1
|
Li SS, Chen JJ, Zhang MM, Wang WX, Zhang WY, Ma C. Design, synthesis, and biological evaluation of novel benzimidazole derivatives as anti-cervical cancer agents through PI3K/Akt/mTOR pathway and tubulin inhibition. Eur J Med Chem 2024; 271:116425. [PMID: 38636129 DOI: 10.1016/j.ejmech.2024.116425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Phosphatidylinositol 3-kinase (PI3K) is one of the most attractive therapeutic targets for cervical cancer treatment. In this study, we designed and synthesized a series of benzimidazole derivatives and evaluated their anti-cervical cancer activity. Compound 4r exhibited strong antiproliferative activity in different cervical cancer cell lines HeLa, SiHa and Ca Ski, and relative lower cytotoxicity to normal hepatic and renal cell lines LO2 and HEK-293t (IC50 values were at 21.08 μM and 23.96 μM respectively). Its IC50 value was at 3.38 μM to the SiHa cells. Further mechanistic studies revealed that 4r induced apoptosis, arrested cell cycle in G2/M phase, suppressed PI3K/Akt/mTOR pathway and inhibit the polymerization of tubulin. Molecular docking study suggested that 4r formed key H-bonds action with PI3Kα (PDB ID:8EXU) and tubulin (PDB ID:1SA0). Zebrafish acute toxicity experiments showed that high concentrations of 4r did not cause death or malformation of zebrafish embryos. All these results demonstrated that 4r would be a promising lead candidate for further development of novel PI3K and tubulin dual inhibitors in cervical cancer treatment.
Collapse
Affiliation(s)
- Si-Si Li
- Department of Medicinal and Organic Chemistry, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Jun-Jie Chen
- Department of Medicinal and Organic Chemistry, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Miao-Miao Zhang
- Department of Medicinal and Organic Chemistry, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Wei-Xu Wang
- Department of Medicinal and Organic Chemistry, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China
| | - Wei-Yi Zhang
- Department of Medicinal and Organic Chemistry, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China; Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Xinjiang Medical University, Urumqi, 830011, China; Xinjiang Key Laboratory of Active Components of Natural Medicine and Drug Release Technology, Xinjiang Medical University, Urumqi, 830011, China; Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Xinjiang Medical University, Urumqi, 830011, China.
| | - Cheng Ma
- Department of Medicinal and Organic Chemistry, College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China; Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Xinjiang Medical University, Urumqi, 830011, China; Xinjiang Key Laboratory of Active Components of Natural Medicine and Drug Release Technology, Xinjiang Medical University, Urumqi, 830011, China; Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Xinjiang Medical University, Urumqi, 830011, China; State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
2
|
Vilela J, Rasga C, Santos JX, Martiniano H, Marques AR, Oliveira G, Vicente AM. Bridging Genetic Insights with Neuroimaging in Autism Spectrum Disorder-A Systematic Review. Int J Mol Sci 2024; 25:4938. [PMID: 38732157 PMCID: PMC11084239 DOI: 10.3390/ijms25094938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is an early onset neurodevelopmental disorder characterized by impaired social interaction and communication, and repetitive patterns of behavior. Family studies show that ASD is highly heritable, and hundreds of genes have previously been implicated in the disorder; however, the etiology is still not fully clear. Brain imaging and electroencephalography (EEG) are key techniques that study alterations in brain structure and function. Combined with genetic analysis, these techniques have the potential to help in the clarification of the neurobiological mechanisms contributing to ASD and help in defining novel therapeutic targets. To further understand what is known today regarding the impact of genetic variants in the brain alterations observed in individuals with ASD, a systematic review was carried out using Pubmed and EBSCO databases and following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. This review shows that specific genetic variants and altered patterns of gene expression in individuals with ASD may have an effect on brain circuits associated with face processing and social cognition, and contribute to excitation-inhibition imbalances and to anomalies in brain volumes.
Collapse
Affiliation(s)
- Joana Vilela
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (C.R.); (J.X.S.); (H.M.); (A.R.M.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Célia Rasga
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (C.R.); (J.X.S.); (H.M.); (A.R.M.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - João Xavier Santos
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (C.R.); (J.X.S.); (H.M.); (A.R.M.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Hugo Martiniano
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (C.R.); (J.X.S.); (H.M.); (A.R.M.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Ana Rita Marques
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (C.R.); (J.X.S.); (H.M.); (A.R.M.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Guiomar Oliveira
- Unidade de Neurodesenvolvimento e Autismo, Serviço do Centro de Desenvolvimento da Criança, Centro de Investigação e Formação Clínica, Hospital Pediátrico, Centro Hospitalar e Universitário de Coimbra (CHUC), 3000-602 Coimbra, Portugal;
- Coimbra Institute for Biomedical Imaging and Translational Research, University Clinic of Pediatrics, Faculty of Medicine, University of Coimbra, 3000-602 Coimbra, Portugal
| | - Astrid Moura Vicente
- Departamento de Promoção da Saúde e Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, Avenida Padre Cruz, 1649-016 Lisboa, Portugal; (J.V.); (C.R.); (J.X.S.); (H.M.); (A.R.M.)
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8, 1749-016 Lisboa, Portugal
| |
Collapse
|
3
|
Zhao X, Fan X, Lin X, Guo B, Yu Y. Deciphering age-specific molecular features in cervical cancer and constructing an angio-immune prognostic model. Medicine (Baltimore) 2024; 103:e37717. [PMID: 38608077 PMCID: PMC11018232 DOI: 10.1097/md.0000000000037717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 03/04/2024] [Indexed: 04/14/2024] Open
Abstract
Cancer incidence is increasingly seen in younger individuals. Molecular distinctions between young and elderly patients at onset are understudied. This study used public databases to explore genomic, transcriptomic, and immune-related features across age groups in cervical cancer. Additionally, it aims to create a prognostic model applicable across diverse age cohorts, enabling precise patient stratification, and personalized therapies. Gene mutations, expression data, and clinicopathological information were obtained from 317 cervical cancer patients. These patients were divided into a young group and an old group based on the median age of onset. The characteristics of differential gene mutation, gene expression, and immune cells analysis were analyzed by R software. Finally, the prognostic model was constructed by univariate Cox, least absolute shrinkage and selection operator, and multivariate Cox regression analyses of angiogenic and immune gene sets. Its validity was further confirmed using an additional 300 cervical squamous cell carcinoma and endocervical adenocarcinoma tissues. Cervical cancer patients at elderly onset age exhibit a significantly higher frequency of NOTCH1 and TP53 driver mutations compared to young patients, along with a notably higher tumor mutational burden. However, there were no significant differences between the 2 groups in terms of genomic instability and age-related mutational signatures. Differential gene expression analysis revealed that the young group significantly upregulated interferon-alpha and gamma responses and exhibited significantly higher activity in multiple metabolic pathways. Immune microenvironment analysis indicated enrichment of dendritic cells and natural killer cells in the young group, while transforming growth factor-β signature was enriched in the elderly group, indicating a higher degree of immune exclusion. A multigene prognostic model based on angiogenesis and T cell immune gene sets showed excellent prognostic performance independent of clinical factors such as age. High-risk groups identified by the model exhibit significant activation of tumor-promoting processes, such as metastasis and angiogenesis. Our study reveals distinct patterns in cancer-driving mechanisms, biological processes, and immune system status between young and elderly patients at onset with cervical cancer. These findings shed light on the age-specific underlying mechanisms of carcinogenesis. Furthermore, an independent molecular prognostic model is constructed to provide valuable references for patient stratification and the development of potential drug targets.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Public Health, International College, Krirk University, Bangkok, Thailand
| | - Xichen Fan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiu Lin
- Department of Public Health, International College, Krirk University, Bangkok, Thailand
| | - Baozhu Guo
- Department of Public Health, International College, Krirk University, Bangkok, Thailand
| | - Yanqin Yu
- Department of Public Health, International College, Krirk University, Bangkok, Thailand
| |
Collapse
|
4
|
Martell K, McIntyre JB, Abedin T, Kornaga EN, Chan AMY, Enwere E, Köbel M, Dean ML, Phan T, Ghatage P, Lees-Miller SP, Doll CM. Prevalence and Prognostic Significance of PIK3CA Mutation and CNV Status and Phosphorylated AKT Expression in Patients With Cervical Cancer Treated With Primary Surgery. Int J Gynecol Pathol 2024; 43:158-170. [PMID: 37668363 DOI: 10.1097/pgp.0000000000000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Currently, there are limited and conflicting reports on the prognostic utility of PIK3CA and associated pathway markers for cervical cancers treated with primary surgical management. Moreover, current studies are lacking complete characterization of adjuvant treatment with RT and/or chemotherapy. We aimed to document the prevalence, clinicopathologic, adjuvant treatment details, and prognostic value of PI3K/AKT pathway mutations and copy number variation and phosphorylated AKT status in patients with cervical cancers treated with primary surgery. A clinicopathologic review was performed on a retrospective cohort of 185 patients with cervical cancer, treated with primary surgery at a single tertiary institution. Next-generation sequencing and digital PCR was used to determine PI3K/AKT pathway mutational status and PIK3CA copy number variation, respectively, and fluorescent immunohistochemistry measured phosphorylated AKT expression. In all, 179 of 185 (96.8%) of tumors were successfully sequenced; 48 (26.8%) were positive for PI3K/AKT pathway mutations-the majority (n=37, 77.1%) PIK3CA mutations. PIK3CA mutation was associated with pathologically positive lymph nodes [12 (32%) vs. 22 (16%); P =0.022] and indication for postoperative chemoradiotherapy [17 (45.9%) vs. 32 (22.5%); P =0.004]. On multivariable analysis, PIK3CA status was not associated with overall survival ( P =0.103) or progression-free survival ( P =0.240) at 5 yrs, nor was PIK3CA copy number variation status. phosphorylated AKT ≤ median significantly predicted for progression-free survival [multivariable hazard ratio 0.39 (0.17-0.89; P =0.025)] but not overall survival ( P =0.087). The correlation of PIK3CA with pathologic positive lymph node status yet lack of association with survival outcomes may be due to the use of adjuvant postoperative therapy. PIK3CA assessment before radical hysterectomy may help identify patients with a higher risk of node-positive disease.
Collapse
|
5
|
Eksteen C, Riedemann J, Rass AM, du Plessis M, Botha MH, van der Merwe FH, Engelbrecht AM. A Review: Genetic Mutations as a Key to Unlocking Drug Resistance in Cervical Cancer. Cancer Control 2024; 31:10732748241261539. [PMID: 38881031 PMCID: PMC11181891 DOI: 10.1177/10732748241261539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/29/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Cervical cancer is the fourth most common cancer in women. Advanced stage and metastatic disease are often associated with poor clinical outcomes. This substantiates the absolute necessity for high-throughput diagnostic and treatment platforms that are patient and tumour specific. Cervical cancer treatment constitutes multimodal intervention. Systemic treatments such as chemotherapy and/or focal radiotherapy are typically applied as neoadjuvant and/or adjuvant strategies. Cisplatin constitutes an integral part of standard cervical cancer treatment approaches. However, despite initial patient response, de novo or delayed/acquired treatment resistance is often reported, and toxicity is of concern. Chemotherapy resistance is associated with major alterations in genomic, metabolomic, epigenetic and proteomic landscapes. This results in imbalanced homeostasis associated with pro-oncogenic and proliferative survival, anti-apoptotic benefits, and enhanced DNA damage repair processes. Although significant developments in cancer diagnoses and treatment have been made over the last two decades, drug resistance remains a major obstacle to overcome.
Collapse
Affiliation(s)
- Carla Eksteen
- CancerCare, Cape Gate Oncology Centre, Cape Town, South Africa
| | | | - Atarah M Rass
- Department of Physiological Sciences, Faculty of Science, University of Stellenbosch, Stellenbosch, South Africa
| | - Manisha du Plessis
- Department of Physiological Sciences, Faculty of Science, University of Stellenbosch, Stellenbosch, South Africa
| | - Matthys H Botha
- Department of Obstetrics and Gynecology, Stellenbosch University, Stellenbosch, South Africa
| | | | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Faculty of Science, University of Stellenbosch, Stellenbosch, South Africa
- African Cancer Institute (ACI), Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
6
|
Szczykutowicz J. Ligand Recognition by the Macrophage Galactose-Type C-Type Lectin: Self or Non-Self?-A Way to Trick the Host's Immune System. Int J Mol Sci 2023; 24:17078. [PMID: 38069400 PMCID: PMC10707269 DOI: 10.3390/ijms242317078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The cells and numerous macromolecules of living organisms carry an array of simple and complex carbohydrates on their surface, which may be recognized by many types of proteins, including lectins. Human macrophage galactose-type lectin (MGL, also known as hMGL/CLEC10A/CD301) is a C-type lectin receptor expressed on professional antigen-presenting cells (APCs) specific to glycans containing terminal GalNAc residue, such as Tn antigen or LacdiNAc but also sialylated Tn antigens. Macrophage galactose-type lectin (MGL) exhibits immunosuppressive properties, thus facilitating the maintenance of immune homeostasis. Hence, MGL is exploited by tumors and some pathogens to trick the host immune system and induce an immunosuppressive environment to escape immune control. The aims of this article are to discuss the immunological outcomes of human MGL ligand recognition, provide insights into the molecular aspects of these interactions, and review the MGL ligands discovered so far. Lastly, based on the human fetoembryonic defense system (Hu-FEDS) hypothesis, this paper raises the question as to whether MGL-mediated interactions may be relevant in the development of maternal tolerance toward male gametes and the fetus.
Collapse
Affiliation(s)
- Justyna Szczykutowicz
- Department of Biochemistry and Immunochemistry, Division of Chemistry and Immunochemistry, Wroclaw Medical University, Sklodowskiej-Curie 48/50, 50-369 Wroclaw, Poland
| |
Collapse
|
7
|
Chubarov AS, Oscorbin IP, Novikova LM, Filipenko ML, Lomzov AA, Pyshnyi DV. Allele-Specific PCR for PIK3CA Mutation Detection Using Phosphoryl Guanidine Modified Primers. Diagnostics (Basel) 2023; 13:diagnostics13020250. [PMID: 36673060 PMCID: PMC9858071 DOI: 10.3390/diagnostics13020250] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/05/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Phosphoryl guanidine (PG) is the novel uncharged modification of internucleotide phosphates of oligonucleotides. Incorporating PG modification into PCR primers leads to increased discrimination between wild-type and mutated DNA, providing extraordinary detection limits in an allele-specific real-time polymerase chain reaction (AS-PCR). Herein, we used PG-modification to improve the specificity of AS primers with unfavorable Pyr/Pur primer's 3'-end mismatch in the template/primer complex. Two mutations of the PIK3CA gene (E542K, E545K) were chosen to validate the advantages of the PG modification. Several primers with PG modifications were synthesized for each mutation and assessed using AS-PCR with the plasmid controls and DNA obtained from formalin-fixed paraffin-embedded (FFPE) tissues. The assay allows the detection of 0.5% of mutated DNA on the wild-type DNA plasmid template's background with good specificity. Compared with ddPCR, the primers with PG-modification demonstrated 100% specificity and 100% sensitivity on the DNA from FFPE with mutation presence higher than 0.5%. Our results indicate the high potential of PG-modified primers for point mutation detection. The main principle of the developed methodology can be used to improve the specificity of primers regardless of sequences.
Collapse
|
8
|
Choi Y, Park NJY, Le TM, Lee E, Lee D, Nguyen HDT, Cho J, Park JY, Han HS, Chong GO. Immune Pathway and Gene Database (IMPAGT) Revealed the Immune Dysregulation Dynamics and Overactivation of the PI3K/Akt Pathway in Tumor Buddings of Cervical Cancer. Curr Issues Mol Biol 2022; 44:5139-5152. [PMID: 36354662 PMCID: PMC9688570 DOI: 10.3390/cimb44110350] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 08/31/2023] Open
Abstract
Tumor budding (TB) is a small cluster of malignant cells at the invasive front of a tumor. Despite being an adverse prognosis marker, little research has been conducted on the tumor immune microenvironment of tumor buddings, especially in cervical cancer. Therefore, RNA sequencing was performed using 21 formalin-fixed, paraffin-embedded slides of cervical tissues, and differentially expressed genes (DEGs) were analyzed. Immune Pathway and Gene Database (IMPAGT) was generated for immune profiling. "Pathway in Cancer" was identified as the most enriched pathway for both up- and downregulated DEGs. Kyoto Encyclopedia of Genes and Genomes Mapper and Gene Ontology further revealed the activation of the PI3K/Akt signaling pathway. An IMPAGT analysis revealed immune dysregulation even at the tumor budding stage, especially in the PI3K/Akt/mTOR axis, with a high efficiency and integrity. These findings emphasized the clinical significance of tumor buddings and the necessity of blocking the overactivation of the PI3K/Akt/mTOR pathway to improve targeted therapy in cervical cancer.
Collapse
Affiliation(s)
- Yeseul Choi
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Korea
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Nora Jee-Young Park
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department of Pathology, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Korea
| | - Tan Minh Le
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Korea
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Eunmi Lee
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Korea
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Donghyeon Lee
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Korea
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Hong Duc Thi Nguyen
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Korea
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Junghwan Cho
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Korea
| | - Ji-Young Park
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department of Pathology, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
| | - Hyung Soo Han
- Department of Biomedical Science, Graduate School, Kyungpook National University, Daegu 41944, Korea
- BK21 Four Program, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Korea
- Department of Physiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Gun Oh Chong
- Clinical Omics Institute, Kyungpook National University, Daegu 41405, Korea
- Department of Obstetrics and Gynecology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
- Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu 41404, Korea
| |
Collapse
|
9
|
Sun G, Zhang Q, Liu Y, Xie P. Role of Phosphatidylinositol 3-Kinase and Its Catalytic Unit PIK3CA in Cervical Cancer: A Mini-Review. Appl Bionics Biomech 2022; 2022:6904769. [PMID: 36046780 PMCID: PMC9420646 DOI: 10.1155/2022/6904769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
In complicated disorders like cancer, signaling pathways form a tangled network. Targeting one gene may result in an unfavorable reaction from another off-target gene. Such entwined complexities may result in treatment resistance or failure in cancer patients. The PI3K/Akt/mTOR (phosphoinositol 3-kinase/protein kinase B/mammalian target of rapamycin) pathway is dysregulated in cervical cancer and is used as a biomarker for therapy. PI3K is a kinase that consists of a regulatory and catalytic domain and has phosphorylation capability. Class I components like the catalytic part (PIK3CA and PIK3CD) and regulatory part (like PIK3R1, PIK3R2, PIK3R3, and PIK3R5) are associated with oncogenesis and growth factors in cervical cancer. This review is aimed at discussing the involvement of the PI3K component of the PI3K/Akt/mTOR network in cervical cancer. Specifically, class I catalytic subunit PIK3CA has been identified as a pharmacological target, making it therapeutically significant. Apart from discussing the function of PI3K and PIK3CA in cervical cancer, we also discuss their inhibitors, which may be beneficial in treating cervical cancer.
Collapse
Affiliation(s)
- Guojuan Sun
- Ward Section of Home Overseas Doctors, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Qiang Zhang
- Ward Section of Home Overseas Doctors, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Yi Liu
- Maternity Rehabilitation Center, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Ping Xie
- Ward Section of Home Overseas Doctors, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| |
Collapse
|
10
|
Wu Z, Yu X, Zhang S, He Y, Guo W. The role of PI3K/AKT signaling pathway in gallbladder carcinoma. Am J Transl Res 2022; 14:4426-4442. [PMID: 35958463 PMCID: PMC9360899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES The prognosis of gallbladder carcinoma (GBC) is poor, with a less than 5% five-year survival rate. Identifying the mechanisms underlying GBC occurrence and advancement is necessary to improve GBC patient prognosis and survival rates. The phosphatidylinositol 3-kinase (PI3K)/serine-threonine kinase (AKT) pathway is involved in cancer deterioration, tumor growth, cell proliferation, and distant metastasis. Studying the impacts of the PI3K/AKT pathway has resulted in the identification of key factors involved in GBC progression that might serve as therapeutic targets, promoting the development of new treatments. METHODS We reviewed recent literature exploring abnormal regulation of the PI3K/AKT pathway in gallbladder cancer, with a focus on abnormal RNA levels, protein level regulation, and drug treatment advances. RESULTS Further investigation of the regulation of small molecules and proteins by the PI3K/AKT pathway might ultimately provide new diagnostic or prognostic markers or cancer treatment targets. Recent studies have focused on RNA and proteins involved in the regulation of the cell cycle or cell movement in cancer progression via PI3K/AKT pathway, the use of anticancer drug combinations, or the anticancer effects of drugs not currently utilized for cancer treatment. CONCLUSIONS We herein review the known available molecules that affect the PI3K/AKT pathway in patients with GBC and the mechanisms of drug action associated with this pathway.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450052, Henan, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan UniversitiesZhengzhou 450052, Henan, China
- Henan Key Laboratory of Digestive Organ TransplantationZhengzhou 450052, Henan, China
| |
Collapse
|
11
|
Urothelial Bladder Carcinomas with High Tumor Mutation Burden Have a Better Prognosis and Targetable Molecular Defects beyond Immunotherapies. Curr Oncol 2022; 29:1390-1407. [PMID: 35323317 PMCID: PMC8947463 DOI: 10.3390/curroncol29030117] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 12/14/2022] Open
Abstract
Background: Urothelial bladder carcinomas had traditionally been difficult to treat cancers, with high morbidity and mortality rates when invasive and metastatic. In recent years, immunotherapy with immune checkpoint inhibitors has improved outcomes in several cancers, including bladder carcinomas. Despite positive overall results, many bladder cancer patients do not respond to immunotherapies. Validated predictive biomarkers of response would advance the selection of patients for these treatments. Tumor mutation burden (TMB) has been suggested as an immunotherapy biomarker and thus delineation of attributes of tumors with a high TMB is clinically relevant. Methods: Publicly available genomic and clinical data from the urothelial bladder carcinoma cohort of The Cancer Genome Atlas (TCGA) project are used to analyze characteristics and molecular alterations of the subset of cancers with an increased tumor mutation number compared with those with lower number of mutations. The cut-off for the high mutation burden in the analysis was set at 10 mutations per Megabase (MB). Results: In addition to their sensitivity to immune checkpoint inhibitors, urothelial carcinomas with high TMB possess several molecular defects that could be exploited for combinatorial treatments. Compared with bladder carcinomas with low TMB, carcinomas with high TMB display higher prevalence of mutations in tumor suppressor TP53, PIK3CA, in FAT4 cadherin and in genes encoding for several epigenetic modifier enzymes. The frequency of mutations in mismatch repair and DNA damage response genes is higher in cancers with high TMB. The group of urothelial carcinomas with high TMB has a better prognosis than the group with low TMB. This improved Overall Survival (OS) stems from improved survival of stage III cancers with high TMB compared with stage III cancers with low TMB, while stage II and stage IV cancers have similar OS, independently of their TMB. Conclusion: Differences of the landscape of high and low TMB urothelial cancers provides leads for further pathogenesis investigations and may prove useful for development of combination therapies including immunotherapies with targeted inhibitors.
Collapse
|
12
|
3q26 Amplifications in Cervical Squamous Carcinomas. ACTA ACUST UNITED AC 2021; 28:2868-2880. [PMID: 34436017 PMCID: PMC8395483 DOI: 10.3390/curroncol28040251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/17/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022]
Abstract
Background: Squamous carcinomas of the uterine cervix often carry mutations of the gene encoding for the catalytic sub-unit of kinase PI3K, PIK3CA. The locus of this gene at chromosome 3q26 and neighboring loci are also commonly amplified. The landscape of 3q26-amplified cases have not been previously characterized in detail in cervical cancer. Methods: Published genomic data and associated clinical data from TCGA cervical cancer cohort were analyzed at cBioportal for amplifications in genes at 3q26. The clinical and molecular characteristics of the group of patients with 3q26 amplifications was compared with the group without 3q26 amplifications. Comparative prevalence of amplification and expression of genes at 3q26 in amplified squamous cervical cancer cases were surveyed as well as 3q26 amplifications in cervical cancer cell line databases. Results: Amplification of 3q26 locus is a prevalent molecular lesion in cervical squamous cell carcinomas encountered in about 15% of cases in TCGA cohort of 247 patients. Cancer-related genes commonly amplified from 3q26 include PIK3CA, TBL1XR1, DCUN1D1, SOX2, MECOM, PRKCI, and TERC. Amplified cases do not completely overlap with PIK3CA mutant cases. Differences exist between 3q26-amplified and non-amplified carcinomas in the frequency of mutations and frequency of other amplifications. Most commonly over-expressed genes in 3q26 amplified cases include PIK3CA, TBL1XR1, DCUN1D1, and less commonly SOX2 and PRKCI. Conclusion: The subset of squamous cervical carcinomas with 3q26 amplifications is not overlapping with cancers carrying PIK3CA mutations and contains, besides PIK3CA, other cancer-associated genes that are over-expressed at the mRNA level, including TBL1XR1 and DCUN1D1. DCUN1D1, a regulator of SCF ubiquitin ligase activity, may be a relevant pathogenic player given the importance of ubiquitination and the proteasome in the disease. These observations could form the basis for therapeutic exploitation in this subset of squamous cervical carcinomas.
Collapse
|
13
|
The Landscape of PIK3CA Mutations in Colorectal Cancer. Clin Colorectal Cancer 2021; 20:201-215. [PMID: 33744168 DOI: 10.1016/j.clcc.2021.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/18/2021] [Accepted: 02/14/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Colorectal cancer is one of the most common malignancies in both men and women. Despite progress in the treatment of the disease, metastatic colorectal cancer remains lethal with a median survival slightly surpassing 2 years and commonly for some cases a more aggressive course. New therapies are urgently needed based on a better understanding of the molecular pathogenesis of the disease. METHODS The focus of this investigation is the PIK3CA gene, encoding the alpha catalytic subunit of the enzyme phosphatidylinositol-3 kinase (PI3K). Publicly available data from 3 extensive published series of colorectal carcinomas were analyzed to define the molecular landscape of colorectal adenocarcinomas with and without mutations of PIK3CA. An analysis for discovery of associations with alterations in other critical genes and pathways involved in colorectal cancer was performed. The total mutation burden (TMB) and copy number alteration burden of colorectal cancers with and without mutations of PIK3CA, as well as prognostic implications of alterations of the gene for survival, were examined. RESULTS Mutations in PIK3CA are observed in 20% to 25% of colorectal cancers. PIK3CA represents one of the most frequently mutated oncogenes in these cancers. Mutations in PIK3CA are associated with higher rates of mutations in other genes of important cancer-associated pathways such as the tyrosine kinase receptors/K-Ras/BRAF/MAPK and the Wnt/β-catenin pathway. In addition, PIK3CA mutated colorectal cancers display a higher TMB than nonmutated cancers. CONCLUSION Frequent mutations of PIK3CA gene in colorectal carcinomas may represent an opportunity for targeted therapy combination development inhibiting both the PI3K kinase itself and associated pathway defects. Increased TMB may additionally confer immunotherapy sensitivity, which could be augmented by other targeted therapies.
Collapse
|