1
|
Peterhoff D, Wiegrebe S, Einhauser S, Patt AJ, Beileke S, Günther F, Steininger P, Niller HH, Burkhardt R, Küchenhoff H, Gefeller O, Überla K, Heid IM, Wagner R. Population-based study of the durability of humoral immunity after SARS-CoV-2 infection. Front Immunol 2023; 14:1242536. [PMID: 37868969 PMCID: PMC10585261 DOI: 10.3389/fimmu.2023.1242536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
SARS-CoV-2 antibody quantity and quality are key markers of humoral immunity. However, there is substantial uncertainty about their durability. We investigated levels and temporal change of SARS-CoV-2 antibody quantity and quality. We analyzed sera (8 binding, 4 avidity assays for spike-(S-)protein and nucleocapsid-(N-)protein; neutralization) from 211 seropositive unvaccinated participants, from the population-based longitudinal TiKoCo study, at three time points within one year after infection with the ancestral SARS-CoV-2 virus. We found a significant decline of neutralization titers and binding antibody levels in most assays (linear mixed regression model, p<0.01). S-specific serum avidity increased markedly over time, in contrast to N-specific. Binding antibody levels were higher in older versus younger participants - a difference that disappeared for the asymptomatic-infected. We found stronger antibody decline in men versus women and lower binding and avidity levels in current versus never-smokers. Our comprehensive longitudinal analyses across 13 antibody assays suggest decreased neutralization-based protection and prolonged affinity maturation within one year after infection.
Collapse
Affiliation(s)
- David Peterhoff
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Simon Wiegrebe
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
- Statistical Consulting Unit StaBLab, Department of Statistics, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Sebastian Einhauser
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Arisha J. Patt
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Stephanie Beileke
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Felix Günther
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
- Statistical Consulting Unit StaBLab, Department of Statistics, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Philipp Steininger
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Hans H. Niller
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Helmut Küchenhoff
- Statistical Consulting Unit StaBLab, Department of Statistics, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Olaf Gefeller
- Department of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Iris M. Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Regensburg, Germany
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
2
|
One-Year Post-Vaccination Longitudinal Follow-Up of Quantitative SARS-CoV-2 Anti-Spike Total Antibodies in Health Care Professionals and Evaluation of Correlation with Surrogate Neutralization Test. Vaccines (Basel) 2023; 11:vaccines11020355. [PMID: 36851233 PMCID: PMC9966239 DOI: 10.3390/vaccines11020355] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/08/2023] Open
Abstract
Numerous vaccines have been generated to decrease the morbidity and mortality of COVID-19. This study aims to evaluate the immunogenicity of the heterologous boosts by BioNTech against homologous boosts by CoronaVac at three-month intervals in two health care worker (HCW) cohorts, with or without prior COVID-19, for one year post-vaccination. This is a prospective cohort study in which the humoral responses of 386 HCWs were followed-up longitudinally in six main groups according to their previous COVID-19 exposure and vaccination status. Anti-SARS-CoV-2 spike-RBD total antibody levels were measured and SARS-CoV-2 neutralization antibody (NAbs) responses against the ancestral Wuhan and the Omicron variant were evaluated comparatively using international standard serum for Wuhan and Omicron, as well as with the aid of a conversion tool. The anti-SARS-CoV-2 spike-RBD total Ab and Nab difference between with and without prior COVID-19, three months after two-dose primary vaccination with CoronaVac, was statistically significant (p = 0.001). In the subsequent follow-ups, this difference was not observed between the groups. Those previously infected (PI) and non-previously infected (NPI) groups receiving BioNTech as the third dose had higher anti-SARS-CoV-2 spike total Ab levels (14.2-fold and 17.4-fold, respectively, p = 0.001) and Nab responses (against Wuhan and Omicron) than those receiving CoronaVac. Ab responses after booster vaccination decreased significantly in all groups at the ninth-month follow-up (p < 0.05); however, Abs were still higher in all booster received groups than that in the primary vaccination. Abs were above the protective level at the twelfth-month measurement in the entire of the second BioNTech received group as the fourth dose of vaccination. In the one-year follow-up period, the increased incidence of COVID-19 in the groups vaccinated with two or three doses of CoronaVac compared with the groups vaccinated with BioNTech as a booster suggested that continuing the heterologous CoronaVac/BioNTech vaccination, revised according to current SARS-CoV-2 variants and with at least a six-month interval booster would be an effective and safe strategy for protection against COVID-19, particularly in health care workers.
Collapse
|
3
|
Inchingolo AD, Malcangi G, Ceci S, Patano A, Corriero A, Vimercati L, Azzollini D, Marinelli G, Coloccia G, Piras F, Barile G, Settanni V, Mancini A, De Leonardis N, Garofoli G, Palmieri G, Isacco CG, Rapone B, Scardapane A, Curatoli L, Quaranta N, Ribezzi M, Massaro M, Jones M, Bordea IR, Tartaglia GM, Scarano A, Lorusso F, Macchia L, Larocca AMV, Aityan SK, Tafuri S, Stefanizzi P, Migliore G, Brienza N, Dipalma G, Favia G, Inchingolo F. Effectiveness of SARS-CoV-2 Vaccines for Short- and Long-Term Immunity: A General Overview for the Pandemic Contrast. Int J Mol Sci 2022; 23:8485. [PMID: 35955621 PMCID: PMC9369331 DOI: 10.3390/ijms23158485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND The recent COVID-19 pandemic produced a significant increase in cases and an emergency state was induced worldwide. The current knowledge about the COVID-19 disease concerning diagnoses, patient tracking, the treatment protocol, and vaccines provides a consistent contribution for the primary prevention of the viral infection and decreasing the severity of the SARS-CoV-2 disease. The aim of the present investigation was to produce a general overview about the current findings for the COVID-19 disease, SARS-CoV-2 interaction mechanisms with the host, therapies and vaccines' immunization findings. METHODS A literature overview was produced in order to evaluate the state-of-art in SARS-CoV-2 diagnoses, prognoses, therapies, and prevention. RESULTS Concerning to the interaction mechanisms with the host, the virus binds to target with its Spike proteins on its surface and uses it as an anchor. The Spike protein targets the ACE2 cell receptor and enters into the cells by using a special enzyme (TMPRSS2). Once the virion is quietly accommodated, it releases its RNA. Proteins and RNA are used in the Golgi apparatus to produce more viruses that are released. Concerning the therapies, different protocols have been developed in observance of the disease severity and comorbidity with a consistent reduction in the mortality rate. Currently, different vaccines are currently in phase IV but a remarkable difference in efficiency has been detected concerning the more recent SARS-CoV-2 variants. CONCLUSIONS Among the many questions in this pandemic state, the one that recurs most is knowing why some people become more seriously ill than others who instead contract the infection as if it was a trivial flu. More studies are necessary to investigate the efficiency of the treatment protocols and vaccines for the more recent detected SARS-CoV-2 variant.
Collapse
Affiliation(s)
- Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Sabino Ceci
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Assunta Patano
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Alberto Corriero
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70121 Bari, Italy; (A.C.); (M.R.); (N.B.)
| | - Luigi Vimercati
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Daniela Azzollini
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Grazia Marinelli
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Giovanni Coloccia
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Fabio Piras
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Giuseppe Barile
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Vito Settanni
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Nicole De Leonardis
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Grazia Garofoli
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Giulia Palmieri
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Ciro Gargiulo Isacco
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Arnaldo Scardapane
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Luigi Curatoli
- Department Neurosciences & Sensory Organs & Musculoskeletal System, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Nicola Quaranta
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
- Department Neurosciences & Sensory Organs & Musculoskeletal System, University of Bari “Aldo Moro”, 70124 Bari, Italy;
| | - Mario Ribezzi
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70121 Bari, Italy; (A.C.); (M.R.); (N.B.)
| | - Maria Massaro
- Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, 70124 Bari, Italy;
| | - Megan Jones
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy;
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Luigi Macchia
- Department of Emergency and Organ Transplantation (D.E.T.O.), University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Angela Maria Vittoria Larocca
- Hygiene Complex Operating Unit, Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Place Giulio Cesare 11 BARI CAP, 70124 Bari, Italy;
| | | | - Silvio Tafuri
- Department of Biomedical Science and Human Oncology, University of Bari, 70121 Bari, Italy;
| | - Pasquale Stefanizzi
- Interdisciplinary Department of Medicine, University Hospital of Bari, 70100 Bari, Italy; (P.S.); (G.M.)
| | - Giovanni Migliore
- Interdisciplinary Department of Medicine, University Hospital of Bari, 70100 Bari, Italy; (P.S.); (G.M.)
| | - Nicola Brienza
- Unit of Anesthesia and Resuscitation, Department of Emergencies and Organ Transplantations, Aldo Moro University, 70121 Bari, Italy; (A.C.); (M.R.); (N.B.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Gianfranco Favia
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, Section of Dental Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.D.I.); (G.M.); (S.C.); (A.P.); (L.V.); (D.A.); (G.M.); (G.C.); (F.P.); (G.B.); (V.S.); (A.M.); (N.D.L.); (G.G.); (G.P.); (C.G.I.); (B.R.); (A.S.); (N.Q.); (M.J.); (G.D.); (G.F.)
| |
Collapse
|
4
|
Pieri M, Infantino M, Manfredi M, Nuccetelli M, Grossi V, Lari B, Tomassetti F, Sarubbi S, Russo E, Amedei A, Benucci M, Casprini P, Stacchini L, Castilletti C, Bernardini S. Performance evaluation of four surrogate Virus Neutralization Tests (sVNTs) in comparison to the in vivo gold standard test. FRONT BIOSCI-LANDMRK 2022; 27:74. [PMID: 35227017 DOI: 10.31083/j.fbl2702074] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2025]
Abstract
BACKGROUND Several commercial surrogate Virus Neutralization Tests (sVNTs) have been developed in the last year. Neutralizing anti-SARS-CoV-2 antibodies through interaction with Spike protein Receptor Binding Domain (S-RBD) can block the virus from entering and infecting host cells. However, there is a lack of information about the functional activity of SARS-CoV-2 antibodies that may be associated with protective responses. For these reasons, to counteract viral infection, the conventional virus neutralization test (VNT) is still considered the gold standard. The aim of this study was to contribute more and detailed information about sVNTs' performance, by determining in vitro the anti-SARS-CoV-2 neutralizing antibody concentration using four different commercial assays and then comparing the obtained data to VNT. METHODS Eighty-eight samples were tested using two chemiluminescence assays (Snibe and Mindray) and two ELISA assays (Euroimmun and Diesse). The antibody titers were subsequently detected and quantified by VNT. RESULTS The overall agreement between each sVNT and VNT was 95.45% for Euroimmun and 98.86% for Diesse, Mindray and Snibe. Additionally, we investigated whether the sVNTs were closer to the gold standard than traditional anti-SARS-CoV-2 antibody assays S-RBD or S1 based, finding a higher agreement mean value for sVNTs (98.01 ± 1.705% vs 95.45 ± 1.921%; p < 0.05). Furthermore, Spearman's statistical analysis for the correlation of sVNT versus VNT showed r = 0.666 for Mindray; r = 0.696 for Diesse; r = 0.779 for Mindray and r = 0.810 for Euroimmun. CONCLUSIONS Our data revealed a good agreement between VNT and sVNTs. Despite the VNT still remains the gold standard, the sVNT might be a valuable tool for screening wider populations.
Collapse
Affiliation(s)
- Massimo Pieri
- Department of Experimental Medicine, University of Tor Vergata, 00133 Rome, Italy
- Department of Laboratory Medicine, Tor Vergata University Hospital, 00133 Rome, Italy
| | - Maria Infantino
- Immunology and Allergology Laboratory Unit, S. Giovanni di Dio Hospital, 50143 Florence, Italy
| | - Mariangela Manfredi
- Immunology and Allergology Laboratory Unit, S. Giovanni di Dio Hospital, 50143 Florence, Italy
| | - Marzia Nuccetelli
- Department of Laboratory Medicine, Tor Vergata University Hospital, 00133 Rome, Italy
| | - Valentina Grossi
- Immunology and Allergology Laboratory Unit, S. Giovanni di Dio Hospital, 50143 Florence, Italy
| | - Barbara Lari
- Immunology and Allergology Laboratory Unit, S. Giovanni di Dio Hospital, 50143 Florence, Italy
| | - Flaminia Tomassetti
- Department of Experimental Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Serena Sarubbi
- Department of Experimental Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy
| | - Maurizio Benucci
- Rheumatology Unit, S. Giovanni di Dio Hospital, 50143 Florence, Italy
| | - Patrizia Casprini
- Clinical Pathology Laboratory Unit, S. Giovanni di Dio Hospital, 50143 Florence, Italy
| | - Lorenzo Stacchini
- Department of Health Science, University of Florence, 50121 Florence, Italy
| | - Concetta Castilletti
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani, IRCCS, 00149 Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Tor Vergata, 00133 Rome, Italy
- Department of Laboratory Medicine, Tor Vergata University Hospital, 00133 Rome, Italy
- Emerging Technologies Division, International Federation Clinical Chemistry and Laboratory Medicine, 20159 Milan, Italy
| |
Collapse
|
5
|
Comparative Investigation of Methods for Analysis of SARS-CoV-2-Spike-Specific Antisera. Viruses 2022; 14:v14020410. [PMID: 35216003 PMCID: PMC8879086 DOI: 10.3390/v14020410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
In light of an increasing number of vaccinated and convalescent individuals, there is a major need for the development of robust methods for the quantification of neutralizing antibodies; although, a defined correlate of protection is still missing. Sera from hospitalized COVID-19 patients suffering or not suffering from acute respiratory distress syndrome (ARDS) were comparatively analyzed by plaque reduction neutralization test (PRNT) and pseudotype-based neutralization assays to quantify their neutralizing capacity. The two neutralization assays showed comparable data. In case of the non-ARDS sera, there was a distinct correlation between the data from the neutralization assays on the one hand, and enzyme-linked immune sorbent assay (ELISA), as well as biophysical analyses, on the other hand. As such, surface plasmon resonance (SPR)-based assays for quantification of binding antibodies or analysis of the stability of the antigen–antibody interaction and inhibition of syncytium formation, determined by cell fusion assays, were performed. In the case of ARDS sera, which are characterized by a significantly higher fraction of RBD-binding IgA antibodies, there is a clear correlation between the neutralization assays and the ELISA data. In contrast to this, a less clear correlation between the biophysical analyses on the one hand and ELISAs and neutralization assays on the other hand was observed, which might be explained by the heterogeneity of the antibodies. To conclude, for less complex immune sera—as in cases of non-ARDS sera—combinations of titer quantification by ELISA with inhibition of syncytium formation, SPR-based analysis of antibody binding, determination of the stability of the antigen–antibody complex, and competition of the RBD-ACE2 binding represent alternatives to the classic PRNT for analysis of the neutralizing potential of SARS-CoV-2-specific sera, without the requirement for a BSL3 facility.
Collapse
|
6
|
Kyosei Y, Namba M, Makioka D, Kokubun A, Watabe S, Yoshimura T, Sasaki T, Shioda T, Ito E. Ultrasensitive Detection of SARS-CoV-2 Spike Proteins Using the Thio-NAD Cycling Reaction: A Preliminary Study before Clinical Trials. Microorganisms 2021; 9:microorganisms9112214. [PMID: 34835340 PMCID: PMC8619787 DOI: 10.3390/microorganisms9112214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/03/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022] Open
Abstract
To help control the global pandemic of coronavirus disease 2019 (COVID-19), we developed a diagnostic method targeting the spike protein of the virus that causes the infection, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We applied an ultrasensitive method by combining a sandwich enzyme-linked immunosorbent assay (ELISA) and the thio-nicotinamide adenine dinucleotide (thio-NAD) cycling reaction to quantify spike S1 proteins. The limit of detection (LOD) was 2.62 × 10−19 moles/assay for recombinant S1 proteins and 2.6 × 106 RNA copies/assay for ultraviolet B-inactivated viruses. We have already shown that the ultrasensitive ELISA for nucleocapsid proteins can detect ultraviolet B-inactivated viruses at the 104 RNA copies/assay level, whereas the nucleocapsid proteins of SARS-CoV-2 are difficult to distinguish from those in conventional coronaviruses and SARS-CoV. Thus, an antigen test for only the nucleocapsid proteins is insufficient for virus specificity. Therefore, the use of a combination of tests against both spike and nucleocapsid proteins is recommended to increase both the detection sensitivity and testing accuracy of the COVID-19 antigen test. Taken together, our present study, in which we incorporate S1 detection by combining the ultrasensitive ELISA for nucleocapsid proteins, offers an ultrasensitive, antigen-specific test for COVID-19.
Collapse
Affiliation(s)
- Yuta Kyosei
- Department of Biology, Waseda University, Tokyo 162-8480, Japan; (Y.K.); (M.N.); (D.M.); (A.K.)
| | - Mayuri Namba
- Department of Biology, Waseda University, Tokyo 162-8480, Japan; (Y.K.); (M.N.); (D.M.); (A.K.)
| | - Daiki Makioka
- Department of Biology, Waseda University, Tokyo 162-8480, Japan; (Y.K.); (M.N.); (D.M.); (A.K.)
| | - Ayumi Kokubun
- Department of Biology, Waseda University, Tokyo 162-8480, Japan; (Y.K.); (M.N.); (D.M.); (A.K.)
| | - Satoshi Watabe
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan;
| | - Teruki Yoshimura
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, Hokkaido 061-0293, Japan;
| | - Tadahiro Sasaki
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (T.S.); (T.S.)
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan; (T.S.); (T.S.)
| | - Etsuro Ito
- Department of Biology, Waseda University, Tokyo 162-8480, Japan; (Y.K.); (M.N.); (D.M.); (A.K.)
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555, Japan;
- Graduate Institute of Medicine, School of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Correspondence:
| |
Collapse
|
7
|
Einhauser S, Peterhoff D, Niller HH, Beileke S, Günther F, Steininger P, Burkhardt R, Heid IM, Pfahlberg AB, Überla K, Gefeller O, Wagner R. Spectrum Bias and Individual Strengths of SARS-CoV-2 Serological Tests-A Population-Based Evaluation. Diagnostics (Basel) 2021; 11:1843. [PMID: 34679541 PMCID: PMC8534748 DOI: 10.3390/diagnostics11101843] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022] Open
Abstract
Antibody testing for determining the SARS-CoV-2 serostatus was rapidly introduced in early 2020 and since then has been gaining special emphasis regarding correlates of protection. With limited access to representative samples with known SARS-CoV-2 infection status during the initial period of test development and validation, spectrum bias has to be considered when moving from a "test establishment setting" to population-based settings, in which antibody testing is currently implemented. To provide insights into the presence and magnitude of spectrum bias and to estimate performance measures of antibody testing in a population-based environment, we compared SARS-CoV-2 neutralization to a battery of serological tests and latent class analyses (LCA) in a subgroup (n = 856) of the larger population based TiKoCo-19 cohort (n = 4185). Regarding spectrum bias, we could proof notable differences in test sensitivities and specificities when moving to a population-based setting, with larger effects visible in earlier registered tests. While in the population-based setting the two Roche ELECSYS anti-SARS-CoV-2 tests outperformed every other test and even LCA regarding sensitivity and specificity in dichotomous testing, they didn't provide satisfying quantitative correlation with neutralization capacity. In contrast, our in-house anti SARS-CoV-2-Spike receptor binding domain (RBD) IgG-ELISA (enzyme-linked-immunosorbant assay) though inferior in dichotomous testing, provided satisfactory quantitative correlation and may thus represent a better correlate of protection. In summary, all tests, led by the two Roche tests, provided sufficient accuracy for dichotomous identification of neutralizing sera, with increasing spectrum bias visible in earlier registered tests, while the majority of tests, except the RBD-ELISA, didn't provide satisfactory quantitative correlations.
Collapse
Affiliation(s)
- Sebastian Einhauser
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (S.E.); (D.P.); (H.H.N.)
| | - David Peterhoff
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (S.E.); (D.P.); (H.H.N.)
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| | - Hans Helmut Niller
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (S.E.); (D.P.); (H.H.N.)
| | - Stephanie Beileke
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany; (S.B.); (P.S.); (K.Ü.)
| | - Felix Günther
- Department of Statistics, Statistical Consulting Unit StaBLab, LMU Munich, Geschwister-Scholl-Platz 1, 80539 Munich, Germany;
- Department of Genetic Epidemiology, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany;
| | - Philipp Steininger
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany; (S.B.); (P.S.); (K.Ü.)
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany;
| | - Iris M. Heid
- Department of Genetic Epidemiology, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany;
| | - Annette B. Pfahlberg
- Department of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Waldstr. 6, 91054 Erlangen, Germany;
| | - Klaus Überla
- Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany; (S.B.); (P.S.); (K.Ü.)
| | - Olaf Gefeller
- Department of Medical Informatics, Biometry and Epidemiology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Waldstr. 6, 91054 Erlangen, Germany;
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, Molecular Microbiology (Virology), University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany; (S.E.); (D.P.); (H.H.N.)
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
8
|
Buder F, Bauswein M, Magnus CL, Audebert F, Lang H, Kundel C, Distler K, Reuschel E, Lubnow M, Müller T, Lunz D, Graf B, Schmid S, Müller M, Poeck H, Hanses F, Salzberger B, Peterhoff D, Wenzel JJ, Schmidt B, Lampl BMJ. SARS-CoV-2 infectivity correlates with high viral loads and detection of viral antigen and is terminated by seroconversion. J Infect Dis 2021; 225:190-198. [PMID: 34427652 PMCID: PMC8513404 DOI: 10.1093/infdis/jiab415] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/24/2021] [Indexed: 01/08/2023] Open
Abstract
Background From a public health perspective, effective containment strategies for SARS-CoV-2 should be balanced with individual liberties. Methods We collected 79 respiratory samples from 59 patients monitored in an outpatient center or in the intensive care unit of the University Hospital Regensburg. We analyzed viral load by quantitative real-time PCR, viral antigen by point-of-care assay, time since onset of symptoms and presence of SARS-CoV-2 IgG antibodies in the context of virus isolation from respiratory specimen. Results The odds ratio for virus isolation increased 1.9-fold for each log10 level of SARS-CoV-2 RNA and 7.4-fold with detection of viral antigen, while it decreased 6.3-fold beyond 10 days of symptoms and 20.0-fold with presence of SARS-CoV-2 antibodies. The latter was confirmed for B.1.1.7 strains. The positive predictive value for virus isolation was 60.0% for viral loads above 10 7 RNA copies/mL and 50.0% for the presence of viral antigen. Symptom onset before 10 days and seroconversion predicted lack of infectivity with 93.8% and 96.0%. Conclusions Our data support quarantining patients with high viral load and detection of viral antigen, and lifting restrictive measures with increasing time to symptom onset and seroconversion. Delay of antibody formation may prolong infectivity.
Collapse
Affiliation(s)
- Felix Buder
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Markus Bauswein
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Clara L Magnus
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | | | | | - Christof Kundel
- Medizinische Klinik 1, Hospital Barmherzige Brüder, Regensburg, Germany
| | - Karin Distler
- Medizinische Klinik 1, Hospital Barmherzige Brüder, Regensburg, Germany
| | - Edith Reuschel
- University Department of Obstetrics and Gynecology At The Hospital St. Hedwig of The Order of St. John, University of Regensburg, Regensburg, Germany
| | - Matthias Lubnow
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Thomas Müller
- Department of Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Dirk Lunz
- Department of Anesthesiology, University Hospital Regensburg, Regensburg, Germany
| | - Bernhard Graf
- Department of Anesthesiology, University Hospital Regensburg, Regensburg, Germany
| | - Stephan Schmid
- Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Martina Müller
- Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Hendrik Poeck
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - Frank Hanses
- Emergency Department, University Hospital Regensburg, Regensburg, Germany.,Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - Bernd Salzberger
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - David Peterhoff
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Jürgen J Wenzel
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | - Barbara Schmidt
- Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany.,Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany
| | | |
Collapse
|