1
|
Lafayette R, Tumlin J, Fenoglio R, Kaufeld J, Pérez Valdivia MÁ, Wu MS, Susan Huang SH, Alamartine E, Kim SG, Yee M, Kateifides A, Rice K, Garlo K, Barratt J. Efficacy and Safety of Ravulizumab in IgA Nephropathy: A Phase 2 Randomized Double-Blind Placebo-Controlled Trial. J Am Soc Nephrol 2024:00001751-990000000-00457. [PMID: 39455063 DOI: 10.1681/asn.0000000534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Key Points
This phase 2, double-blind, randomized controlled trial evaluated the complement C5 inhibitor, ravulizumab, in adults with IgA nephropathy.A 30.1% (90% confidence interval, 13.7% to 43.5%) relative reduction in proteinuria for ravulizumab versus placebo was observed at approximately 6 months.Treatment with ravulizumab was well tolerated.
Background
The complement system plays a central role in the pathogenesis of IgA nephropathy. We present findings from a phase 2 trial of ravulizumab, a complement C5 inhibitor.
Methods
The Study of Ravulizumab in Proliferative Lupus Nephritis or IgA Nephropathy (NCT04564339) was a randomized, double-blind, placebo-controlled trial of ravulizumab in addition to standard of care. Adults with IgA nephropathy, proteinuria ≥1 g/d, and eGFR ≥30 ml/min per 1.73 m2, and on stable renin-angiotensin blockade were randomized 2:1 to ravulizumab (intravenous every 8 weeks) or placebo for 26 weeks. From week 26–50, all participants received open-label ravulizumab. The primary end point was percentage change in proteinuria from baseline to week 26. Secondary end points included change in proteinuria at week 50 and eGFR. Safety, pharmacokinetics, and pharmacodynamics were evaluated.
Results
Forty-three patients were randomized to ravulizumab and 23 to placebo. At week 26, a statistically significant reduction in proteinuria was observed with ravulizumab versus placebo: −41.9% (95% confidence interval [CI], −50.2% to −32.0%) change in urine protein with ravulizumab and −16.8% (95% CI, −31.8% to 1.6%) change with placebo (30.1% treatment effect; P = 0.005). At week 50, there was a −44.8% (95% CI, −55.1% to −32.1%) change from baseline in urine protein with ravulizumab, and in patients who crossed over from placebo to ravulizumab at week 26, the change from baseline (week 0) to week 50 was −45.1% (−58.0% to −28.4%). The least squares mean change in eGFR from baseline to week 26 with ravulizumab was 0.2 (95% CI, −2.3 to 2.7) ml/min per 1.73 m2 and with placebo was −4.5 (−7.9 to −1.1) ml/min per 1.73 m2. From baseline to week 50, the least squares mean change in eGFR with ravulizumab was −3.9 (95% CI, −6.4 to−1.3) ml/min per 1.73 m2, and in patients who crossed over from placebo to ravulizumab at week 26, it was −6.3 (−9.7 to −2.9) ml/min per 1.73 m2. Ravulizumab was well tolerated, with an adverse event profile similar to that for placebo.
Conclusions
An early, sustained, and clinically meaningful reduction in proteinuria and trend toward stabilization of eGFR were observed with ravulizumab versus placebo. A phase 3 trial (NCT06291376) is enrolling.
Clinical Trial registry name and registration number:
Study of Ravulizumab in Proliferative Lupus Nephritis or IgA Nephropathy, NCT04564339.
Collapse
Affiliation(s)
- Richard Lafayette
- Stanford Glomerular Disease Center, Stanford University Medical Center, Stanford, California
| | - James Tumlin
- Department of Nephrology, Emory University School of Medicine, Atlanta, Georgia
| | - Roberta Fenoglio
- University Center of Excellence on Nephrological, Rheumatological and Rare Diseases including Nephrology and Dialysis Unit and Center of Immuno-Rheumatology and Rare Diseases, Coordinating Center of the Inter-regional Network for Rare Diseases of Piedmont and Aosta Valley (North-West Italy), San Giovanni Bosco Hub Hospital, ASL Città di Torino, Department of Clinical and Biological Sciences of the University of Turin, Turin, Italy
| | - Jessica Kaufeld
- Hannover Medical School, Department of Nephrology and Hypertension, Hannover, Germany
| | | | - Mai-Szu Wu
- Division of Nephrology, Shuang-Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shih-Han Susan Huang
- Kidney Clinical Research Unit, London Health Sciences Center, East London, Ontario, Canada
| | - Eric Alamartine
- Service de Néphrologie, Hôpital Nord CHU Saint-Étienne, Saint-Étienne, France
| | - Sung Gyun Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Korea
| | - Min Yee
- Alexion, AstraZeneca Rare Disease, Boston, Massachusetts
| | | | - Kara Rice
- Alexion, AstraZeneca Rare Disease, Boston, Massachusetts
| | | | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
2
|
Xiao M, Chi X, Zhu X, Xu Z, Zou Y, Peng Y, Luan S, Dong J, Dai Y, Yin L. Proteomic analysis of laser captured tubular tissues reveals complement activation and mitochondrial dysfunction in autoimmune related kidney diseases. Sci Rep 2024; 14:19311. [PMID: 39164435 PMCID: PMC11336080 DOI: 10.1038/s41598-024-70209-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024] Open
Abstract
Autoimmune related kidney diseases (ARKDs), including minimal change nephropathy (MCN), membranous nephropathy (MN), IgA nephropathy (IgAN), and lupus nephritis (LN), significantly affect renal function. These diseases are characterized by the formation of local immune complexes and the subsequent activation of the complement system, leading to kidney damage and proteinuria. Despite the known patterns of glomerular injury, the specific molecular mechanisms that contribute to renal tubular damage across ARKDs remain underexplored. Laser capture microdissection and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to conduct a comparative proteomic analysis of renal tubular tissues from formalin-fixed paraffin-embedded samples. The cohort comprised of 10 normal controls (NC), 5 MCN, 4 MN, 17 IgAN, and 21 LN patients. Clinical parameters and histopathological assessments were integrated with proteomic findings to comprehensively investigate underlying pathogenic processes. Clinical evaluation indicated significant glomerular damage, as reflected by elevated urinary protein levels and reduced plasma albumin levels in patients with ARKD. Histological analyses confirmed varying degrees of tubular damage and deposition of immune complexes. Proteomic analyses identified significant changes in protein expression, particularly in complement components (C3, C4A, C4B, C8G, CFB, and SERPINA1) and mitochondrial proteins (ATP5F1E and ATP5PD), highlighting the common alterations in the complement system and mitochondrial proteins across ARKDs. These alterations suggest a novel complement-mitochondrial-epithelial-mesenchymal transition (EMT) pathway axis that contributes to tubular damage in ARKDs. Notably, significant alterations in CFB in tubular ARKD patients were revealed, implicating it as a therapeutic target. This study underscores the importance of complement activation and mitochondrial dysfunction in the pathogenesis of ARKDs, and proposes CFB as a potential therapeutic target to inhibit complement activation and mitigate tubular damage. Future research should validate the complement-mitochondrial-EMT pathway axis and explore the effects and mechanisms of CFB inhibitors in alleviating ARKD progression.
Collapse
Affiliation(s)
- Mengyun Xiao
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xianggeng Chi
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Nephrology, Xiaolan People's Hospital of Zhongshan, Zhongshan, China
| | - Xiaohui Zhu
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Zigan Xu
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Yaoshuang Zou
- Department of Organ Transplantation, 924 Hospital, Guilin, China
| | - Yue Peng
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shaodong Luan
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Jingjing Dong
- Department of General Medicine, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
| | - Yong Dai
- School of Medicine, The First Affiliated Hospital, Anhui University of Science and Technology, Huainan, China.
| | - Lianghong Yin
- Institute of Nephrology and Blood Purification, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Liang LM, Xiong L, He XL, Song LJ, Wang X, Lu YZ, Ye H, Ma WL, Yu F. Causal association between peripheral immune cells and IgA nephropathy: a Mendelian randomization study. Front Immunol 2024; 15:1371662. [PMID: 39221249 PMCID: PMC11361932 DOI: 10.3389/fimmu.2024.1371662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Background The relationship between peripheral immune cells and immunoglobulin A nephropathy (IgAN) is widely known; however, causal evidence of this link is lacking. Here, we aimed to determine the causal effect of peripheral immune cells, specifically total white blood cells, lymphocytes, monocytes, basophils, eosinophils, and neutrophils, as well as lymphocyte subset traits, on the IgAN risk using a Mendelian randomization (MR) analysis. Methods The inverse-variance weighted (IVW) method was used for the primary analysis. We applied three complementary methods, including the weighted median, MR-Egger regression, and MR-PRESSO, to detect and correct for the effect of horizontal pleiotropy. Additionally, we performed a multivariable MR (MVMR) analysis, adjusting for the effects of C-reactive protein (CRP) levels. The roles of specific lymphocyte subtypes and their significance have garnered interest. Bidirectional two-sample MR analysis was performed to test the potential causal relationships between immune traits, including median fluorescence intensities (MFIs) and the relative cell count (AC), and IgAN. Results The IVW-MR analysis suggested a potential causal relationship between lymphocyte counts and IgAN in Europe (OR per 1-SD increase: 1.43, 95% CI: 1.08-1.88, P = 0.0123). The risk effect of lymphocytes remained even after adjusting for CRP levels using the MVMR method (OR per 1-SD increase: 1.44, 95% CI: 1.05-1.96, P = 0.0210). The other sensitivity analyses showed a consistent trend. The largest GWAS published to date was used for peripheral blood immunophenotyping to explore the potential causal relationship between peripheral immune cell subsets and IgAN. Six AC-IgAN and 14 MFI-IgAN pairs that reached statistical significance (P < 0.05) were detected. Notably, CD3, expressed in eight subsets of T cells, consistently showed a positive correlation with IgAN. The bidirectional MR analysis did not reveal any evidence of reverse causality. According to the sensitivity analysis, horizontal pleiotropy was unlikely to distort the causal estimates. Conclusions Genetically determined high lymphocyte counts were associated with IgAN, supporting that high lymphocyte counts is causal risk factor for IgAN.
Collapse
Affiliation(s)
- Li-Mei Liang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Liang Xiong
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Xin-Liang He
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Lin-Jie Song
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Xiaorong Wang
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Yu-Zhi Lu
- Department of Pulmonary and Critical Care Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Ye
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wan-Li Ma
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| | - Fan Yu
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Respiratory Diseases, National Health Commission of China, Wuhan, China
| |
Collapse
|
4
|
Gan MY, Chua FZY, Chang ZY, Chua YT, Chan GC. Navigating Adult-Onset IgA Vasculitis-Associated Nephritis. Life (Basel) 2024; 14:930. [PMID: 39202674 PMCID: PMC11355272 DOI: 10.3390/life14080930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 09/03/2024] Open
Abstract
PURPOSE OF REVIEW IgA vasculitis (IgAV), formerly Henoch-Schonlein purpura, is the most common systemic vasculitis in childhood. In adults, however, this condition is poorly understood, yet associated with more severe disease and poorer outcomes. This necessitates the need for early diagnosis and management. SCOPE OF REVIEW We describe the pathophysiology, clinical manifestations, and diagnosis of IgAV in adults. Poor outcomes are often due to the high frequency of glomerulonephritis in IgAV-IgA vasculitis-associated nephritis (IgAVN). We hence also aim to summarize the latest clinical data regarding treatment strategies in IgAVN. The diagnosis and differentiation in histology between IgAVN and IgA nephropathy (IgAN) remain a challenge. Review of treatment therapies: Pathological mechanisms between IgAVN and IgAN appear to be consistent between the two, and data from IgAN are often extrapolated to IgAVN. The role of various immunosuppression therapies remains controversial, and in this review, we will discuss immunosuppression use and highlight evidence surrounding emerging and promising novel therapies in IgAVN/IgAN. Our aim for this review is to guide future treatment strategies and direct future studies.
Collapse
Affiliation(s)
- Ming Ying Gan
- Department of Medicine, National University Hospital, Singapore 119074, Singapore
| | - Freda Zhi Yun Chua
- Division of Nephrology, Department of Medicine, National University Hospital, Singapore 119074, Singapore
| | - Zi Yun Chang
- Division of Nephrology, Department of Medicine, National University Hospital, Singapore 119074, Singapore
- National University Centre for Organ Transplantation, National University Hospital, Singapore 119074, Singapore
| | - Yan Ting Chua
- Division of Nephrology, Department of Medicine, National University Hospital, Singapore 119074, Singapore
| | - Gek Cher Chan
- Division of Nephrology, Department of Medicine, National University Hospital, Singapore 119074, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
5
|
Stea ED, D'Ettorre G, Mitrotti A, Gesualdo L. The complement system in the pathogenesis and progression of kidney diseases: What doesn't kill you makes you older. Eur J Intern Med 2024; 124:22-31. [PMID: 38461065 DOI: 10.1016/j.ejim.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/31/2024] [Accepted: 02/09/2024] [Indexed: 03/11/2024]
Abstract
The Complement System is an evolutionarily conserved component of immunity that plays a key role in host defense against infections and tissue homeostasis. However, the dysfunction of the Complement System can result in tissue damage and inflammation, thereby contributing to the development and progression of various renal diseases, ranging from atypical Hemolytic Uremic Syndrome to glomerulonephritis. Therapeutic interventions targeting the complement system have demonstrated promising results in both preclinical and clinical studies. Currently, several complement inhibitors are being developed for the treatment of complement-mediated renal diseases. This review aims to summarize the most recent insights into complement activation and therapeutic inhibition in renal diseases. Furthermore, it offers potential directions for the future rational use of complement inhibitor drugs in the context of renal diseases.
Collapse
Affiliation(s)
- Emma Diletta Stea
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Nephrology and Urology Units, University of Bari Aldo Moro, Bari, Italy
| | | | - Adele Mitrotti
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Nephrology and Urology Units, University of Bari Aldo Moro, Bari, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Nephrology and Urology Units, University of Bari Aldo Moro, Bari, Italy.
| |
Collapse
|
6
|
Barratt J, Liew A, Yeo SC, Fernström A, Barbour SJ, Sperati CJ, Villanueva R, Wu MJ, Wang D, Borodovsky A, Badri P, Yureneva E, Bhan I, Cattran D. Phase 2 Trial of Cemdisiran in Adult Patients with IgA Nephropathy: A Randomized Controlled Trial. Clin J Am Soc Nephrol 2024; 19:452-462. [PMID: 38214599 PMCID: PMC11020434 DOI: 10.2215/cjn.0000000000000384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/15/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND IgA nephropathy is the most common primary GN. Clinical features of IgA nephropathy include proteinuria, which is the strongest known surrogate of progression to kidney failure. Complement pathway activation is a critical driver of inflammation and tissue injury in IgA nephropathy. Cemdisiran is an investigational RNA interference therapeutic that suppresses hepatic production of complement component 5 (C5), thereby potentially reducing proteinuria in IgA nephropathy. We evaluated the efficacy and safety of cemdisiran in adult patients with IgA nephropathy at high risk of kidney disease progression. METHODS In this phase 2, 36-week, double-blind study, adult patients with IgA nephropathy and urine protein ≥1 g/24 hours were randomized (2:1) to subcutaneous cemdisiran 600 mg or placebo every 4 weeks in combination with the standard of care. The primary end point was percentage change from baseline at week 32 in urine protein-to-creatinine ratio (UPCR) measured by 24-hour urine collection. Additional end points included change from baseline in UPCR measured by spot urine, serum C5 level, and safety assessments. RESULTS Thirty-one patients were randomized (cemdisiran, N =22; placebo, N =9). Cemdisiran-treated patients had a placebo-adjusted geometric mean change in 24-hour UPCR of -37.4% (cemdisiran-adjusted geometric mean ratio to baseline [SEM], 0.69 [0.10]) at week 32. Spot UPCR was consistent with 24-hour UPCR placebo-adjusted change of -45.8% (cemdisiran-adjusted geometric mean ratio to baseline [SEM], 0.73 [0.11]). Mean (SD) change in serum C5 level from baseline at week 32 was -98.7% (1.2) with cemdisiran and 25.2% (57.7) with placebo. Over 36 weeks, most adverse events were mild or moderate and transient; the most common adverse event after cemdisiran treatment was injection-site reaction (41%). CONCLUSIONS These findings indicate that treatment with cemdisiran resulted in a reduction of proteinuria at week 32 and was well tolerated.
Collapse
Affiliation(s)
- Jonathan Barratt
- Department of Cardiovascular Medicine, University of Leicester, Leicester, United Kingdom
| | - Adrian Liew
- Mount Elizabeth Novena Hospital, Singapore, Singapore
| | - See Cheng Yeo
- Renal Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Anders Fernström
- Department of Nephrology, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Sean J. Barbour
- University of British Columbia, Division of Nephrology, Vancouver, British Columbia, Canada
| | - C. John Sperati
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Ming-Ju Wu
- Department of Internal Medicine, Taichung Veterans General Hospital and Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Dazhe Wang
- Alnylam Pharmaceuticals, Cambridge, Massachusetts
| | | | | | | | - Ishir Bhan
- Alnylam Pharmaceuticals, Cambridge, Massachusetts
| | | |
Collapse
|
7
|
Miwa T, Sato S, Golla M, Song WC. Expansion of Anticomplement Therapy Indications from Rare Genetic Disorders to Common Kidney Diseases. Annu Rev Med 2024; 75:189-204. [PMID: 37669567 DOI: 10.1146/annurev-med-042921-102405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Complement constitutes a major part of the innate immune system. The study of complement in human health has historically focused on infection risks associated with complement protein deficiencies; however, recent interest in the field has focused on overactivation of complement as a cause of immune injury and the development of anticomplement therapies to treat human diseases. The kidneys are particularly sensitive to complement injury, and anticomplement therapies for several kidney diseases have been investigated. Overactivation of complement can result from loss-of-function mutations in complement regulators; gain-of-function mutations in key complement proteins such as C3 and factor B; or autoantibody production, infection, or tissue stresses, such as ischemia and reperfusion, that perturb the balance of complement activation and regulation. Here, we provide a high-level review of the status of anticomplement therapies, with an emphasis on the transition from rare diseases to more common kidney diseases.
Collapse
Affiliation(s)
- Takashi Miwa
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; , , ,
| | - Sayaka Sato
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; , , ,
| | - Madhu Golla
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; , , ,
| | - Wen-Chao Song
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; , , ,
| |
Collapse
|
8
|
Zhang H, Rizk DV, Perkovic V, Maes B, Kashihara N, Rovin B, Trimarchi H, Sprangers B, Meier M, Kollins D, Papachristofi O, Milojevic J, Junge G, Nidamarthy PK, Charney A, Barratt J. Results of a randomized double-blind placebo-controlled Phase 2 study propose iptacopan as an alternative complement pathway inhibitor for IgA nephropathy. Kidney Int 2024; 105:189-199. [PMID: 37914086 DOI: 10.1016/j.kint.2023.09.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/30/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023]
Abstract
Targeting the alternative complement pathway is an attractive therapeutic strategy given its role in the pathogenesis of immunoglobulin A nephropathy (IgAN). Iptacopan (LNP023) is an oral, proximal alternative complement inhibitor that specifically binds to Factor B. Our randomized, double-blind, parallel-group adaptive Phase 2 study (NCT03373461) enrolled patients with biopsy-confirmed IgAN (within previous three years) with estimated glomerular filtration rates of 30 mL/min/1.73 m2 and over and urine protein 0.75 g/24 hours and over on stable doses of renin angiotensin system inhibitors. Patients were randomized to four iptacopan doses (10, 50, 100, or 200 mg bid) or placebo for either a three-month (Part 1; 46 patients) or a six-month (Part 2; 66 patients) treatment period. The primary analysis evaluated the dose-response relationship of iptacopan versus placebo on 24-hour urine protein-to-creatinine ratio (UPCR) at three months. Other efficacy, safety and biomarker parameters were assessed. Baseline characteristics were generally well-balanced across treatment arms. There was a statistically significant dose-response effect, with 23% reduction in UPCR achieved with iptacopan 200 mg bid (80% confidence interval 8-34%) at three months. UPCR decreased further through six months in iptacopan 100 and 200 mg arms (from a mean of 1.3 g/g at baseline to 0.8 g/g at six months in the 200 mg arm). A sustained reduction in complement biomarker levels including plasma Bb, serum Wieslab, and urinary C5b-9 was observed. Iptacopan was well-tolerated, with no reports of deaths, treatment-related serious adverse events or bacterial infections, and led to strong inhibition of alternative complement pathway activity and persistent proteinuria reduction in patients with IgAN. Thus, our findings support further evaluation of iptacopan in the ongoing Phase 3 trial (APPLAUSE-IgAN; NCT04578834).
Collapse
Affiliation(s)
- Hong Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, People's Republic of China.
| | - Dana V Rizk
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Vlado Perkovic
- University of New South Wales, Sydney, New South Wales, Australia
| | - Bart Maes
- Department of Nephrology, AZ Delta, Roeselare, Belgium
| | - Naoki Kashihara
- Department of Nephrology and Hypertension, Kawasaki Medical School, Kurashiki, Japan
| | - Brad Rovin
- Division of Nephrology, the Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Hernán Trimarchi
- Nephrology Service and Kidney Transplantation Unit, Hospital Británico de Buenos Aires, Buenos Aires, Argentina
| | - Ben Sprangers
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium; Department of Nephrology, University Hospitals Leuven, Leuven, Belgium
| | | | | | | | - Julie Milojevic
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Guido Junge
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Alan Charney
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; The John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
9
|
Faria B, Gaya da Costa M, Meter-Arkema AH, Berger SP, Lima C, Pêgo C, van den Born J, Franssen CF, Daha MR, Pestana M, Seelen MA, Poppelaars F. Systemic and local complement activation in peritoneal dialysis patients via conceivably distinct pathways. Perit Dial Int 2024; 44:37-47. [PMID: 37794761 DOI: 10.1177/08968608231198984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Despite several advantages compared to haemodialysis (HD), peritoneal dialysis (PD) remains an underused dialysis technique due to its high technique failure rate related to membrane fibrosis and peritonitis events. Previous work has suggested a harmful role for the complement system in these processes, highlighting the need for a more comprehensive examination in PD. METHODS Plasma levels of C1q, mannose-binding lectin (MBL), Properdin, Factor D, C3d/C3-ratio and soluble membrane attack complex (sC5b-9) were determined in PD patients (n = 55), HD patients (n = 41), non-dialysis chronic kidney disease (CKD) patients (n = 15) and healthy controls (n = 14). Additionally, C1q, MBL, Properdin, Factor D and sC5b-9 levels were assessed in the peritoneal dialysis fluid (PDF). In a subgroup, interleukin-6, matrix metalloproteinase-2 (MMP-2), myeloperoxidase (MPO) and elastase were measured in the PDF. RESULTS PD patients had significantly higher systemic levels of sC5b-9 compared to healthy controls, CKD and HD patients (p < 0.001). Plasma levels of C1q and C3d/C3-ratios were significantly associated with systemic sC5b-9 levels (p < 0.001). Locally, sC5b-9 was detected in the PDF of all PD patients, and levels were approximately 33% of those in matched plasma, but they did not correlate. In the PDF, only Properdin levels remained significantly associated with PDF sC5b-9 levels in multivariate analysis (p < 0.001). Additionally, PDF levels of sC5b-9 positively correlated with elastase, MPO and MMP-2 levels in the PDF (p < 0.01). CONCLUSIONS Our data reveal both systemic and local complement activation in PD patients. Furthermore, these two processes seem independent considering the involvement of different pathways and the lack of correlation.
Collapse
Affiliation(s)
- Bernardo Faria
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, The Netherlands
- Nephrology and Infectious Disease R&D Group, INEB, Institute of Investigation and Innovation in Health (i3S), University of Porto, Portugal
- Department of Medicine, Faculty of Medicine, University of Porto, Portugal
| | - Mariana Gaya da Costa
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, The Netherlands
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Anita H Meter-Arkema
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Stefan P Berger
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Carla Lima
- Division of Nephrology, Hospital São Teotônio, Viseu, Portugal
| | - Catia Pêgo
- Division of Nephrology, Hospital São Teotônio, Viseu, Portugal
| | - Jacob van den Born
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Casper Fm Franssen
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Mohamed R Daha
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, The Netherlands
- Department of Nephrology, Leiden University Medical Center, University of Leiden, The Netherlands
| | - Manuel Pestana
- Nephrology and Infectious Disease R&D Group, INEB, Institute of Investigation and Innovation in Health (i3S), University of Porto, Portugal
- Department of Medicine, Faculty of Medicine, University of Porto, Portugal
| | - Marc A Seelen
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, The Netherlands
| | - Felix Poppelaars
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, The Netherlands
| |
Collapse
|
10
|
Marro J, Chetwynd AJ, Hawkes J, Northey SJ, Oni L. Urinary markers of the alternative and lectin complement pathway are increased in IgA vasculitis nephritis. Clin Kidney J 2023; 16:2703-2711. [PMID: 38046006 PMCID: PMC10689168 DOI: 10.1093/ckj/sfad236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 12/05/2023] Open
Abstract
Background IgA vasculitis (IgAV) is the most common form of childhood vasculitis. Nephritis (IgAVN) occurs in 50% of patients and 1-2% progress to chronic kidney disease stage 5. The pathophysiology of nephritis remains largely unknown, but recent evidence suggests that the complement system may be involved. The aim of this cross-sectional study was to explore whether there is evidence of alternative and/or lectin complement pathway activation in children with IgAVN. Methods Children with IgAV were recruited and grouped according to proteinuria: IgAVN or IgAV without nephritis (IgAVwoN). Age and sex-matched healthy controls (HCs) were also recruited. Cross-sectional urine and plasma concentrations of complement factor D (CFD), factor B (CFB), and MBL-associated protease 1 (MASP-1) were performed using commercially available enzyme-linked immunoassays. Results A total of 50 children were included (IgAVN, n = 15; IgAVwoN, n = 20, HCs, n = 15). The mean age was 8.5 ± 3.7 years old, male:female ratio was 1:1. Urinary CFD and CFB concentrations were statistically significantly increased in children with IgAVN (3.5 ± 5.4 μg/mmol; 25.9 ± 26.5 μg/mmol, respectively) compared to both IgAVwoN (0.4 ± 0.4 μg/mmol, P = 0.002; 9.2 ± 11.5 μg/mmol, P = 0.004) and HCs (0.3 ± 0.2 μg/mmol, P < 0.001; 5.1 ± 6.0 μg/mmol, P < 0.001). No statistically significant difference was reported for the plasma concentrations of CFD and CFB. Urinary MASP-1 concentrations were statistically significantly increased in IgAVN (116.9 ± 116.7 ng/mmol) compared to HCs (41.4 ± 56.1 ng/mmol, P = 0.006) and plasma MASP-1 concentrations were increased in IgAVwoN (254.2 ± 23.3 ng/mL) compared to HCs (233.4 ± 6.6 ng/mL, P = 0.046). Conclusion There is evidence of complement pathway products in the urine of children with IgAVN that warrants further investigation.
Collapse
Affiliation(s)
- Julien Marro
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Andrew J Chetwynd
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Centre for Proteome Research, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Jennifer Hawkes
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Sarah J Northey
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Louise Oni
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Department of Paediatric Nephrology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool, UK
| |
Collapse
|
11
|
Caravaca-Fontán F, Gutiérrez E, Sevillano ÁM, Praga M. Targeting complement in IgA nephropathy. Clin Kidney J 2023; 16:ii28-ii39. [PMID: 38053977 PMCID: PMC10695513 DOI: 10.1093/ckj/sfad198] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 12/07/2023] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. Recent years have witnessed significant improvements in the understanding of the pathogenesis of IgAN and particularly, the pathogenic role of complement activation. The alternative complement pathway is the major complement cascade activator in IgAN, and glomerular C3 deposition has been shown to correlate with disease progression. In addition, several studies have provided insight into the pathogenic role of factor H-related proteins -1 and -5 in IgAN, as independent players in complement dysregulation. The lectin pathway has also been shown to be associated with the severity of IgAN. Glomerular deposition of C4d has been associated with increased histologic disease activity, faster decline in estimated glomerular filtration rate and higher risk of kidney failure. On the other hand, although overlooked in the Oxford classification, numerous studies have shown that the coexistence of thrombotic microangiopathy in IgAN is a significant indicator of a poorer prognosis. All the breakthroughs in the understanding of the contributing role of complement in IgAN have paved the way for the development of new complement-targeted therapies in this disease. Several ongoing trials are evaluating the efficacy of new agents against factor B (iptacopan, Ionis-FB-LRX), C3 (pegcetacoplan), factor D (vemircopan, pelecopan), C5 (ravulizumab, cemdisiran) and C5a receptor 1 (avacopan). In this study, we provide a comprehensive review of the role of complement in IgAN, including the emerging mechanisms of complement activation and the promising potential of complement inhibitors as a viable treatment option for IgAN.
Collapse
Affiliation(s)
- Fernando Caravaca-Fontán
- Department of Nephrology, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Eduardo Gutiérrez
- Department of Nephrology, Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
| | - Ángel M Sevillano
- Department of Nephrology, Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
| | - Manuel Praga
- Department of Nephrology, Instituto de Investigación Hospital 12 de Octubre (imas12), Madrid, Spain
- Department of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
12
|
Cattran DC, Floege J, Coppo R. Evaluating Progression Risk in Patients With Immunoglobulin A Nephropathy. Kidney Int Rep 2023; 8:2515-2528. [PMID: 38106572 PMCID: PMC10719597 DOI: 10.1016/j.ekir.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 12/19/2023] Open
Abstract
The highly variable rate of decline in kidney function in patients with immunoglobulin A nephropathy (IgAN) provides a major clinical challenge. Predicting which patients will progress to kidney failure, and how quickly, is difficult. Multiple novel therapies are likely to be approved in the short-term, but clinicians lack the tools to identify patients most likely to benefit from specific treatments at the right time. Noninvasive and validated markers for selecting at-risk patients and longitudinal monitoring are urgently needed. This review summarizes what is known about demographic, clinical, and histopathologic prognostic markers in the clinician's toolkit, including the International IgAN Prediction Tool. We also briefly review what is known on these topics in children and adolescents with IgAN. Although helpful, currently used markers leave clinicians heavily reliant on histologic features from the diagnostic kidney biopsy and standard clinical data to guide treatment choice, and very few noninvasive markers reflect treatment efficacy over time. Novel prognostic and predictive markers are under clinical investigation, with considerable progress being made in markers of complement activation. Other areas of research are the interplay between gut microbiota and galactose-deficient IgA1 expression; microRNAs; imaging; artificial intelligence; and markers of fibrosis. Given the rate of therapeutic advancement, the remaining gaps in biomarker research need to be addressed. We finish by describing our route to clinical utility of predictive and prognostic markers in IgAN. This route will provide us with the chance to improve IgAN prognosis by using robust, clinically practical markers to inform patient care.
Collapse
Affiliation(s)
| | - Jürgen Floege
- Division of Nephrology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Rosanna Coppo
- Fondazione Ricerca Molinette, Regina Margherita Hospital, Turin, Italy
| |
Collapse
|
13
|
Stamellou E, Seikrit C, Tang SCW, Boor P, Tesař V, Floege J, Barratt J, Kramann R. IgA nephropathy. Nat Rev Dis Primers 2023; 9:67. [PMID: 38036542 DOI: 10.1038/s41572-023-00476-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
IgA nephropathy (IgAN), the most prevalent primary glomerulonephritis worldwide, carries a considerable lifetime risk of kidney failure. Clinical manifestations of IgAN vary from asymptomatic with microscopic or intermittent macroscopic haematuria and stable kidney function to rapidly progressive glomerulonephritis. IgAN has been proposed to develop through a 'four-hit' process, commencing with overproduction and increased systemic presence of poorly O-glycosylated galactose-deficient IgA1 (Gd-IgA1), followed by recognition of Gd-IgA1 by antiglycan autoantibodies, aggregation of Gd-IgA1 and formation of polymeric IgA1 immune complexes and, lastly, deposition of these immune complexes in the glomerular mesangium, leading to kidney inflammation and scarring. IgAN can only be diagnosed by kidney biopsy. Extensive, optimized supportive care is the mainstay of therapy for patients with IgAN. For those at high risk of disease progression, the 2021 KDIGO Clinical Practice Guideline suggests considering a 6-month course of systemic corticosteroid therapy; however, the efficacy of systemic steroid treatment is under debate and serious adverse effects are common. Advances in understanding the pathophysiology of IgAN have led to clinical trials of novel targeted therapies with acceptable safety profiles, including SGLT2 inhibitors, endothelin receptor blockers, targeted-release budesonide, B cell proliferation and differentiation inhibitors, as well as blockade of complement components.
Collapse
Affiliation(s)
- Eleni Stamellou
- Department of Nephrology, School of Medicine, University of Ioannina, Ioannina, Greece
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Claudia Seikrit
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Sydney C W Tang
- Division of Nephrology, Department of Medicine, University of Hong Kong, Hong Kong, China
| | - Peter Boor
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
- Department of Pathology, RWTH Aachen University, Aachen, Germany
| | - Vladimir Tesař
- Department of Nephrology, 1st Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Jürgen Floege
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Rafael Kramann
- Department of Nephrology and Clinical Immunology, RWTH Aachen University Hospital, Aachen, Germany.
- Department of Internal Medicine, Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, Netherlands.
| |
Collapse
|
14
|
Boi R, Ebefors K, Nyström J. The role of the mesangium in glomerular function. Acta Physiol (Oxf) 2023; 239:e14045. [PMID: 37658606 DOI: 10.1111/apha.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/12/2023] [Accepted: 08/01/2023] [Indexed: 09/03/2023]
Abstract
When discussing glomerular function, one cell type is often left out, the mesangial cell (MC), probably since it is not a part of the filtration barrier per se. The MCs are instead found between the glomerular capillaries, embedded in their mesangial matrix. They are in direct contact with the endothelial cells and in close contact with the podocytes and together they form the glomerulus. The MCs can produce and react to a multitude of growth factors, cytokines, and other signaling molecules and are in the perfect position to be a central hub for crosstalk communication between the cells in the glomerulus. In certain glomerular diseases, for example, in diabetic kidney disease or IgA nephropathy, the MCs become activated resulting in mesangial expansion. The expansion is normally due to matrix expansion in combination with either proliferation or hypertrophy. With time, this expansion can lead to fibrosis and decreased glomerular function. In addition, signs of complement activation are often seen in biopsies from patients with glomerular disease affecting the mesangium. This review aims to give a better understanding of the MCs in health and disease and their role in glomerular crosstalk and inflammation.
Collapse
Affiliation(s)
- Roberto Boi
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kerstin Ebefors
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jenny Nyström
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW In the past, the treatment of IgA nephropathy (IgAN), which is the most common glomerulonephritis worldwide, mostly relied on blockade of the renin-angiotensin system as a central component of so-called supportive therapy as well as on high-dose systemic corticosteroid therapy. RECENT FINDINGS The supportive treatment arm has been expanded by the addition of sodium-glucose cotransporter-2 inhibitors, hydroxychloroquine, and, most recently, endothelin A receptor blockers. Treatment with high-dose systemic corticosteroids has become more controversial, with some studies observing no benefit and others documenting the protection of kidney function. However, all recent studies on systemic corticosteroids consistently found significant toxicity. An important novel approach to IgAN, therefore, is therapy with a targeted release formulation of budesonide with preferential release in the distal small intestine, given the mounting evidence for a gut-kidney axis in the pathophysiology of IgAN. In addition, emerging new therapeutic options include a variety of complement inhibitors as well as agents targeting B-cell proliferation and differentiation. SUMMARY In recent years, IgAN has become the focus of a considerable number of clinical studies that will significantly advance the development of new therapy strategies.
Collapse
Affiliation(s)
- Uta Kunter
- Division of Nephrology and Rheumatology, RWTH Aachen University Hospital, Aachen, Germany
| | | | | |
Collapse
|
16
|
Tesař V, Radhakrishnan J, Charu V, Barratt J. Challenges in IgA Nephropathy Management: An Era of Complement Inhibition. Kidney Int Rep 2023; 8:1730-1740. [PMID: 37705895 PMCID: PMC10496078 DOI: 10.1016/j.ekir.2023.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/01/2023] [Accepted: 06/12/2023] [Indexed: 09/15/2023] Open
Abstract
IgA nephropathy (IgAN) is the most common glomerular disease worldwide, with an estimated annual incidence of 25 per million adults. Despite optimized supportive care, some patients fail to achieve disease control and suffer progressive deterioration of kidney function. In this subpopulation of patients, the Kidney Disease: Improving Global Outcomes 2021 guidelines recommend consideration of corticosteroids; however, their use is associated with significant side effects. Ongoing clinical trials are expected to identify corticosteroid-sparing therapies to help improve treatment and prognosis for patients with IgAN. It has been well-documented that the complement system plays a significant role in IgAN pathogenesis, and several complement inhibitors are now entering late-stage clinical development. This review evaluates what we know about the role of complement in the pathophysiology of IgAN and considers how the availability of targeted complement inhibitors may impact future clinical practice. Key knowledge gaps are evaluated, and research opportunities are recommended to help guide clinical decision-making and optimize patient outcomes. Such gaps include evaluating the relative contribution of the alternative and lectin pathways to disease pathogenesis, and the importance of determining the dominant pathway driving IgAN progression. Continued research into the staining of complement proteins in kidney biopsies and identifying targeted biomarkers to assess disease progression and treatment responses will also be needed to support the implementation of newer therapies in clinical practice. Considering the future horizons for enhancing the care of patients with IgAN, tackling the outstanding challenges now will help prepare for the best possible future outcomes.
Collapse
Affiliation(s)
- Vladimir Tesař
- Department of Nephrology, Charles University, Prague, Czech Republic
| | | | - Vivek Charu
- Department of Pathology, Stanford University, Palo Alto, California, USA
| | - Jonathan Barratt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
17
|
Barratt J, Lafayette RA, Zhang H, Tesar V, Rovin BH, Tumlin JA, Reich HN, Floege J. IgA Nephropathy: the Lectin Pathway and Implications for Targeted Therapy. Kidney Int 2023:S0085-2538(23)00395-2. [PMID: 37263354 DOI: 10.1016/j.kint.2023.04.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/30/2023] [Accepted: 04/14/2023] [Indexed: 06/03/2023]
Abstract
Many patients with IgA nephropathy (IgAN) progress to end-stage kidney disease even with optimal supportive care. An improved understanding of the pathophysiology of IgAN in recent years has led to the investigation of targeted therapies with acceptable tolerability that may address the underlying causes of IgAN or the pathogenesis of kidney injury. The complement system - particularly the lectin and alternative pathways of complement - have emerged as key mediators of kidney injury in IgAN and possible targets for investigational therapy. This review will focus on the lectin pathway. Examination of kidney biopsies has consistently shown glomerular deposition of mannan-binding lectin (one of six pattern-recognition molecules that activate the lectin pathway) together with IgA1 in up to 50% of patients with IgAN. Glomerular deposition of pattern-recognition molecules for the lectin pathway is associated with more severe glomerular damage and more severe proteinuria and hematuria. Emerging research suggests that the lectin pathway may also contribute to tubulointerstitial fibrosis in IgAN, and that collectin-11 is a key mediator of this association. This review summarizes the growing scientific and clinical evidence supporting the role of the lectin pathway in IgAN and examines the possible therapeutic role of lectin pathway inhibition for these patients.
Collapse
Affiliation(s)
| | | | - Hong Zhang
- Peking University Institute of Nephrology, Beijing, China
| | - Vladimir Tesar
- Charles University and General University Hospital, Prague, Czech Republic
| | - Brad H Rovin
- The Ohio State University Wexner Medical Center, Columbus OH, USA
| | | | - Heather N Reich
- University of Toronto and University Health Network, Toronto ON, Canada
| | | |
Collapse
|
18
|
Kashiwagi Y, Suzuki S, Takahashi R, Yamanaka G, Hirai Y, Kawashima H. Association of the Mannose-Binding Lectin 2 BB Genotype with COVID-19-Related Mortality. Life (Basel) 2023; 13:life13020382. [PMID: 36836739 PMCID: PMC9961194 DOI: 10.3390/life13020382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/22/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
Mannose-binding lectin (MBL) is crucial in first-line immune defenses. There are still many unknown factors regarding the mechanisms causing variability in the clinical course of coronavirus disease 2019 (COVID-19). In Japan, there have been few reports to date regarding the association between MBL and COVID-19. It has been demonstrated that the MBL2 gene B variant at codon 54 (rs1800450) is associated with variabilities in the clinical course of COVID-19. We aimed to investigate how the level of serum MBL and the codon 54 variant of MBL (rs1800450) affect the disease severity of COVID-19. A total of 59 patients from the fourth wave and 49 patients from the fifth wave in Japan were analyzed based on serum MBL levels using ELISA and the genotype of MBL2 codon 54 using PCR reaction. There was no significant association between serum MBL levels and age. MBL2 genotype was independent of age, there was no significant difference in different COVID-19 severities, MBL genotypes, and serum MBL levels. Binary logistic regression analysis to identify predisposing factors for severe COVID-19 symptoms demonstrated that patients with the BB genotype had a higher risk of death from COVID-19. Our results quantitatively demonstrated that the BB genotype might be a factor associated with death from COVID-19.
Collapse
Affiliation(s)
- Yasuyo Kashiwagi
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
- Correspondence: ; Tel.: +81-3-3342-6111; Fax: +81-3-3344-0643
| | - Shinji Suzuki
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Ryo Takahashi
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Gaku Yamanaka
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Yuji Hirai
- Department of Infectious Diseases, Tokyo Medical University Hachioji Medical Center, Tokyo 160-0023, Japan
| | - Hisashi Kawashima
- Department of Pediatrics and Adolescent Medicine, Tokyo Medical University, Tokyo 160-0023, Japan
- Kohsei Chuo General Hospital, Tokyo 160-0023, Japan
| |
Collapse
|
19
|
Holers VM. Contributions of animal models to mechanistic understandings of antibody-dependent disease and roles of the amplification loop. Immunol Rev 2023; 313:181-193. [PMID: 36111456 DOI: 10.1111/imr.13136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The complement system plays an important pathophysiologic role in human diseases associated with immune or ischemic insults. In addition to understanding the effector mechanisms that are important for the biological effects of the system, substantial efforts have gone into understanding which specific complement activation pathways generate these potent effects. These approaches include the use of gene-targeted mice and specific pathway inhibitors, as well as the integration of human disease genetic and biomarker studies. In some disease states, it is quite clear that the alternate pathway plays a unique role in the initiation of the complement system. However, although initially a widely unexpected finding, it has now been shown in many tissue-based disease models and in initial human studies that engagement of the amplification loop is also essential for tissue injury when the classical and/or lectin pathways initiate pathway activation through pathogenic autoantibodies. This review provides evidence for such a conclusion through animal models, focusing on pathogenic antibody passive transfer models but also other relevant experimental systems. These data, along with initial biomarkers and clinical trial outcomes in human diseases that are associated with pathogenic autoantibodies, suggest that targeting the alternative pathway amplification loop may have near-universal therapeutic utility for tissue-based diseases.
Collapse
Affiliation(s)
- V Michael Holers
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
20
|
Suzuki H, Novak J. Special Issue: New Insights into the Pathogenesis and Therapies of IgA Nephropathy. J Clin Med 2022; 11:jcm11154378. [PMID: 35955995 PMCID: PMC9369139 DOI: 10.3390/jcm11154378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 02/07/2023] Open
Affiliation(s)
- Hitoshi Suzuki
- Department of Nephrology, Juntendo University Urayasu Hospital, Chiba 279-0021, Japan
- Correspondence: (H.S.); (J.N.)
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: (H.S.); (J.N.)
| |
Collapse
|
21
|
Yang X, Yuan Y, Shao X, Pang H, Che X, Cao L, Zhang M, Xu Y, Ni Z, Qi C, Wang Q, Mou S. C4d as a Screening Tool and an Independent Predictor of Clinical Outcomes in Lupus Nephritis and IgA Nephropathy. Front Med (Lausanne) 2022; 9:832998. [PMID: 35174193 PMCID: PMC8841560 DOI: 10.3389/fmed.2022.832998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/03/2022] [Indexed: 01/10/2023] Open
Abstract
Background As an indispensable marker of complement cascades activation, C4d was confirmed of its crucial role in the pathogenesis of both lupus nephritis (LN) and IgA nephropathy (IgAN). While the studies directly comparing the diagnostic value, and outcomes predicting function of C4d between LN and IgAN are still absent. Methods A cohort of 120 LN patients, 120 IgAN patients who were diagnosed by renal biopsy between January 2015 and December 2017 and 24 healthy age matched controls were prospectively analyzed. The patients were followed till December 2020. The outcomes were adverse disease treatment response (disease relapse) and kidney disease progression event (decline of estimated glomerular filtration rate by more than 20% or end-stage kidney disease). The renal C4d deposition proportion and pattern were compared between IgAN and LN patients. In addition, the relationship between renal C4d deposition and disease subtypes, disease relapse as well as disease progression for LN and IgAN patients were also analyzed. Results The LN, IgAN patients and healthy controls were well matched in ages. The follow-up period was 38.5 (30.3–60.8) months for LN patients and 45.0 (30.5–57.0) months for IgAN patients. 78 patients (65.0%) with LN had renal C4d deposition, compared with only 39 IgAN patients (32.5%) with C4d deposition in renal tissues (P < 0.001). The LN patients shared different renal C4d distribution patterns with IgAN patients. Compared with IgAN patients, the C4d deposition in LN patients was significantly more in renal glomerulus (P < 0.001) and less in renal tubules (P = 0.003). For disease subtypes, renal C4d deposition was especially strong in class V membranous LN and IgAN with tubulointerstitial fibrosis (T1/T2) lesions. Renal C4d deposition was independently correlated with the disease relapse of LN patients (HR = 1.007, P = 0.040), and acted as an independent predictor of disease progression during the follow-up period for IgAN patients (HR = 1.821, P = 0.040). Conclusions Renal C4d distribution proportion and pattern differed between LN and IgAN patients. The presence of C4d in renal tissue acted as an independent predictor of relapse for LN patients and disease progression for IgAN patients.
Collapse
|
22
|
Milone G, Bellofiore C, Leotta S, Milone GA, Cupri A, Duminuco A, Garibaldi B, Palumbo G. Endothelial Dysfunction after Hematopoietic Stem Cell Transplantation: A Review Based on Physiopathology. J Clin Med 2022; 11:jcm11030623. [PMID: 35160072 PMCID: PMC8837122 DOI: 10.3390/jcm11030623] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 12/12/2022] Open
Abstract
Endothelial dysfunction (ED) is frequently encountered in transplant medicine. ED is an argument of high complexity, and its understanding requires a wide spectrum of knowledge based on many fields of basic sciences such as molecular biology, immunology, and pathology. After hematopoietic stem cell transplantation (HSCT), ED participates in the pathogenesis of various complications such as sinusoidal obstruction syndrome/veno-occlusive disease (SOS/VOD), graft-versus-host disease (GVHD), transplant-associated thrombotic microangiopathy (TA-TMA), idiopathic pneumonia syndrome (IPS), capillary leak syndrome (CLS), and engraftment syndrome (ES). In the first part of the present manuscript, we briefly review some biological aspects of factors involved in ED: adhesion molecules, cytokines, Toll-like receptors, complement, angiopoietin-1, angiopoietin-2, thrombomodulin, high-mobility group B-1 protein, nitric oxide, glycocalyx, coagulation cascade. In the second part, we review the abnormalities of these factors found in the ED complications associated with HSCT. In the third part, a review of agents used in the treatment of ED after HSCT is presented.
Collapse
|
23
|
Assessing and counteracting fibrosis is a cornerstone of the treatment of CKD secondary to systemic and renal limited autoimmune disorders. Autoimmun Rev 2021; 21:103014. [PMID: 34896651 DOI: 10.1016/j.autrev.2021.103014] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022]
Abstract
Chronic kidney disease (CKD) is an increasing cause of morbidity and mortality worldwide. Besides the higher prevalence of diabetes, hypertension and aging worldwide, immune mediated disorders remain an important cause of kidney disease and are especially prevalent in young adults. Regardless of the initial insult, final pathway to CKD and kidney failure is always the loss of normal tissue and fibrosis development, in which the dynamic equilibrium between extracellular matrix synthesis and degradation is disturbed, leading to excessive production and accumulation. During fibrosis, a multitude of cell types intervene at different levels, but myofibroblasts and inflammatory cells are considered critical in the process. They exert their effects through different molecular pathways, of which transforming growth factor β (TGF-β) has demonstrated to be of particular importance. Additionally, CKD itself promotes fibrosis due to the accumulation of toxins and hormonal changes, and proteinuria is simultaneously a manifestation of CKD and a specific driver of renal fibrosis. Pathways involved in renal fibrosis and CKD are closely interrelated, and although important advances have been made in our knowledge of them, it is still necessary to translate them into clinical practice. Given the complexity of this process, it is highly likely that its treatment will require a multi-target strategy to control the origin of the damage but also the mechanisms that perpetuate it. Fortunately, rapid technology development over the last years and new available drugs in the nephrologist's armamentarium give reasons for optimism that more personalized assistance for CKD and renal fibrosis will appear in the future.
Collapse
|