1
|
Katagiri N, Tagata H, Uchino T, Arai Y, Saito J, Kamiya K, Hori M, Mizuno M, Nemoto T. Investigating changes in the premotor cortex-derived frontal-striatal-thalamic subcircuit in attenuated psychosis syndrome. Brain Imaging Behav 2024:10.1007/s11682-024-00906-6. [PMID: 39196522 DOI: 10.1007/s11682-024-00906-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2024] [Indexed: 08/29/2024]
Abstract
Frontal-striatal-thalamic circuit impairment is presumed to underlie schizophrenia. Individuals with attenuated psychosis syndrome (APS) show longitudinal volume reduction of the putamen in the striatum, which has a neural connection with the premotor cortex through the frontal-striatal-thalamic subcircuit. However, comprehensive investigations into the biological changes in the frontal-striatal-thalamic subcircuit originating from the premotor cortex in APS are lacking. We investigated differences in fractional anisotropy (FA) values between the striatum and premotor cortex (ST-PREM) and between the thalamus and premotor cortex (T-PREM) in individuals with APS and healthy controls, using a novel method TractSeg. Our study comprised 36 individuals with APS and 38 healthy controls. There was a significant difference between the control and APS groups in the right T-PREM (odds ratio = 1.76, p = 0.02). Other factors, such as age, sex, other values of FA, and antipsychotic medication, were not associated with differences between groups. However, while FA value reduction of ST-PREM and T-PREM in schizophrenia has been previously reported, in the present study on APS, the alteration of the FA value was limited to T-PREM in APS. This finding suggests that ST-PREM impairment is not predominant in APS but emerges in schizophrenia. Impairment of the neural network originating from the premotor cortex can lead to catatonia and aberrant mirror neuron networks that are presumed to provoke various psychotic symptoms of schizophrenia. Our findings highlight the potential role of changes in a segment of the frontal-thalamic pathway derived from the premotor cortex as a biological basis of APS.
Collapse
Affiliation(s)
- Naoyuki Katagiri
- Department of Neuropsychiatry, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan.
| | - Hiromi Tagata
- Department of Neuropsychiatry, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Takashi Uchino
- Department of Neuropsychiatry, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
- Department of Psychiatry and Implementation Science, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Yu Arai
- Department of Neuropsychiatry, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Junichi Saito
- Department of Neuropsychiatry, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Kouhei Kamiya
- Department of Radiology, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Masaaki Hori
- Department of Radiology, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| | - Masafumi Mizuno
- Department of Neuropsychiatry, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
- Tokyo Metropolitan Matsuzawa Hospital, 2-1-1 Kamikitazawa, Setagaya-ku, Tokyo, 156-0057, Japan
| | - Takahiro Nemoto
- Department of Neuropsychiatry, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
- Department of Psychiatry and Implementation Science, Toho University School of Medicine, 6-11-1 Omori-nishi, Ota-ku, Tokyo, 143-8541, Japan
| |
Collapse
|
2
|
Chopra S, Levi PT, Holmes A, Orchard ER, Segal A, Francey SM, O'Donoghue B, Cropley VL, Nelson B, Graham J, Baldwin L, Yuen HP, Allott K, Alvarez-Jimenez M, Harrigan S, Pantelis C, Wood SJ, McGorry P, Fornito A. Brainwide Anatomical Connectivity and Prediction of Longitudinal Outcomes in Antipsychotic-Naïve First-Episode Psychosis. Biol Psychiatry 2024:S0006-3223(24)01483-5. [PMID: 39069164 DOI: 10.1016/j.biopsych.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/05/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Disruptions of axonal connectivity are thought to be a core pathophysiological feature of psychotic illness, but whether they are present early in the illness, prior to antipsychotic exposure, and whether they can predict clinical outcome remain unknown. METHODS We acquired diffusion-weighted magnetic resonance images to map structural connectivity between each pair of 319 parcellated brain regions in 61 antipsychotic-naïve individuals with first-episode psychosis (15-25 years, 46% female) and a demographically matched sample of 27 control participants. Clinical follow-up data were also acquired in patients 3 and 12 months after the scan. We used connectome-wide analyses to map disruptions of inter-regional pairwise connectivity and connectome-based predictive modeling to predict longitudinal change in symptoms and functioning. RESULTS Individuals with first-episode psychosis showed disrupted connectivity in a brainwide network linking all brain regions compared with controls (familywise error-corrected p = .03). Baseline structural connectivity significantly predicted change in functioning over 12 months (r = 0.44, familywise error-corrected p = .041), such that lower connectivity within fronto-striato-thalamic systems predicted worse functional outcomes. CONCLUSIONS Brainwide reductions of structural connectivity exist during the early stages of psychotic illness and cannot be attributed to antipsychotic medication. Moreover, baseline measures of structural connectivity can predict change in patient functional outcomes up to 1 year after engagement with treatment services.
Collapse
Affiliation(s)
- Sidhant Chopra
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Clayton, Australia; Monash Biomedical Imaging, Monash University, Clayton, Australia; Department of Psychology, Yale University, New Haven, Connecticut; Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Priscila T Levi
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Clayton, Australia; Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Alexander Holmes
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Clayton, Australia; Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Edwina R Orchard
- Yale Child Study Centre, Yale University, New Haven, Connecticut
| | - Ashlea Segal
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Clayton, Australia; Monash Biomedical Imaging, Monash University, Clayton, Australia; Wu Tsai Institute, Department of Neuroscience, Yale University, New Haven, Connecticut; Department of Neuroscience, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Shona M Francey
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Brian O'Donoghue
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia; St. Vincent's University Hospital, Dublin 4, Ireland; Department of Psychiatry, University College Dublin, Dublin 4, Ireland
| | - Vanessa L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia
| | - Barnaby Nelson
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jessica Graham
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lara Baldwin
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Hok Pan Yuen
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kelly Allott
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mario Alvarez-Jimenez
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Susy Harrigan
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia; Centre for Mental Health, Melbourne School of Global and Population Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, Victoria, Australia; Western Hospital Sunshine, St. Albans, Victoria, Australia
| | - Stephen J Wood
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia; School of Psychology, University of Birmingham, Edgbaston, United Kingdom
| | - Patrick McGorry
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, School of Psychological Science, Monash University, Clayton, Australia; Monash Biomedical Imaging, Monash University, Clayton, Australia
| |
Collapse
|
3
|
Michalczyk A, Tyburski E, Podwalski P, Waszczuk K, Rudkowski K, Kucharska-Mazur J, Mak M, Rek-Owodziń K, Plichta P, Bielecki M, Andrusewicz W, Cecerska-Heryć E, Samochowiec A, Misiak B, Sagan L, Samochowiec J. Greater methylation of the IL-6 promoter region is associated with decreased integrity of the corpus callosum in schizophrenia. J Psychiatr Res 2024; 175:108-117. [PMID: 38728913 DOI: 10.1016/j.jpsychires.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Schizophrenia is associated with chronic subclinical inflammation and decreased integrity of the corpus callosum (CC). Our previous study showed associations between peripheral IL-6 levels and the integrity of the CC. Epigenetic studies show associations between methylation of the genes related to immunological processes and integrity of the CC. AIM To investigate correlations between methylation status of IL-6 promotor and peripheral IL-6 levels and the integrity of the CC in schizophrenia. MATERIAL AND METHODS The participants were 29 chronic schizophrenia patients (SCH) and 29 controls. Decreased integrity of the CC was understood as increased mean diffusivity (MD) and/or decreased fractional anisotropy (FA) in diffusion tensor imaging. Peripheral IL-6 concentrations were measured in serum samples and IL-6 promoter methylation status of 6 CpG sites was analyzed in peripheral leukocytes by pyrosequencing. RESULTS Moderate positive correlations were found between CpG1 methylation and the MD of proximal regions of the CC (CCR1-CCR3) and between CpGmean and MD of CCR1 in SCH. Weaker positive correlations were found for CpGmean with CCR2 and CCR3 and negative correlations were found for CpG1 and FA of CCR3 in SCH. Multivariate regression showed that methylation of CpG1, type of antipsychotic treatment, and their interaction were significant independent predictors of MD of CCR1 in SCH. Methylation of CpG2 was negatively correlated with serum IL-6 in SCH. CONCLUSIONS The methylation level of the IL-6 promotor region in peripheral leukocytes is associated with the integrity of the CC in schizophrenia and this association may depend on the type of antipsychotic treatment. Further studies are necessary to explain the mechanisms of the observed associations.
Collapse
Affiliation(s)
- Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Poland.
| | - Ernest Tyburski
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Poland
| | - Piotr Podwalski
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Poland
| | - Katarzyna Waszczuk
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Poland
| | | | | | - Monika Mak
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Poland
| | | | - Piotr Plichta
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Poland
| | - Maksymilian Bielecki
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Poland
| | | | | | | | - Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, Poland
| | - Leszek Sagan
- Department of Neurosurgery, Pomeranian Medical University in Szczecin, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Poland
| |
Collapse
|
4
|
Gkintoni E, Skokou M, Gourzis P. Integrating Clinical Neuropsychology and Psychotic Spectrum Disorders: A Systematic Analysis of Cognitive Dynamics, Interventions, and Underlying Mechanisms. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:645. [PMID: 38674291 PMCID: PMC11051923 DOI: 10.3390/medicina60040645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Background and Objectives: The study aims to provide a comprehensive neuropsychological analysis of psychotic spectrum disorders, including schizophrenia, bipolar disorder, and depression. It focuses on the critical aspects of cognitive impairments, diagnostic tools, intervention efficacy, and the roles of genetic and environmental factors in these disorders. The paper emphasizes the diagnostic significance of neuropsychological tests in identifying cognitive deficiencies and their predictive value in the early management of psychosis. Materials and Methods: The study involved a systematic literature review following the PRISMA guidelines. The search was conducted in significant databases like Scopus, PsycINFO, PubMed, and Web of Science using keywords relevant to clinical neuropsychology and psychotic spectrum disorders. The inclusion criteria required articles to be in English, published between 2018 and 2023, and pertinent to clinical neuropsychology's application in these disorders. A total of 153 articles were identified, with 44 ultimately included for detailed analysis based on relevance and publication status after screening. Results: The review highlights several key findings, including the diagnostic and prognostic significance of mismatch negativity, neuroprogressive trajectories, cortical thinning in familial high-risk individuals, and distinct illness trajectories within psychosis subgroups. The studies evaluated underline the role of neuropsychological tests in diagnosing psychiatric disorders and emphasize early detection and the effectiveness of intervention strategies based on cognitive and neurobiological markers. Conclusions: The systematic review underscores the importance of investigating the neuropsychological components of psychotic spectrum disorders. It identifies significant cognitive impairments in attention, memory, and executive function, correlating with structural and functional brain abnormalities. The paper stresses the need for precise diagnoses and personalized treatment modalities, highlighting the complex interplay between genetic, environmental, and psychosocial factors. It calls for a deeper understanding of these neuropsychological processes to enhance diagnostic accuracy and therapeutic outcomes.
Collapse
Affiliation(s)
- Evgenia Gkintoni
- Department of Psychiatry, University General Hospital of Patras, 26504 Patras, Greece; (M.S.); (P.G.)
| | | | | |
Collapse
|
5
|
Zheng Q, Guo K, Meng Y, Nan J, Xu L. White Matter Fiber Tracking Method with Adaptive Correction of Tracking Direction. Int J Biomed Imaging 2024; 2024:4102461. [PMID: 38348198 PMCID: PMC10861278 DOI: 10.1155/2024/4102461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 02/15/2024] Open
Abstract
Background The deterministic fiber tracking method has the advantage of high computational efficiency and good repeatability, making it suitable for the noninvasive estimation of brain structural connectivity in clinical fields. To address the issue of the current classical deterministic method tending to deviate in the tracking direction in the region of crossing fiber region, in this paper, we propose an adaptive correction-based deterministic white matter fiber tracking method, named FTACTD. Methods The proposed FTACTD method can accurately track white matter fibers by adaptively adjusting the deflection direction strategy based on the tensor matrix and the input fiber direction of adjacent voxels. The degree of correction direction changes adaptively according to the shape of the diffusion tensor, mimicking the actual tracking deflection angle and direction. Furthermore, both forward and reverse tracking techniques are employed to track the entire fiber. The effectiveness of the proposed method is validated and quantified using both simulated and real brain datasets. Various indicators such as invalid bundles (IB), valid bundles (VB), invalid connections (IC), no connections (NC), and valid connections (VC) are utilized to assess the performance of the proposed method on simulated data and real diffusion-weighted imaging (DWI) data. Results The experimental results of the simulated data show that the FTACTD method tracks outperform existing methods, achieving the highest number of VB with a total of 13 bundles. Additionally, it identifies the least number of incorrect fiber bundles, with only 32 bundles identified as wrong. Compared to the FACT method, the FTACTD method reduces the number of NC by 36.38%. In terms of VC, the FTACTD method surpasses even the best performing SD_Stream method among deterministic methods by 1.64%. Extensive in vivo experiments demonstrate the superiority of the proposed method in terms of tracking more accurate and complete fiber paths, resulting in improved continuity. Conclusion The FTACTD method proposed in this study indicates superior tracking results and provides a methodological basis for the investigating, diagnosis, and treatment of brain disorders associated with white matter fiber deficits and abnormalities.
Collapse
Affiliation(s)
- Qian Zheng
- Zhengzhou University of Light Industry, Zhengzhou, China
| | - Kefu Guo
- Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yinghui Meng
- Zhengzhou University of Light Industry, Zhengzhou, China
| | - Jiaofen Nan
- Zhengzhou University of Light Industry, Zhengzhou, China
| | - Lin Xu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Chen Y, Liu S, Zhang B, Zhao G, Zhang Z, Li S, Li H, Yu X, Deng H, Cao H. Baseline symptom-related white matter tracts predict individualized treatment response to 12-week antipsychotic monotherapies in first-episode schizophrenia. Transl Psychiatry 2024; 14:23. [PMID: 38218952 PMCID: PMC10787827 DOI: 10.1038/s41398-023-02714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 01/15/2024] Open
Abstract
There is significant heterogeneity in individual responses to antipsychotic drugs, but there is no reliable predictor of antipsychotics response in first-episode psychosis. This study aimed to investigate whether psychotic symptom-related alterations in fractional anisotropy (FA) and mean diffusivity (MD) of white matter (WM) at the early stage of the disorder may aid in the individualized prediction of drug response. Sixty-eight first-episode patients underwent baseline structural MRI scans and were subsequently randomized to receive a single atypical antipsychotic throughout the first 12 weeks. Clinical symptoms were evaluated using the eight "core symptoms" selected from the Positive and Negative Syndrome Scale (PANSS-8). Follow-up assessments were conducted at the 4th, 8th, and 12th weeks by trained psychiatrists. LASSO regression model and cross-validation were conducted to examine the performance of baseline symptom-related alterations FA and MD of WM in the prediction of individualized treatment outcome. Fifty patients completed both clinical follow-up assessments by the 8th and 12th weeks. 30 patients were classified as responders, and 20 patients were classified as nonresponders. At baseline, the altered diffusion properties of fiber tracts in the anterior thalamic radiation, corticospinal tract, callosum forceps minor, longitudinal fasciculi (ILF), inferior frontal-occipital fasciculi (IFOF) and superior longitudinal fasciculus (SLF) were related to the severity of symptoms. These abnormal fiber tracts, especially the ILF, IFOF, and SLF, significantly predicted the response to antipsychotic treatment at the individual level (AUC = 0.828, P < 0.001). These findings demonstrate that early microstructural WM changes contribute to the pathophysiology of psychosis and may serve as meaningful individualized predictors of response to antipsychotics.
Collapse
Affiliation(s)
- Ying Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
- Hope Recovery and Rehabilitation Center, West China Hospital of Sichuan University, Chengdu, China
| | - Shanming Liu
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Bo Zhang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Gaofeng Zhao
- Shandong Daizhuang Hospital, Jining, Shangdong, China
| | - Zhuoqiu Zhang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Shuiying Li
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Haiming Li
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xin Yu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Hong Deng
- Hope Recovery and Rehabilitation Center, West China Hospital of Sichuan University, Chengdu, China.
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.
| | - Hengyi Cao
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA
| |
Collapse
|
7
|
Porter A, Fei S, Damme KSF, Nusslock R, Gratton C, Mittal VA. A meta-analysis and systematic review of single vs. multimodal neuroimaging techniques in the classification of psychosis. Mol Psychiatry 2023; 28:3278-3292. [PMID: 37563277 PMCID: PMC10618094 DOI: 10.1038/s41380-023-02195-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Psychotic disorders are characterized by structural and functional abnormalities in brain networks. Neuroimaging techniques map and characterize such abnormalities using unique features (e.g., structural integrity, coactivation). However, it is unclear if a specific method, or a combination of modalities, is particularly effective in identifying differences in brain networks of someone with a psychotic disorder. METHODS A systematic meta-analysis evaluated machine learning classification of schizophrenia spectrum disorders in comparison to healthy control participants using various neuroimaging modalities (i.e., T1-weighted imaging (T1), diffusion tensor imaging (DTI), resting state functional connectivity (rs-FC), or some combination (multimodal)). Criteria for manuscript inclusion included whole-brain analyses and cross-validation to provide a complete picture regarding the predictive ability of large-scale brain systems in psychosis. For this meta-analysis, we searched Ovid MEDLINE, PubMed, PsychInfo, Google Scholar, and Web of Science published between inception and March 13th 2023. Prediction results were averaged for studies using the same dataset, but parallel analyses were run that included studies with pooled sample across many datasets. We assessed bias through funnel plot asymmetry. A bivariate regression model determined whether differences in imaging modality, demographics, and preprocessing methods moderated classification. Separate models were run for studies with internal prediction (via cross-validation) and external prediction. RESULTS 93 studies were identified for quantitative review (30 T1, 9 DTI, 40 rs-FC, and 14 multimodal). As a whole, all modalities reliably differentiated those with schizophrenia spectrum disorders from controls (OR = 2.64 (95%CI = 2.33 to 2.95)). However, classification was relatively similar across modalities: no differences were seen across modalities in the classification of independent internal data, and a small advantage was seen for rs-FC studies relative to T1 studies in classification in external datasets. We found large amounts of heterogeneity across results resulting in significant signs of bias in funnel plots and Egger's tests. Results remained similar, however, when studies were restricted to those with less heterogeneity, with continued small advantages for rs-FC relative to structural measures. Notably, in all cases, no significant differences were seen between multimodal and unimodal approaches, with rs-FC and unimodal studies reporting largely overlapping classification performance. Differences in demographics and analysis or denoising were not associated with changes in classification scores. CONCLUSIONS The results of this study suggest that neuroimaging approaches have promise in the classification of psychosis. Interestingly, at present most modalities perform similarly in the classification of psychosis, with slight advantages for rs-FC relative to structural modalities in some specific cases. Notably, results differed substantially across studies, with suggestions of biased effect sizes, particularly highlighting the need for more studies using external prediction and large sample sizes. Adopting more rigorous and systematized standards will add significant value toward understanding and treating this critical population.
Collapse
Affiliation(s)
- Alexis Porter
- Department of Psychology, Northwestern University, Evanston, IL, USA.
| | - Sihan Fei
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Katherine S F Damme
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Institute for Innovations in Developmental Sciences, Northwestern University, Evanston and Chicago, IL, USA
| | - Robin Nusslock
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Caterina Gratton
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL, USA
- Institute for Innovations in Developmental Sciences, Northwestern University, Evanston and Chicago, IL, USA
- Department of Psychiatry, Northwestern University, Chicago, IL, USA
- Medical Social Sciences, Northwestern University, Chicago, IL, USA
- Institute for Policy Research, Northwestern University, Chicago, IL, USA
| |
Collapse
|
8
|
Chen Z, Bo Q, Zhao L, Wang Y, Zhang Z, Zhou Y, Wang C. White matter microstructural abnormalities in individuals with attenuated positive symptom syndromes. J Psychiatr Res 2023; 163:150-158. [PMID: 37210833 DOI: 10.1016/j.jpsychires.2023.05.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
White matter (WM) microstructural alterations have been extensively studied in patients with psychosis, but research on the microstructure of WM in individuals with attenuated positive symptom syndrome (APSS) is currently limited. To improve the understanding of the neuropathology in APSS, this study investigated the WM of individuals with APSS using diffusion tensor and T1-weighted imaging. Automated fiber quantification was used to calculate the diffusion index values along the trajectories of 20 major fiber tracts in 42 individuals with APSS and 51 age-and sex-matched healthy control (HC) individuals. The diffusion index values in each of fiber tracts were compared node-by-node between the 2 groups. Compared with the HC group, the APSS group showed differences in the diffusion index values in partial segments of the callosum forceps minor, left and right cingulum cingulate, inferior fronto-occipital fasciculus, right corticospinal tract, left superior longitudinal fasciculus, and arcuate fasciculus. Notably, in the APSS group positive associations were found between the axial diffusivity values of the partial nodes of the left and right cingulum cingulate and the current Global Assessment of Functioning scores, as well as between the axial diffusivity values of the partial nodes of the right corticospinal tract and negative symptoms scores and reasoning and problem-solving scores. These findings suggest that individuals with APSS exhibit reduced WM integrity or possible impaired myelin in certain segments of WM tracts involved in the frontal- and limbic-cortical connections. Additionally, abnormal WM tracts appear to be associated with impaired general function and neurocognitive function. This study provides important new insights into the neurobiology of APSS and highlights potential targets for future intervention and treatment.
Collapse
Affiliation(s)
- Zhenzhu Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
| | - Qijing Bo
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China.
| | - Lei Zhao
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
| | - Yimeng Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
| | - Zhifang Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China
| | - Yuan Zhou
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuanyue Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; Beijing Institute for Brain Disorders Center of Schizophrenia, Beijing Anding Hospital, Capital Medical University, Beijing, 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
9
|
Mamah D. A Review of Potential Neuroimaging Biomarkers of Schizophrenia-Risk. JOURNAL OF PSYCHIATRY AND BRAIN SCIENCE 2023; 8:e230005. [PMID: 37427077 PMCID: PMC10327607 DOI: 10.20900/jpbs.20230005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The risk for developing schizophrenia is increased among first-degree relatives of those with psychotic disorders, but the risk is even higher in those meeting established criteria for clinical high risk (CHR), a clinical construct most often comprising of attenuated psychotic experiences. Conversion to psychosis among CHR youth has been reported to be about 15-35% over three years. Accurately identifying individuals whose psychotic symptoms will worsen would facilitate earlier intervention, but this has been difficult to do using behavior measures alone. Brain-based risk markers have the potential to improve the accuracy of predicting outcomes in CHR youth. This narrative review provides an overview of neuroimaging studies used to investigate psychosis risk, including studies involving structural, functional, and diffusion imaging, functional connectivity, positron emission tomography, arterial spin labeling, magnetic resonance spectroscopy, and multi-modality approaches. We present findings separately in those observed in the CHR state and those associated with psychosis progression or resilience. Finally, we discuss future research directions that could improve clinical care for those at high risk for developing psychotic disorders.
Collapse
Affiliation(s)
- Daniel Mamah
- Department of Psychiatry, Washington University Medical School, St. Louis, MO, 63110, USA
| |
Collapse
|
10
|
Cai J, Xie M, Zhao L, Li X, Liang S, Deng W, Guo W, Ma X, Sham PC, Wang Q, Li T. White matter changes and its relationship with clinical symptom in medication-naive first-episode early onset schizophrenia. Asian J Psychiatr 2023; 82:103482. [PMID: 36709613 DOI: 10.1016/j.ajp.2023.103482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Previous studies have highlighted the role of white matter (WM) alterations as biomarkers of the disease state and prognosis of schizophrenia. However, less is known about WM abnormalities in the rarely occurring adolescent early onset schizophrenia (EOS). In this study, T1-weighted and diffusion-weighted images were collected in 56 medication-naive first-episode participants with EOS and 43 healthy controls (HCs). Using Tract-based Spatial Statistics, we calculate case-control differences in scalar diffusion measures, i.e. fractional anisotropy (FA) and mean diffusivity (MD), and investigated their association with clinical feature in participants with EOS. Compared with HCs, decreased MD was found in EOS group most notably in the inferior longitudinal fasciculus, anterior thalamic radiation, inferior fronto-occipital fasciculus and corticospinal tract in the right hemisphere. No significant difference was found in FA between these two groups. The FA values of the forceps minor and the right superior longitudinal fasciculus were suggested to be related to the severity of clinical symptom in participants with EOS. These results provide clues about the neural basis of schizophrenia and a potential biomarker for clinical studies.
Collapse
Affiliation(s)
- Jia Cai
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Min Xie
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Liansheng Zhao
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaojing Li
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Sugai Liang
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei Deng
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wanjun Guo
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaohong Ma
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Pak C Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Centre for PanorOmic Sciences, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Qiang Wang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Michalczyk A, Tyburski E, Podwalski P, Waszczuk K, Rudkowski K, Kucharska-Mazur J, Mak M, Rek-Owodziń K, Plichta P, Bielecki M, Andrusewicz W, Cecerska-Heryć E, Samochowiec A, Misiak B, Sagan L, Samochowiec J. Serum Inflammatory Markers and Integrity of the Superior Longitudinal Fasciculus and the Inferior Longitudinal Fasciculus in Schizophrenia, from Prodromal Stages to Chronic Psychosis-A Cross-Sectional Study. J Clin Med 2023; 12:jcm12020683. [PMID: 36675612 PMCID: PMC9866306 DOI: 10.3390/jcm12020683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/29/2022] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
Chronic subclinical inflammation is believed to be an important factor in the pathogenesis of schizophrenia. Meta-analyses confirm the presence of increased levels of peripheral inflammatory markers (IM) in schizophrenia and its prodromal stages. Peripheral cytokines may affect the brain microstructure through chronic activation of microglia. Disruptions in the integrity of the superior longitudinal fasciculus (SLF) and inferior longitudinal fasciculus (ILF) are commonly seen in patients with schizophrenia spectrum disorders. We therefore attempted to verify in a cross-sectional study whether there is a correlation between levels of peripheral IM and the integrity of these brain regions in healthy controls, from prodromal states and first episode psychosis to long-term schizophrenia. The integrity of white matter was measured using diffusion tensor imaging. Despite a broad analysis of six IM (CRP, IL-6, IL-8, IL-10, TNF-α, and IFN-γ), we did not find any correlations with the integrity of the SLF or ILF in any of the analyzed groups (after correction for multiple comparisons). In conclusion, our study does not support the existence of a link between disrupted levels of peripheral IM and reduced integrity of ILF and SLF in schizophrenia spectrum disorders. However, prospective studies are needed to verify this over a long period of time.
Collapse
Affiliation(s)
- Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland
- Correspondence:
| | - Ernest Tyburski
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland
| | - Piotr Podwalski
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland
| | - Katarzyna Waszczuk
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland
| | - Krzysztof Rudkowski
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland
| | | | - Monika Mak
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland
| | - Katarzyna Rek-Owodziń
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland
| | - Piotr Plichta
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland
| | - Maksymilian Bielecki
- Department of Health Psychology, Pomeranian Medical University, 71-460 Szczecin, Poland
| | - Wojciech Andrusewicz
- Department of Neurosurgery, Pomeranian Medical University, 71-252 Szczecin, Poland
| | | | | | - Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Leszek Sagan
- Department of Neurosurgery, Pomeranian Medical University, 71-252 Szczecin, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University, 71-460 Szczecin, Poland
| |
Collapse
|
12
|
Identification of texture MRI brain abnormalities on first-episode psychosis and clinical high-risk subjects using explainable artificial intelligence. Transl Psychiatry 2022; 12:481. [PMID: 36385133 PMCID: PMC9668814 DOI: 10.1038/s41398-022-02242-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
Structural MRI studies in first-episode psychosis and the clinical high-risk state have consistently shown volumetric abnormalities. Aim of the present study was to introduce radiomics texture features in identification of psychosis. Radiomics texture features describe the interrelationship between voxel intensities across multiple spatial scales capturing the hidden information of underlying disease dynamics in addition to volumetric changes. Structural MR images were acquired from 77 first-episode psychosis (FEP) patients, 58 clinical high-risk subjects with no later transition to psychosis (CHR_NT), 15 clinical high-risk subjects with later transition (CHR_T), and 44 healthy controls (HC). Radiomics texture features were extracted from non-segmented images, and two-classification schemas were performed for the identification of FEP vs. HC and FEP vs. CHR_NT. The group of CHR_T was used as external validation in both schemas. The classification of a subject's clinical status was predicted by importing separately (a) the difference of entropy feature map and (b) the contrast feature map, resulting in classification balanced accuracy above 72% in both analyses. The proposed framework enhances the classification decision for FEP, CHR_NT, and HC subjects, verifies diagnosis-relevant features and may potentially contribute to identification of structural biomarkers for psychosis, beyond and above volumetric brain changes.
Collapse
|
13
|
Dabiri M, Dehghani Firouzabadi F, Yang K, Barker PB, Lee RR, Yousem DM. Neuroimaging in schizophrenia: A review article. Front Neurosci 2022; 16:1042814. [PMID: 36458043 PMCID: PMC9706110 DOI: 10.3389/fnins.2022.1042814] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022] Open
Abstract
In this review article we have consolidated the imaging literature of patients with schizophrenia across the full spectrum of modalities in radiology including computed tomography (CT), morphologic magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), magnetic resonance spectroscopy (MRS), positron emission tomography (PET), and magnetoencephalography (MEG). We look at the impact of various subtypes of schizophrenia on imaging findings and the changes that occur with medical and transcranial magnetic stimulation (TMS) therapy. Our goal was a comprehensive multimodality summary of the findings of state-of-the-art imaging in untreated and treated patients with schizophrenia. Clinical imaging in schizophrenia is used to exclude structural lesions which may produce symptoms that may mimic those of patients with schizophrenia. Nonetheless one finds global volume loss in the brains of patients with schizophrenia with associated increased cerebrospinal fluid (CSF) volume and decreased gray matter volume. These features may be influenced by the duration of disease and or medication use. For functional studies, be they fluorodeoxyglucose positron emission tomography (FDG PET), rs-fMRI, task-based fMRI, diffusion tensor imaging (DTI) or MEG there generally is hypoactivation and disconnection between brain regions. However, these findings may vary depending upon the negative or positive symptomatology manifested in the patients. MR spectroscopy generally shows low N-acetylaspartate from neuronal loss and low glutamine (a neuroexcitatory marker) but glutathione may be elevated, particularly in non-treatment responders. The literature in schizophrenia is difficult to evaluate because age, gender, symptomatology, comorbidities, therapy use, disease duration, substance abuse, and coexisting other psychiatric disorders have not been adequately controlled for, even in large studies and meta-analyses.
Collapse
Affiliation(s)
- Mona Dabiri
- Department of Radiology, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Kun Yang
- Department of Psychiatry, Molecular Psychiatry Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Peter B. Barker
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institution, Baltimore, MD, United States
| | - Roland R. Lee
- Department of Radiology, UCSD/VA Medical Center, San Diego, CA, United States
| | - David M. Yousem
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institution, Baltimore, MD, United States
| |
Collapse
|
14
|
Michalczyk A, Tyburski E, Podwalski P, Waszczuk K, Rudkowski K, Kucharska-Mazur J, Mak M, Rek-Owodziń K, Plichta P, Bielecki M, Andrusewicz W, Cecerska-Heryć E, Samochowiec A, Misiak B, Sagan L, Samochowiec J. Serum inflammatory markers and their associations with white matter integrity of the corpus callosum in schizophrenia patients and healthy controls. Prog Neuropsychopharmacol Biol Psychiatry 2022; 116:110510. [PMID: 35063597 DOI: 10.1016/j.pnpbp.2022.110510] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 11/15/2022]
Abstract
Schizophrenia is associated with disrupted integrity of white matter microstructure of a variety of brain regions, especially the corpus callosum (CC). Chronic subclinical inflammation is considered to be one of the factors involved in the pathogenesis of this disease, and increased levels of peripheral inflammatory markers are often observed in schizophrenia patients. Therefore, we decided to investigate whether the integrity of the corpus callosum is correlated with levels of these markers. A total of 50 patients with stable chronic schizophrenia (SCH) and 30 controls (CON) were enrolled in the study. All participants underwent psychiatric evaluation, neuroimaging, and blood sampling including the measurement of serum concentrations of interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL - 10), tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), and C-reactive protein (CRP). Additional potentially related factors, such as age, gender, BMI, smoking, disease duration, and treatment were included in the analysis. Significantly higher IL-6 and IFN-γ levels were observed in SCH compared to CON. In SCH, IFN-γ was positively correlated with mean diffusivity of region 2 of the CC. In CON, IL-6 was inversely correlated with fractional anisotropy of region 1 of the CC. These results support the potential influence of peripheral inflammatory markers on the integrity of the CC in schizophrenia, but require verification in longitudinal studies.
Collapse
Affiliation(s)
- Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Poland.
| | - Ernest Tyburski
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Poland
| | - Piotr Podwalski
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Poland
| | - Katarzyna Waszczuk
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Poland
| | | | | | - Monika Mak
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Poland
| | | | - Piotr Plichta
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Poland
| | - Maksymilian Bielecki
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Poland
| | | | | | | | - Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, Poland
| | - Leszek Sagan
- Department of Neurosurgery, Pomeranian Medical University in Szczecin, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Poland
| |
Collapse
|
15
|
Smigielski L, Stämpfli P, Wotruba D, Buechler R, Sommer S, Gerstenberg M, Theodoridou A, Walitza S, Rössler W, Heekeren K. White matter microstructure and the clinical risk for psychosis: A diffusion tensor imaging study of individuals with basic symptoms and at ultra-high risk. Neuroimage Clin 2022; 35:103067. [PMID: 35679786 PMCID: PMC9178487 DOI: 10.1016/j.nicl.2022.103067] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/19/2022] [Accepted: 05/28/2022] [Indexed: 12/29/2022]
Abstract
This DTI cross-sectional study compared UHR, basic symptom & control groups (n = 112). The splenium of UHR individuals exhibited differences in fractional anisotropy (FA). Basic symptoms alone were not associated with white matter microstructure changes. Large differences in FA & radial diffusivity were found in converters to psychosis. Regional FA was inversely correlated with the general psychopathology domain.
Background Widespread white matter abnormalities are a frequent finding in chronic schizophrenia patients. More inconsistent results have been provided by the sparser literature on at-risk states for psychosis, i.e., emerging subclinical symptoms. However, considering risk as a homogenous construct, an approach of earlier studies, may impede our understanding of neuro-progression into psychosis. Methods An analysis was conducted of 3-Tesla MRI diffusion and symptom data from 112 individuals (mean age, 21.97 ± 4.19) within two at-risk paradigm subtypes, only basic symptoms (n = 43) and ultra-high risk (n = 37), and controls (n = 32). Between-group comparisons (involving three study groups and further split based on the subsequent transition to schizophrenia) of four diffusion-tensor-imaging-derived scalars were performed using voxelwise tract-based spatial statistics, followed by correlational analyses with Structured Interview for Prodromal Syndromes responses. Results Relative to controls, fractional anisotropy was lower in the splenium of the corpus callosum of ultra-high-risk individuals, but only before stringent multiple-testing correction, and negatively correlated with General Symptom severity among at-risk individuals. At-risk participants who transitioned to schizophrenia within 3 years, compared to those that did not transition, had more severe WM differences in fractional anisotropy and radial diffusivity (particularly in the corpus callosum, anterior corona radiata, and motor/sensory tracts), which were even more extensive compared to healthy controls. Conclusions These findings align with the subclinical symptom presentation and more extensive disruptions in converters, suggestive of severity-related demyelination or axonal pathology. Fine-grained but detectable differences among ultra-high-risk subjects (i.e., with brief limited intermittent and/or attenuated psychotic symptoms) point to the splenium as a discrete site of emerging psychopathology, while basic symptoms alone were not associated with altered fractional anisotropy.
Collapse
Affiliation(s)
- Lukasz Smigielski
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Philipp Stämpfli
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; MR-Center of the Psychiatric Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich, Zurich, Switzerland
| | - Diana Wotruba
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Roman Buechler
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Neuroradiology, University Hospital of Zurich, Zurich, Switzerland
| | - Stefan Sommer
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; MR-Center of the Psychiatric Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich, Zurich, Switzerland
| | - Miriam Gerstenberg
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anastasia Theodoridou
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Wulf Rössler
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin, Campus Charité Mitte, Berlin, Germany; Laboratory of Neuroscience (LIM 27), Institute of Psychiatry, Universidade de São Paulo, São Paulo, Brazil
| | - Karsten Heekeren
- The Zurich Program for Sustainable Development of Mental Health Services (ZInEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland; Department of Psychiatry and Psychotherapy I, LVR-Hospital, Cologne, Germany
| |
Collapse
|
16
|
Su W, Li Z, Xu L, Zeng J, Tang Y, Tang X, Wei Y, Guo Q, Zhang T, Wang J. Different patterns of association between white matter microstructure and plasma unsaturated fatty acids in those with high risk for psychosis and healthy participants. Gen Psychiatr 2022; 35:e100703. [PMID: 35531577 PMCID: PMC9014058 DOI: 10.1136/gpsych-2021-100703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/07/2022] [Indexed: 12/16/2022] Open
Abstract
BackgroundDisrupted white matter (WM) microstructure has been commonly identified in youth at clinical high risk (CHR) for psychosis. Several lines of evidence suggest that fatty acids, especially unsaturated fatty acids (UFAs), might play a crucial role in the WM pathology of early onset psychosis. However, evidence linking UFA and WM microstructure in CHR is quite sparse.AimsWe investigated the relationship between the plasma UFA level and WM microstructure in CHR participants and healthy controls (HC).MethodsPlasma fatty acids were assessed and diffusion tensor imaging (DTI) data were performed with tract-based spatial statistics (TBSS) analysis for 66 individuals at CHR for psychosis and 70 HC.ResultsBoth the global and regional diffusion measures showed significant between-group differences, with decreased fractional anisotropy (FA) but increased mean diffusivity (MD) and radial diffusivity (RD) found in the CHR group compared with the HC group. On top of that, we found that in the HC group, plasma arachidic acid showed obvious trend-level associations with higher global FA, lower global MD and lower global RD, which regionally spread over the corpus callosum, right anterior and superior corona radiata, bilateral anterior and posterior limb of the internal capsule, and bilateral superior longitudinal fasciculus. However, there were no associations between global WM measures and any UFA in the CHR group. Conversely, we even found negative associations between arachidic acid levels and regional FA values in the right superior longitudinal fasciculus and right retrolenticular part of the internal capsule in the CHR group.ConclusionsCompared with the HC group, CHR subjects exhibited a different pattern of association between WM microstructure and plasma UFA, with a neuroprotective effect found in the HC group but not in the CHR group. Such discrepancy could be due to the excessively upregulated UFAs accumulated in the plasma of the CHR group, highlighting the role of balanced plasma-membrane fatty acids homeostasis in WM development.
Collapse
Affiliation(s)
- Wenjun Su
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhixing Li
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lihua Xu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiahui Zeng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaochen Tang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanyan Wei
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Guo
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianhong Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jijun Wang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science, Shanghai, China
- Institute of Psychology and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Waszczuk K, Tyburski E, Rek-Owodziń K, Plichta P, Rudkowski K, Podwalski P, Bielecki M, Mak M, Bober A, Misiak B, Sagan L, Michalczyk A, Kucharska-Mazur J, Samochowiec J. Relationship between White Matter Alterations and Pathophysiological Symptoms in Patients with Ultra-High Risk of Psychosis, First-Episode, and Chronic Schizophrenia. Brain Sci 2022; 12:brainsci12030354. [PMID: 35326310 PMCID: PMC8946295 DOI: 10.3390/brainsci12030354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/20/2022] [Accepted: 03/03/2022] [Indexed: 12/03/2022] Open
Abstract
Some symptoms of schizophrenia might be present before full-blown psychosis, so white matter changes must be studied both in individuals with emerging psychosis and chronic schizophrenia. A total of 86 patients—12 ultra-high risk of psychosis (UHR), 20 first episode psychosis (FEP), 54 chronic schizophrenia (CS), and 33 healthy controls (HC)—underwent psychiatric examination and diffusion tensor imaging (DTI) in a 3-Tesla MRI scanner. We assessed fractional anisotropy (FA) and mean diffusivity (MD) of the superior longitudinal fasciculus (SLF) and inferior longitudinal fasciculus (ILS). We found that CS patients had lower FA than FEP patients (p = 0.025) and HC (p = 0.088), and higher MD than HC (p = 0.037) in the right SLF. In the CS group, we found positive correlations of MD in both right ILF (rho = 0.39, p < 0.05) and SLF (rho = 0.43, p < 0.01) with disorganization symptoms, as well as negative correlation of FA in the right ILF with disorganization symptoms (rho = −0.43, p < 0.05). Among UHR individuals, we found significant negative correlations between MD in the left ILF and negative (r = −0.74, p < 0.05) and general symptoms (r = −0.77, p < 0.05). However promising, these findings should be treated as preliminary, and further research must verify whether they can be treated as potential biomarkers of psychosis.
Collapse
Affiliation(s)
- Katarzyna Waszczuk
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Ernest Tyburski
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Katarzyna Rek-Owodziń
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Piotr Plichta
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Krzysztof Rudkowski
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Piotr Podwalski
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Maksymilian Bielecki
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Monika Mak
- Department of Health Psychology, Pomeranian Medical University in Szczecin, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Adrianna Bober
- Institute of Psychology, University of Szczecin, Krakowska 69 Street, 71-017 Szczecin, Poland
| | - Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Leszek Sagan
- Department of Neurosurgery, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1 Street, 71-252 Szczecin, Poland
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Jolanta Kucharska-Mazur
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| | - Jerzy Samochowiec
- Department of Psychiatry, Pomeranian Medical University in Szczecin, Broniewskiego 26 Street, 71-460 Szczecin, Poland
| |
Collapse
|