1
|
Stöckl A, Deora T. The Hawkmoth Proboscis: An Insect Model for Sensorimotor Control of Reaching and Exploration. Integr Comp Biol 2024; 64:1354-1370. [PMID: 39068501 DOI: 10.1093/icb/icae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Reaching and inspecting objects is an intricate part of human life, which is shared by a diversity of animals across phyla. In addition to appendages like legs and antennae, some insects use their mouthparts to reach and inspect targets. Hawkmoths of the family Sphingidae (Lepidoptera) use their extremely long and straw-like proboscis to drink nectar from flowers. As they approach flowers, hawkmoths uncoil their proboscis and explore the floral surface while hovering to target the proboscis to the nectary hole. Several sensory modalities provide feedback to control and guide these extremely versatile proboscis movements. The control task faced by the hawkmoths' nervous system during such behaviors is not unlike that of an animal guiding limbs or a robotic agent guiding a manipulator to a target. Hawkmoths perform these reaching maneuvers while simultaneously hovering, and hence require rapid and continuous coordination between the proboscis, neck, and flight motor systems, thereby providing a unique invertebrate model for studying appendage guidance and reaching. Here, we review what is known about how hawkmoths use their proboscis for floral inspection and nectar discovery, as well as the role of various sensors in proboscis guidance. We give a brief overview of the morphology and muscular apparatus of the hawkmoth proboscis, and discuss how multimodal sensory feedback might be turned into motor action for appendage guidance.
Collapse
Affiliation(s)
- Anna Stöckl
- Department of Biology, University of Konstanz, Universitätsstr, 10, 78464 Konstanz, Germany
| | - Tanvi Deora
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar 201314, Uttar Pradesh, India
| |
Collapse
|
2
|
Zou Y, Wu W, Luo T, Tang Y, Hu H, Ye A, Xu L, Dai F, Tong X. Disruption of Zfh3 abolishes mulberry-specific monophagy in silkworm larvae. INSECT SCIENCE 2024; 31:1397-1411. [PMID: 38622976 DOI: 10.1111/1744-7917.13354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 04/17/2024]
Abstract
Feeding behavior is critical for insect survival and fitness. Most researchers have explored the molecular basis of feeding behaviors by identifying and elucidating the function of olfactory receptors (ORs) and gustatory receptors (GRs). Other types of genes, such as transcription factors, have rarely been investigated, and little is known about their potential roles. The silkworm (Bombyx mori) is a well-studied monophagic insect which primarily feeds on mulberry leaves, but the genetic basis of its monophagy is still not understood. In this report, we focused on a transcription factor encoded by the Zfh3 gene, which is highly expressed in the silkworm central and peripheral nervous systems, including brain, antenna, and maxilla. To investigate its function, Zfh3 was abrogated using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) mutagenesis. Since Zfh3 knockout homozygotes are not viable, we studied feeding behavior in heterozygotes, and found that disruption of Zfh3 affects both gustation and olfaction. Mutant larvae lose preference for mulberry leaves, acquire the ability to consume an expanded range of diets, and exhibit improved adaptation to the M0 artificial diet, which contains no mulberry leaves. These results provide the first demonstration that a transcription factor modulates feeding behaviors in an insect.
Collapse
Affiliation(s)
- Yunlong Zou
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Wentao Wu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Tianfu Luo
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Yuxia Tang
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Hai Hu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Aijun Ye
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Lifeng Xu
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Zhang Y, Liu W, Luo Z, Yuan J, Wuyun Q, Zhang P, Wang Q, Yang M, Liu C, Yan S, Wang G. Odorant Receptor BdorOR49b Mediates Oviposition and Attraction Behavior of Bactrocera dorsalis to Benzothiazole. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7784-7793. [PMID: 38561632 DOI: 10.1021/acs.jafc.3c09791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The ability to recognize a host plant is crucial for insects to meet their nutritional needs and locate suitable sites for laying eggs. Bactrocera dorsalis is a highly destructive pest in fruit crops. Benzothiazole has been found to induce oviposition behavior in the gravid B. dorsalis. However, the ecological roles and the olfactory receptor responsible for benzothiazole are not yet fully understood. In this study, we found that adults were attracted to benzothiazole, which was an effective oviposition stimulant. In vitro experiments showed that BdorOR49b was narrowly tuned to benzothiazole. The electroantennogram results showed that knocking out BdorOR49b significantly reduced the antennal electrophysiological response to benzothiazole. Compared with wild-type flies, the attractiveness of benzothiazole to BdorOR49b knockout adult was significantly attenuated, and mutant females exhibited a severe decrease in oviposition behavior. Altogether, our work provides valuable insights into chemical communications and potential strategies for the control of this pest.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Wei Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhicai Luo
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jinxi Yuan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - QiQige Wuyun
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Panpan Zhang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Qi Wang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Minghuan Yang
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Chenhao Liu
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Shanchun Yan
- Key Laboratory of Sustainable Management of Forest Ecosystem, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
4
|
Tian CH, Liu XG, Xu CY, Huang JR, Fu JF, Wang GS, Zhang JY, Li GP, Yin XM, Feng HQ. Molecule characterization of chemosensory and metabolism-related genes in the proboscis of Athetis lepigone. Front Physiol 2023; 14:1287353. [PMID: 38187138 PMCID: PMC10766847 DOI: 10.3389/fphys.2023.1287353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/23/2023] [Indexed: 01/09/2024] Open
Abstract
Introduction: The moth species Athetis lepigone (Möschler) (Lepidoptera: Noctuidae), which has recently been identified as a pest of summer maize (Zea mays L.) in China, has demonstrated a rapid proliferation with in the Huang-Huai-Hai Plain region since its initial discovery in Hebei Province in 2005. It has become a prevalent pest of corn crops, and its ability to adapt quickly to its surroundings is currently being investigated. One of the key characteristics of its siphoning mouthparts is not only the feeding apparatus itself but also the chemosensory organs that enable the detection of chemical signals from the surrounding environment. However, there is a lack of comprehensive research on the genes responsible for chemosensory and metabolic mechanisms in the proboscises of male and female A. lepigone adults. Methods: In this study, we utilized transcriptome analysis to identify a total of fifty chemosensory genes from six distinct families, including 19 odorant-binding proteins (OBPs), 22 chemosensory proteins (CSPs), one co-receptor (Orco), six odorant receptors (ORs), four ionotropic receptors (IRs), and two sensory neuron membrane proteins (SNMPs) in the proboscis. Notably, seven OBPs, two CSPs, and one OR were discovered for the first time. Additionally, fourteen genes related to metabolism, including cytochrome P450 (CYPs) and carboxylesterases (CXEs), were also identified. Furthermore, a qualitative analysis was conducted on the relative transcript levels of eight related genes. The expression of 21 annotated chemosensory and metabolic genes was compared between A. lepigone adults and larvae using qRT-PCR, revealing tissue specificity. The majority of genes exhibited predominant expression in the antennae and proboscis during the adult stage, while showing slight expression in the combination of sixth-instar larval head oral appendages (maxilla, labium, and antenna) and pheromone gland-ovipositors of female adults. Results/discussion: Our study points to a new pest control strategies that these newly discovered genes have the potential to serve as targets for enhancing future pest control, including mating disruption and the use of food attractants. And it would be advantageous to ascertain the distribution of chemosensory gene expression and gain insights into the functionalities of these genes, thereby establishing a novel theoretical framework for the advancement of eco-friendly pesticides and efficient pest management strategies in the future.
Collapse
Affiliation(s)
- Cai-Hong Tian
- Henan Key Laboratory of Crop Pest Control, MOA Key Regional Crop Integrated Pest Management (IPM) Laboratory in Southern Part of Northern China, International Joint Research Laboratory for Crop Protection of Henan, Entomological Radar Station Zero of Henan Province for Field Scientific Observation and Research, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiao-Guang Liu
- Henan International Laboratory for Green Pest Control, Henan Engineering Laboratory of Pest Biological Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Cun-Yi Xu
- Henan Key Laboratory of Crop Pest Control, MOA Key Regional Crop Integrated Pest Management (IPM) Laboratory in Southern Part of Northern China, International Joint Research Laboratory for Crop Protection of Henan, Entomological Radar Station Zero of Henan Province for Field Scientific Observation and Research, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jian-Rong Huang
- Henan Key Laboratory of Crop Pest Control, MOA Key Regional Crop Integrated Pest Management (IPM) Laboratory in Southern Part of Northern China, International Joint Research Laboratory for Crop Protection of Henan, Entomological Radar Station Zero of Henan Province for Field Scientific Observation and Research, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jun-Feng Fu
- Yuzhou Plant Protection and Quarantine Station, Yuzhou, China
| | - Gen-Song Wang
- Henan Key Laboratory of Crop Pest Control, MOA Key Regional Crop Integrated Pest Management (IPM) Laboratory in Southern Part of Northern China, International Joint Research Laboratory for Crop Protection of Henan, Entomological Radar Station Zero of Henan Province for Field Scientific Observation and Research, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jun-Yi Zhang
- Henan Key Laboratory of Crop Pest Control, MOA Key Regional Crop Integrated Pest Management (IPM) Laboratory in Southern Part of Northern China, International Joint Research Laboratory for Crop Protection of Henan, Entomological Radar Station Zero of Henan Province for Field Scientific Observation and Research, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
- Henan International Laboratory for Green Pest Control, Henan Engineering Laboratory of Pest Biological Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Guo-Ping Li
- Henan Key Laboratory of Crop Pest Control, MOA Key Regional Crop Integrated Pest Management (IPM) Laboratory in Southern Part of Northern China, International Joint Research Laboratory for Crop Protection of Henan, Entomological Radar Station Zero of Henan Province for Field Scientific Observation and Research, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xin-Ming Yin
- Henan International Laboratory for Green Pest Control, Henan Engineering Laboratory of Pest Biological Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Hong-Qiang Feng
- Henan Key Laboratory of Crop Pest Control, MOA Key Regional Crop Integrated Pest Management (IPM) Laboratory in Southern Part of Northern China, International Joint Research Laboratory for Crop Protection of Henan, Entomological Radar Station Zero of Henan Province for Field Scientific Observation and Research, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
5
|
Mo BT, Guo H, Li GC, Cao LL, Gong XL, Huang LQ, Wang CZ. Discovery of Insect Attractants Based on the Functional Analyses of Female-Biased Odorant Receptors and Their Orthologs in Two Closely Related Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19408-19421. [PMID: 38039319 DOI: 10.1021/acs.jafc.3c05368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Olfaction plays an instrumental role in host plant selection by phytophagous insects. Helicoverpa assulta and Helicoverpa armigera are two closely related moth species with different host plant ranges. In this study, we first comparatively analyzed the function of 11 female-biased odorant receptors (ORs) and their orthologs in the two species by the Drosophila T1 neuron expression system and then examined the electroantennography responses of the two species to the most effective OR ligands. Behavioral assays using a Y-tube olfactometer indicate that guaiene, the primary ligand of HassOR21-2 and HarmOR21-2, only attracts the females, while benzyl acetone, the main ligand of HassOR35 and HarmOR35, attracts both sexes of the two species. Oviposition preference experiments further confirm that guaiene and benzyl acetone are potent oviposition attractants for the mated females of both species. These findings deepen our understanding of the olfactory coding mechanisms of host plant selection in herbivorous insects and provide valuable attractants for managing pest populations.
Collapse
Affiliation(s)
- Bao-Tong Mo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hao Guo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guo-Cheng Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lin-Lin Cao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xin-Lin Gong
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
6
|
Jan M, Liu Z, Guo C, Zhou Y, Sun X. An Overview of Cotton Gland Development and Its Transcriptional Regulation. Int J Mol Sci 2022; 23:ijms23094892. [PMID: 35563290 PMCID: PMC9103798 DOI: 10.3390/ijms23094892] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
Cotton refers to species in the genus Gossypium that bear spinnable seed coat fibers. A total of 50 species in the genus Gossypium have been described to date. Of these, only four species, viz. Gossypium, hirsutum, G. barbadense, G. arboretum, and G. herbaceum are cultivated; the rest are wild. The black dot-like structures on the surfaces of cotton organs or tissues, such as the leaves, stem, calyx, bracts, and boll surface, are called gossypol glands or pigment glands, which store terpenoid aldehydes, including gossypol. The cotton (Gossypium hirsutum) pigment gland is a distinctive structure that stores gossypol and its derivatives. It provides an ideal system for studying cell differentiation and organogenesis. However, only a few genes involved in the process of gland formation have been identified to date, and the molecular mechanisms underlying gland initiation remain unclear. The terpenoid aldehydes in the lysigenous glands of Gossypium species are important secondary phytoalexins (with gossypol being the most important) and one of the main defenses of plants against pests and diseases. Here, we review recent research on the development of gossypol glands in Gossypium species, the regulation of the terpenoid aldehyde biosynthesis pathway, discoveries from genetic engineering studies, and future research directions.
Collapse
Affiliation(s)
- Masood Jan
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (M.J.); (Z.L.); (C.G.); (Y.Z.)
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (M.J.); (Z.L.); (C.G.); (Y.Z.)
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Chenxi Guo
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (M.J.); (Z.L.); (C.G.); (Y.Z.)
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Yaping Zhou
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (M.J.); (Z.L.); (C.G.); (Y.Z.)
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China; (M.J.); (Z.L.); (C.G.); (Y.Z.)
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
- Correspondence:
| |
Collapse
|