identify forest cover, banana and cocoa cultivation, temperature, and human population density as key environmental factors associated with OROV range expansion. Using ecological niche modelling, we show that OROV circulated in areas of enhanced ecological suitability immediately preceding its explosive epidemic expansion in the Amazon. This likely resulted from the virus being introduced into simultaneously densely populated and environmentally favourable regions in the Amazon, such as Manaus, leading to an amplified epidemic and spread beyond the Amazon. Our study provides valuable insights into the dispersal and ecological dynamics of OROV, highlighting the role of human mobility in colonisation of new areas, and raising concern over high viral suitability along the Brazilian coast.
Collapse
Affiliation(s)
- Houriiyah Tegally
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Simon Dellicour
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Brussels, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jenicca Poongavanan
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Carla Mavian
- Emerging Pathogens Institute, Department of Pathology, College of Medicine, University of Florida, Gainesville, Florida, USA
- Global Health Program Smithsonian’s National Zoo & Conservation Biology Institute, DC, USA
- Global Health Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Graeme Dor
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Vagner Fonseca
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa
- Department of Exact and Earth Science, University of the State of Bahia, Salvador 41192-010, Brazil
- Instituto René Rachou, Fundação Oswaldo Cruz, Minas Gerais, Brazil
| | | | - Marcel Dunaiski
- Computer Science Division, Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Monika Moir
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Eduan Wilkinson
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa
| | | | - Livia C. V. Frutuoso
- Coordenadora-Geral de Vigilância de Arboviroses, Brazilian Ministry of Health, Brazil
| | | | - Edward C. Holmes
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Cheryl Baxter
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Richard Lessells
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Moritz U.G. Kraemer
- Pandemic Sciences Institute, University of Oxford, UK
- Department of Biology, University of Oxford, Oxford,UK
| | - José Lourenço
- BioISI (Biosystems and Integrative Sciences Institute), University of Lisbon, Lisbon, Portugal
- Universidade Católica Portuguesa, Católica Medical School, Católica Biomedical Research Center, Lisboa, Portugal
| | | | - Tulio de Oliveira
- Centre for Epidemic Response and Innovation (CERI), School of Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Marta Giovanetti
- Department of Sciences and Technologies for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
2
|
Humphreys JM, Pelzel-McCluskey AM, Shults PT, Velazquez-Salinas L, Bertram MR, McGregor BL, Cohnstaedt LW, Swanson DA, Scroggs SLP, Fautt C, Mooney A, Peters DPC, Rodriguez LL. Modeling the 2014-2015 Vesicular Stomatitis Outbreak in the United States Using an SEIR-SEI Approach. Viruses 2024; 16:1315. [PMID: 39205289 PMCID: PMC11359999 DOI: 10.3390/v16081315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Vesicular stomatitis (VS) is a vector-borne livestock disease caused by the vesicular stomatitis New Jersey virus (VSNJV). This study presents the first application of an SEIR-SEI compartmental model to analyze VSNJV transmission dynamics. Focusing on the 2014-2015 outbreak in the United States, the model integrates vertebrate hosts and insect vector demographics while accounting for heterogeneous competency within the populations and observation bias in documented disease cases. Key epidemiological parameters were estimated using Bayesian inference and Markov chain Monte Carlo (MCMC) methods, including the force of infection, effective reproduction number (Rt), and incubation periods. The model revealed significant underreporting, with only 10-24% of infections documented, 23% of which presented with clinical symptoms. These findings underscore the importance of including competence and imperfect detection in disease models to depict outbreak dynamics and inform effective control strategies accurately. As a baseline model, this SEIR-SEI implementation is intended to serve as a foundation for future refinements and expansions to improve our understanding of VS dynamics. Enhanced surveillance and targeted interventions are recommended to manage future VS outbreaks.
Collapse
Affiliation(s)
- John M. Humphreys
- Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Plum Island Animal Disease Center (PIADC) and National Bio Agro Defense Facility (NBAF), Manhattan, KS 66502, USA; (L.V.-S.); (M.R.B.); (C.F.); (A.M.); (L.L.R.)
| | - Angela M. Pelzel-McCluskey
- Veterinary Services, Animal and Plant Health Inspection Service (APHIS), U.S. Department of Agriculture, Fort Collins, CO 80526, USA;
| | - Phillip T. Shults
- Arthropod-Borne Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS 66502, USA; (P.T.S.); (B.L.M.); (S.L.P.S.)
| | - Lauro Velazquez-Salinas
- Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Plum Island Animal Disease Center (PIADC) and National Bio Agro Defense Facility (NBAF), Manhattan, KS 66502, USA; (L.V.-S.); (M.R.B.); (C.F.); (A.M.); (L.L.R.)
| | - Miranda R. Bertram
- Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Plum Island Animal Disease Center (PIADC) and National Bio Agro Defense Facility (NBAF), Manhattan, KS 66502, USA; (L.V.-S.); (M.R.B.); (C.F.); (A.M.); (L.L.R.)
| | - Bethany L. McGregor
- Arthropod-Borne Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS 66502, USA; (P.T.S.); (B.L.M.); (S.L.P.S.)
| | - Lee W. Cohnstaedt
- Foreign Arthropod-Borne Animal Diseases Research Unit National Bio- and Agro-Defense Facility, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS 66502, USA;
| | - Dustin A. Swanson
- Center for Grain and Animal Health Research, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS 66502, USA;
| | - Stacey L. P. Scroggs
- Arthropod-Borne Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS 66502, USA; (P.T.S.); (B.L.M.); (S.L.P.S.)
| | - Chad Fautt
- Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Plum Island Animal Disease Center (PIADC) and National Bio Agro Defense Facility (NBAF), Manhattan, KS 66502, USA; (L.V.-S.); (M.R.B.); (C.F.); (A.M.); (L.L.R.)
- Oak Ridge Institute for Science and Education (ORISE)-NBAF, Oak Ridge, TN 37831, USA
| | - Amber Mooney
- Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Plum Island Animal Disease Center (PIADC) and National Bio Agro Defense Facility (NBAF), Manhattan, KS 66502, USA; (L.V.-S.); (M.R.B.); (C.F.); (A.M.); (L.L.R.)
- Oak Ridge Institute for Science and Education (ORISE)-NBAF, Oak Ridge, TN 37831, USA
| | - Debra P. C. Peters
- Office of National Programs, Agricultural Research Service, U.S. Department of Agriculture, Beltsville, MD 20705, USA;
| | - Luis L. Rodriguez
- Foreign Animal Disease Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Plum Island Animal Disease Center (PIADC) and National Bio Agro Defense Facility (NBAF), Manhattan, KS 66502, USA; (L.V.-S.); (M.R.B.); (C.F.); (A.M.); (L.L.R.)
| |
Collapse
|
3
|
Carpenter M, Kopanke J, Lee J, Rodgers C, Reed K, Sherman TJ, Graham B, Cohnstaedt LW, Wilson WC, Stenglein M, Mayo C. Evaluating Temperature Effects on Bluetongue Virus Serotype 10 and 17 Coinfection in Culicoides sonorensis. Int J Mol Sci 2024; 25:3063. [PMID: 38474308 PMCID: PMC10932384 DOI: 10.3390/ijms25053063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Bluetongue virus (BTV) is a segmented, double-stranded RNA virus transmitted by Culicoides midges that infects ruminants. As global temperatures increase and geographical ranges of midges expand, there is increased potential for BTV outbreaks from incursions of novel serotypes into endemic regions. However, an understanding of the effect of temperature on reassortment is lacking. The objectives of this study were to compare how temperature affected Culicoides survival, virogenesis, and reassortment in Culicoides sonorensis coinfected with two BTV serotypes. Midges were fed blood meals containing BTV-10, BTV-17, or BTV serotype 10 and 17 and maintained at 20 °C, 25 °C, or 30 °C. Midge survival was assessed, and pools of midges were collected every other day to evaluate virogenesis of BTV via qRT-PCR. Additional pools of coinfected midges were collected for BTV plaque isolation. The genotypes of plaques were determined using next-generation sequencing. Warmer temperatures impacted traits related to vector competence in offsetting ways: BTV replicated faster in midges at warmer temperatures, but midges did not survive as long. Overall, plaques with BTV-17 genotype dominated, but BTV-10 was detected in some plaques, suggesting parental strain fitness may play a role in reassortment outcomes. Temperature adds an important dimension to host-pathogen interactions with implications for transmission and evolution.
Collapse
Affiliation(s)
- Molly Carpenter
- Department of Microbiology, Immunology and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| | - Jennifer Kopanke
- Department of Comparative Medicine, Oregon Health & Science University, Portland, OR 97239, USA;
| | - Justin Lee
- Department of Microbiology, Immunology and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| | - Case Rodgers
- Department of Microbiology, Immunology and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| | - Kirsten Reed
- Wisconsin Veterinary Diagnostic Laboratory, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | - Tyler J. Sherman
- Diagnostic Medicine Center, Colorado State University, 2450 Gillette Drive, Fort Collins, CO 80526, USA;
| | - Barbara Graham
- Department of Microbiology, Immunology and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| | - Lee W. Cohnstaedt
- Foreign Arthropod-Borne Animal Diseases Research Unit, The National Bio and Agro-Defense Facility, USDA Agricultural Research Service, P.O. Box 1807, Manhattan, KS 66505, USA; (L.W.C.); (W.C.W.)
| | - William C. Wilson
- Foreign Arthropod-Borne Animal Diseases Research Unit, The National Bio and Agro-Defense Facility, USDA Agricultural Research Service, P.O. Box 1807, Manhattan, KS 66505, USA; (L.W.C.); (W.C.W.)
| | - Mark Stenglein
- Department of Microbiology, Immunology and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| | - Christie Mayo
- Department of Microbiology, Immunology and Pathology, Colorado State University, 1601 Campus Delivery, Fort Collins, CO 80526, USA; (M.C.); (J.L.); (C.R.); (B.G.); (M.S.)
| |
Collapse
|
4
|
Whelpley MJ, Zhou LH, Rascon J, Payne B, Moehn B, Young KI, Mire CE, Peters DPC, Rodriguez LL, Hanley KA. Community composition of black flies during and after the 2020 vesicular stomatitis virus outbreak in Southern New Mexico, USA. Parasit Vectors 2024; 17:93. [PMID: 38414030 PMCID: PMC10900647 DOI: 10.1186/s13071-024-06127-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/08/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Vesicular stomatitis virus (VSV), a vector-borne pathogen of livestock, emerges periodically in the western US. In New Mexico (NM), US, most cases occur close to the Rio Grande River, implicating black flies (Simulium spp.) as a possible vector. In 2020, VS cases were reported in NM from April to May, although total black fly abundance remained high until September. We investigated the hypothesis that transience of local VSV transmission results from transient abundance of key, competent black fly species. Additionally, we investigated whether irrigation canals in southern NM support a different community of black flies than the main river. Lastly, to gain insight into the source of local black flies, in 2023 we collected black fly larvae prior to the release of water into the Rio Grande River channel. METHODS We randomly sub-sampled adult black flies collected along the Rio Grande during and after the 2020 VSV outbreak. We also collected black fly adults along the river in 2021 and 2022 and at southern NM farms and irrigation canals in 2022. Black fly larvae were collected from dams in the area in 2023. All collections were counted, and individual specimens were subjected to molecular barcoding for species identification. RESULTS DNA barcoding of adult black flies detected four species in 2020: Simulium meridionale (N = 158), S. mediovittatum (N = 83), S. robynae (N = 26) and S. griseum/notatum (N = 1). Simulium robynae was only detected during the VSV outbreak period, S. meridionale showed higher relative abundance, but lower absolute abundance, during the outbreak than post-outbreak period, and S. mediovittatum was rare during the outbreak period but predominated later in the summer. In 2022, relative abundance of black fly species did not differ significantly between the Rio Grande sites and farm and irrigation canals. Intriguingly, 63 larval black flies comprised 56% Simulium vittatum, 43% S. argus and 1% S. encisoi species that were either extremely rare or not detected in previous adult collections. CONCLUSIONS Our results suggest that S. robynae and S. meridionale could be shaping patterns of VSV transmission in southern NM. Thus, field studies of the source of these species as well as vector competence studies are warranted.
Collapse
Affiliation(s)
- Madelin J Whelpley
- Department of Biology, College of Arts and Sciences, New Mexico State University, Las Cruces, NM, USA
| | - Lawrence H Zhou
- Department of Biology, College of Arts and Sciences, New Mexico State University, Las Cruces, NM, USA
| | - Jeremy Rascon
- Department of Biology, College of Arts and Sciences, New Mexico State University, Las Cruces, NM, USA
| | - Bailey Payne
- Department of Biology, College of Arts and Sciences, New Mexico State University, Las Cruces, NM, USA
| | - Brett Moehn
- Department of Biology, College of Arts and Sciences, New Mexico State University, Las Cruces, NM, USA
| | - Katherine I Young
- Department of Biological Sciences, University of Texas El Paso, El Paso Texas, USA
| | - Chad E Mire
- United States Department of Agriculture, Agricultural Research Services, National Bio and Agro-Defense Facility, Foreign Arthropod-Borne Animal Diseases Research Unit, Manhattan, KS, USA
| | - Debra P C Peters
- United States Department of Agriculture, Office of National Programs, Beltsville, MD, USA
| | - Luis L Rodriguez
- United States, Department of Agriculture, Agricultural Research Services, Plum Island Animal Disease Center and National Bio- and Agro-Defense Facility, Manhattan, KS, USA
| | - Kathryn A Hanley
- Department of Biology, College of Arts and Sciences, New Mexico State University, Las Cruces, NM, USA.
| |
Collapse
|
5
|
Hudson AR, McGregor BL, Shults P, England M, Silbernagel C, Mayo C, Carpenter M, Sherman TJ, Cohnstaedt LW. Culicoides-borne Orbivirus epidemiology in a changing climate. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:1221-1229. [PMID: 37862060 DOI: 10.1093/jme/tjad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/30/2023] [Accepted: 07/17/2023] [Indexed: 10/21/2023]
Abstract
Orbiviruses are of significant importance to the health of wildlife and domestic animals worldwide; the major orbiviruses transmitted by multiple biting midge (Culicoides) species include bluetongue virus, epizootic hemorrhagic disease virus, and African horse sickness virus. The viruses, insect vectors, and hosts are anticipated to be impacted by global climate change, altering established Orbivirus epidemiology. Changes in global climate have the potential to alter the vector competence and extrinsic incubation period of certain biting midge species, affect local and long-distance dispersal dynamics, lead to range expansion in the geographic distribution of vector species, and increase transmission period duration (earlier spring onset and later fall transmission). If transmission intensity is associated with weather anomalies such as droughts and wind speeds, there may be changes in the number of outbreaks and periods between outbreaks for some regions. Warmer temperatures and changing climates may impact the viral genome by facilitating reassortment and through the emergence of novel viral mutations. As the climate changes, Orbivirus epidemiology will be inextricably altered as has been seen with recent outbreaks of bluetongue, epizootic hemorrhagic disease, and African horse sickness outside of endemic areas, and requires interdisciplinary teams and approaches to assess and mitigate future outbreak threats.
Collapse
Affiliation(s)
- Amy R Hudson
- Center for Grain and Animal Health Research, USDA Agricultural Research Service, 1515 College Ave., Manhattan, KS 66502, USA
| | - Bethany L McGregor
- Center for Grain and Animal Health Research, USDA Agricultural Research Service, 1515 College Ave., Manhattan, KS 66502, USA
| | - Phillip Shults
- Center for Grain and Animal Health Research, USDA Agricultural Research Service, 1515 College Ave., Manhattan, KS 66502, USA
| | | | - Constance Silbernagel
- Center for Epidemiology and Animal Health, USDA APHIS, 2150 Centre Ave, Bldg B, Fort Collins, CO 80526, USA
| | - Christie Mayo
- Department of Microbiology, Immunology, and Pathology, Colorado State University (CSU), 1601 Campus Delivery, Fort Collins, CO 80526, USA
| | - Molly Carpenter
- Department of Microbiology, Immunology, and Pathology, Colorado State University (CSU), 1601 Campus Delivery, Fort Collins, CO 80526, USA
| | - Tyler J Sherman
- Diagnostic Medicine Center, Colorado State University (CSU), 2450 Gillette Drive, Fort Collins, CO 80526, USA
| | - Lee W Cohnstaedt
- The National Bio and Agro-Defense Facility, USDA Agricultural Research Service (ARS), 1980 Denison Ave., Manhattan, KS 66505, USA
| |
Collapse
|
6
|
Osborne CJ, Cohnstaedt LW, Silver KS. Outlook on RNAi-Based Strategies for Controlling Culicoides Biting Midges. Pathogens 2023; 12:1251. [PMID: 37887767 PMCID: PMC10610143 DOI: 10.3390/pathogens12101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Culicoides are small biting midges with the capacity to transmit important livestock pathogens around much of the world, and their impacts on animal welfare are likely to expand. Hemorrhagic diseases resulting from Culicoides-vectored viruses, for example, can lead to millions of dollars in economic damages for producers. Chemical insecticides can reduce Culicoides abundance but may not suppress population numbers enough to prevent pathogen transmission. These insecticides can also cause negative effects on non-target organisms and ecosystems. RNA interference (RNAi) is a cellular regulatory mechanism that degrades mRNA and suppresses gene expression. Studies have examined the utility of this mechanism for insect pest control, and with it, have described the hurdles towards producing, optimizing, and applying these RNAi-based products. These methods hold promise for being highly specific and environmentally benign when compared to chemical insecticides and are more transient than engineering transgenic insects. Given the lack of available control options for Culicoides, RNAi-based products could be an option to treat large areas with minimal environmental impact. In this study, we describe the state of current Culicoides control methods, successes and hurdles towards using RNAi for pest control, and the necessary research required to bring an RNAi-based control method to fruition for Culicoides midges.
Collapse
Affiliation(s)
- Cameron J. Osborne
- Department of Entomology, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA;
| | - Lee W. Cohnstaedt
- Foreign Arthropod-Borne Animal Diseases Research Unit, National Bio- and Agro-Defense Facility, Agricultural Research Service, United Stated Department of Agriculture, Manhattan, KS 66502, USA
| | - Kristopher S. Silver
- Department of Entomology, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
7
|
Bellekom B, Bailey A, England M, Langlands Z, Lewis OT, Hackett TD. Effects of storage conditions and digestion time on DNA amplification of biting midge (Culicoides) blood meals. Parasit Vectors 2023; 16:13. [PMID: 36635709 PMCID: PMC9837887 DOI: 10.1186/s13071-022-05607-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/02/2022] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Molecular analysis of blood meals is increasingly used to identify the hosts of biting insects such as midges and mosquitoes. Successful host identification depends on the availability of sufficient host DNA template for PCR amplification, making it important to understand how amplification success changes under different storage conditions and with different durations of blood meal digestion within the insect gut before being placed into the storage medium. METHOD We characterised and compared the digestion profile of two species of Culicoides over a 96-h period using a novel set of general vertebrate primers targeting the 16S rRNA gene. A set number of individuals from each species were killed over 13 time points post-blood feeding and preserved in 95% ethanol. Samples were stored either at ambient room temperature or in a - 20 °C freezer to examine the effect of storage condition on the PCR amplification success of host DNA. RESULTS We found that amplification success across the 96-h sampling period post-feeding was reduced from 96 to 6% and 96% to 14% for Culicoides nubeculosus and Culicoides sonorensis, respectively. We found no effect of storage condition on PCR amplification success, and storage in 95% ethanol was sufficient to maintain high rates of amplifiable host DNA for at least 9 months, even at room temperature. CONCLUSIONS These findings highlight the limited time frame during which an individual may contain amplifiable host DNA and demonstrate the importance of timely sample capture and processing post-blood feeding. Moreover, storage in 95% ethanol alone is sufficient to limit host DNA degradation. These results are relevant to the design of studies investigating the biting behaviour and disease transmission potential of Culicoides and other biting Diptera.
Collapse
Affiliation(s)
- Ben Bellekom
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ UK
| | - Abigail Bailey
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ UK
| | - Marion England
- grid.63622.330000 0004 0388 7540The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF UK
| | - Zoe Langlands
- grid.63622.330000 0004 0388 7540The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF UK
| | - Owen T. Lewis
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ UK
| | - Talya D. Hackett
- grid.4991.50000 0004 1936 8948Department of Biology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ UK
| |
Collapse
|
8
|
Comparison of Endemic and Epidemic Vesicular Stomatitis Virus Lineages in Culicoides sonorensis Midges. Viruses 2022; 14:v14061221. [PMID: 35746691 PMCID: PMC9230599 DOI: 10.3390/v14061221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
Vesicular stomatitis virus (VSV) primarily infects livestock and is transmitted by direct contact and vectored by Culicoides midges (Diptera: Ceratopogonidae). Endemic to Central and South America, specific VSV lineages spread northward out of endemic regions of Mexico and into the U.S. sporadically every five to ten years. In 2012, a monophyletic epidemic lineage 1.1 successfully spread northward into the U.S. In contrast, the closest endemic ancestor, lineage 1.2, remained circulating exclusively in endemic regions in Mexico. It is not clear what roles virus-animal interactions and/or virus-vector interactions play in the ability of specific viral lineages to escape endemic regions in Mexico and successfully cause outbreaks in the U.S., nor the genetic basis for such incursions. Whole-genome sequencing of epidemic VSV 1.1 and endemic VSV 1.2 revealed significant differences in just seven amino acids. Previous studies in swine showed that VSV 1.1 was more virulent than VSV 1.2. Here, we compared the efficiency of these two viral lineages to infect the vector Culicoides sonorensis (Wirth and Jones) and disseminate to salivary glands for subsequent transmission. Our results showed that midges orally infected with the epidemic VSV 1.1 lineage had significantly higher infection dissemination rates compared to those infected with the endemic VSV 1.2 lineage. Thus, in addition to affecting virus-animal interactions, as seen with higher virulence in pigs, small genetic changes may also affect virus-vector interactions, contributing to the ability of specific viral lineages to escape endemic regions via vector-borne transmission.
Collapse
|