1
|
Watanabe H, Rana M, Son M, Chiu PY, Fei-Bloom Y, Choi K, Diamond B, Sherry B. Single cell RNA-seq reveals cellular and transcriptional heterogeneity in the splenic CD11b +Ly6C high monocyte population expanded in sepsis-surviving mice. Mol Med 2024; 30:202. [PMID: 39506629 PMCID: PMC11539566 DOI: 10.1186/s10020-024-00970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Sepsis survivors exhibit immune dysregulation that contributes to poor long-term outcomes. Phenotypic and functional alterations within the myeloid compartment are believed to be a contributing factor. Here we dissect the cellular and transcriptional heterogeneity of splenic CD11b+Ly6Chigh myeloid cells that are expanded in mice that survive the cecal ligation and puncture (CLP) murine model of polymicrobial sepsis to better understand the basis of immune dysregulation in sepsis survivors. METHODS Sham or CLP surgeries were performed on C57BL/6J and BALB/c mice. Four weeks later splenic CD11b+Ly6Chigh cells from both groups were isolated for phenotypic (flow cytometry) and functional (phagocytosis and glycolysis) characterization and RNA was obtained for single-cell RNA-seq (scRNA-seq) and subsequent analysis. RESULTS CD11b+Ly6Chigh cells from sham and CLP surviving mice exhibit phenotypic and functional differences that relate to immune function, some of which are observed in both C57BL/6J and BALB/c strains and others that are not. To dissect disease-specific and strain-specific distinctions within the myeloid compartment, scRNA-seq analysis was performed on CD11b+Ly6Chigh cells from C57BL/6J and BALB/c sham and CLP mice. Uniform Manifold Approximation and Projection from both strains identified 13 distinct clusters of sorted CD11b+Ly6Chigh cells demonstrating significant transcriptional heterogeneity and expressing gene signatures corresponding to classical-monocytes, non-classical monocytes, M1- or M2-like macrophages, dendritic-like cells, monocyte-derived dendritic-like cells, and proliferating monocytic myeloid-derived suppressor cells (M-MDSCs). Frequency plots showed that the percentages of proliferating M-MDSCs (clusters 8, 11 and 12) were increased in CLP mice compared to sham mice in both strains. Pathway and UCell score analysis in CLP mice revealed that cell cycle and glycolytic pathways were upregulated in proliferating M-MDSCs in both strains. Notably, granule protease genes were upregulated in M-MDSCs from CLP mice. ScRNA-seq analyses also showed that phagocytic pathways were upregulated in multiple clusters including the classical monocyte cluster, confirming the increased phagocytic capacity in CD11b+Ly6Chigh cells from CLP mice observed in ex vivo functional assays in C57BL/6J mice. CONCLUSION The splenic CD11b+Ly6Chigh myeloid populations expanded in survivors of CLP sepsis correspond to proliferating cells that have an increased metabolic demand and gene signatures consistent with M-MDSCs, a population known to have immunosuppressive capacity.
Collapse
Affiliation(s)
- Haruki Watanabe
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Dr., Manhasset, NY, 11030, USA
| | - Minakshi Rana
- Arthritis and Tissue Degeneration Program, Hospital for Special Surgery at Weill Cornell Medicine, New York, New York, 10021, USA
| | - Myoungsun Son
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Dr., Manhasset, NY, 11030, USA
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| | - Pui Yan Chiu
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Dr., Manhasset, NY, 11030, USA
| | - Yurong Fei-Bloom
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Dr., Manhasset, NY, 11030, USA
| | - Kwangmin Choi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA
| | - Betty Diamond
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Dr., Manhasset, NY, 11030, USA.
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA.
| | - Barbara Sherry
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, 350 Community Dr., Manhasset, NY, 11030, USA.
- Department of Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA.
| |
Collapse
|
2
|
Johansson A, Khalilnezhad A, Takizawa H, Mizuno H, Suda T, Umemoto T. Mobilization dynamics of bone marrow hematopoietic stem cells during hematopoietic regeneration. Exp Hematol 2024; 138:104281. [PMID: 39009278 DOI: 10.1016/j.exphem.2024.104281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/17/2024]
Abstract
Under stress hematopoiesis, previous studies have suggested the migration of hematopoietic stem cells (HSCs) from bone marrow (BM) to extramedullary sites such as the spleen. However, there is little direct evidence of HSC migration from the BM to the spleen. Here, we induced myeloablation via 5-fluorouracil (5-FU) and showed direct evidence of HSC migration from BM to spleen during hematopoietic regeneration via a photoconvertible fluorophore. Moreover, during steady state, HSCs preferentially migrated to BM rather than spleen, but during hematopoietic regeneration, HSCs preferred spleen as a migration site equivalently or greater. Furthermore, in the early phase, HSCs egressed from BM through the attenuated HSC retention. However, HSCs in the late phase gained significantly enhanced cell-autonomous motility, which was independent of chemotaxis. Collectively, HSC mobilization from BM, before the migration to the spleen, was dynamically changed from passive to active events during hematopoietic regeneration.
Collapse
Affiliation(s)
- Alban Johansson
- Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences, Kumamoto University, Chuo-Ku, Kumamoto, Japan; Laboratory of Stem Cell Stress, International Research Center for Medical Sciences, Kumamoto University, Chuo Ward, Kumamoto, Japan
| | - Ahad Khalilnezhad
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Hitoshi Takizawa
- Laboratory of Stem Cell Stress, International Research Center for Medical Sciences, Kumamoto University, Chuo Ward, Kumamoto, Japan; Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan
| | - Hidenobu Mizuno
- Laboratory of Multi-dimensional imaging, International Research Center for Medical Sciences, Kumamoto University, Chuo Ward, Kumamoto, Japan
| | - Toshio Suda
- Laboratory of Stem Cell Regulation, International Research Center for Medical Sciences, Kumamoto University, Chuo Ward, Kumamoto, Japan; Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Terumasa Umemoto
- Laboratory of Hematopoietic Stem Cell Engineering, International Research Center for Medical Sciences, Kumamoto University, Chuo-Ku, Kumamoto, Japan.
| |
Collapse
|
3
|
Zeng Y, Li C, Yang F, Zhang L, Xu W, Wang L, Wu A, Zou W, Wu J, Huang F. Sheng Xue Ning as a Novel Agent that Promotes SCF-Driven Hematopoietic Stem/Progenitor Cell Proliferation to Promote Erythropoiesis. Biomolecules 2024; 14:1147. [PMID: 39334913 PMCID: PMC11429878 DOI: 10.3390/biom14091147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Stimulating erythropoiesis is essential in the treatment of various types of anemia. Sheng Xue Ning (SXN) is commonly used in China as an iron supplement to treat iron deficiency anemia, renal anemia, and anemia in pregnancy. This research reports a novel effect of SXN in enhancing the proliferation of hematopoietic stem/progenitor cell (HSPC) to promote erythropoiesis in the bone marrow, which is distinct from conventional iron supplements that primarily aid in the maturation of red blood cells. Employing a model of hematopoietic dysfunction induced by X-ray exposure, we evaluated the efficacy of SXN in restoring hematopoietic function. SXN significantly promoted the recovery of peripheral erythroid cells and enhanced the proliferation and differentiation of Lin-/c-KIT+/Sca-1+ HSPC in mice exposed to X-ray irradiation. Our results showed that SXN elevated the expression of stem cell factor (SCF) and activated the SCF/c-KIT/PI3K/AKT signaling pathway, facilitating the proliferation and differentiation of HSPC. In vitro, SXN markedly enhanced the proliferation of bone marrow nucleated cell (BMNC) and the colony-forming capacity of BFU-E, CFU-E, and CFU-GM, while also elevating the expression of proteins involved in the SCF/c-KIT/PI3K/AKT pathway in BMNC. Additionally, SXN enhanced the proliferation and differentiation of mesenchymal stem cell (MSC) and increased SCF secretion. In conclusion, SXN demonstrates the capacity to enhance erythropoiesis by upregulating SCF expression, thereby promoting HSPC proliferation and differentiation via the SCF/c-KIT/PI3K/AKT pathway. SXN may offer a new strategy for improving the activity of HSPC and promoting erythropoiesis in the treatment of hematopoiesis disorders.
Collapse
Affiliation(s)
- Yueying Zeng
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Chunlu Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fei Yang
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Ling Zhang
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Wanqi Xu
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Long Wang
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Anguo Wu
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Wenjun Zou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jianming Wu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Feihong Huang
- Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
4
|
Su J, Wang Y, Yao J, Sun L, Zhao C, Liu L, Zhang L. Systemic knockout of Tmem175 results in aberrant differentiation but no effect on hematopoietic reconstitution. Stem Cell Res 2024; 79:103469. [PMID: 38878670 DOI: 10.1016/j.scr.2024.103469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 08/04/2024] Open
Abstract
Lysosomes play crucial roles in regulating cell metabolism, and K+ channels are critical for controlling various aspects of lysosomal function. Additionally, lysosomal activity is essential for maintaining the quiescence of hematopoietic stem cells (HSCs) under both steady-state and stress conditions. Tmem175 is a lysosomal potassium channel protein. To further investigate the role of K+ channels in HSCs, our study employed knockout mice to examine the function of Tmem175. Our research findings demonstrate that the deletion of Tmem175 does not disrupt the functionality of HSCs in both stable and stressed conditions, including irradiation and intraperitoneal 5-FU injections. However, we did observe that the absence of Tmem175 impairs the long-term differentiation capacity of HSCs into myeloid differentiated subpopulation cells(In this paper, it is referred to simply as M cells)in HSC transplantation test, while promoting their differentiation into T cells. This suggests that Tmem175 plays a role in the lineage differentiation of HSCs without being essential for their self-renewal or long-term regenerative capabilities.
Collapse
Affiliation(s)
- Jingjing Su
- Key Laboratory of Molecular Pharmacology and Translational Medicine and Department of Pharmacology, College of Pharmacy, Shandong Second Medical University, Weifang , 261053, China
| | - Yue Wang
- Center for Metabolic Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Jiyuan Yao
- Center for Metabolic Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Leimin Sun
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310016, China
| | - Chunzhen Zhao
- Key Laboratory of Molecular Pharmacology and Translational Medicine and Department of Pharmacology, College of Pharmacy, Shandong Second Medical University, Weifang , 261053, China.
| | - Leiming Liu
- Key Laboratory of Artificial Organs and Computational Medicine, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China.
| | - Lingling Zhang
- Center for Metabolic Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| |
Collapse
|
5
|
Ruiz Pérez M, Maueröder C, Steels W, Verstraeten B, Lameire S, Xie W, Wyckaert L, Huysentruyt J, Divert T, Roelandt R, Gonçalves A, De Rycke R, Ravichandran K, Lambrecht BN, Taghon T, Leclercq G, Vandenabeele P, Tougaard P. TL1A and IL-18 synergy promotes GM-CSF-dependent thymic granulopoiesis in mice. Cell Mol Immunol 2024; 21:807-825. [PMID: 38839915 PMCID: PMC11291760 DOI: 10.1038/s41423-024-01180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/27/2024] [Indexed: 06/07/2024] Open
Abstract
Acute systemic inflammation critically alters the function of the immune system, often promoting myelopoiesis at the expense of lymphopoiesis. In the thymus, systemic inflammation results in acute thymic atrophy and, consequently, impaired T-lymphopoiesis. The mechanism by which systemic inflammation impacts the thymus beyond suppressing T-cell development is still unclear. Here, we describe how the synergism between TL1A and IL-18 suppresses T-lymphopoiesis to promote thymic myelopoiesis. The protein levels of these two cytokines were elevated in the thymus during viral-induced thymus atrophy infection with murine cytomegalovirus (MCMV) or pneumonia virus of mice (PVM). In vivo administration of TL1A and IL-18 induced acute thymic atrophy, while thymic neutrophils expanded. Fate mapping with Ms4a3-Cre mice demonstrated that thymic neutrophils emerge from thymic granulocyte-monocyte progenitors (GMPs), while Rag1-Cre fate mapping revealed a common developmental path with lymphocytes. These effects could be modeled ex vivo using neonatal thymic organ cultures (NTOCs), where TL1A and IL-18 synergistically enhanced neutrophil production and egress. NOTCH blockade by the LY411575 inhibitor increased the number of neutrophils in the culture, indicating that NOTCH restricted steady-state thymic granulopoiesis. To promote myelopoiesis, TL1A, and IL-18 synergistically increased GM-CSF levels in the NTOC, which was mainly produced by thymic ILC1s. In support, TL1A- and IL-18-induced granulopoiesis was completely prevented in NTOCs derived from Csf2rb-/- mice and by GM-CSFR antibody blockade, revealing that GM-CSF is the essential factor driving thymic granulopoiesis. Taken together, our findings reveal that TL1A and IL-18 synergism induce acute thymus atrophy while promoting extramedullary thymic granulopoiesis in a NOTCH and GM-CSF-controlled manner.
Collapse
Affiliation(s)
- Mario Ruiz Pérez
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Christian Maueröder
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cell Clearance in Health and Disease Lab, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
| | - Wolf Steels
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Bruno Verstraeten
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sahine Lameire
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Wei Xie
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Laura Wyckaert
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jelle Huysentruyt
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Tatyana Divert
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Ria Roelandt
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- VIB Single Cell Facility, Flanders Institute for Biotechnology, Ghent, Belgium
| | - Amanda Gonçalves
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB BioImaging Core, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium
| | - Riet De Rycke
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB BioImaging Core, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent, 9052, Belgium
| | - Kodi Ravichandran
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cell Clearance in Health and Disease Lab, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Tom Taghon
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Georges Leclercq
- Cancer Research Institute Ghent, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Peter Tougaard
- Molecular Signaling and Cell Death Unit, VIB-UGent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
6
|
Koenderman L, Vrisekoop N. Extramedullary neutrophil progenitors: Quo Vadis? Cell Mol Immunol 2024; 21:932-934. [PMID: 38977761 PMCID: PMC11291501 DOI: 10.1038/s41423-024-01191-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 07/10/2024] Open
Affiliation(s)
- Leo Koenderman
- Dept. of Respiratory Medicine and Center for Translational Immunology (CTI), University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Nienke Vrisekoop
- Dept. of Respiratory Medicine and Center for Translational Immunology (CTI), University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
7
|
Banerjee R, Meyer TJ, Cam MC, Kaur S, Roberts DD. Differential regulation by CD47 and thrombospondin-1 of extramedullary erythropoiesis in mouse spleen. eLife 2024; 12:RP92679. [PMID: 38979889 PMCID: PMC11233134 DOI: 10.7554/elife.92679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Extramedullary erythropoiesis is not expected in healthy adult mice, but erythropoietic gene expression was elevated in lineage-depleted spleen cells from Cd47-/- mice. Expression of several genes associated with early stages of erythropoiesis was elevated in mice lacking CD47 or its signaling ligand thrombospondin-1, consistent with previous evidence that this signaling pathway inhibits expression of multipotent stem cell transcription factors in spleen. In contrast, cells expressing markers of committed erythroid progenitors were more abundant in Cd47-/- spleens but significantly depleted in Thbs1-/- spleens. Single-cell transcriptome and flow cytometry analyses indicated that loss of CD47 is associated with accumulation and increased proliferation in spleen of Ter119-CD34+ progenitors and Ter119+CD34- committed erythroid progenitors with elevated mRNA expression of Kit, Ermap, and Tfrc. Induction of committed erythroid precursors is consistent with the known function of CD47 to limit the phagocytic removal of aged erythrocytes. Conversely, loss of thrombospondin-1 delays the turnover of aged red blood cells, which may account for the suppression of committed erythroid precursors in Thbs1-/- spleens relative to basal levels in wild-type mice. In addition to defining a role for CD47 to limit extramedullary erythropoiesis, these studies reveal a thrombospondin-1-dependent basal level of extramedullary erythropoiesis in adult mouse spleen.
Collapse
Affiliation(s)
- Rajdeep Banerjee
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesdaUnited States
| | - Thomas J Meyer
- CCR Collaborative Bioinformatics Resource, Office of Science and Technology Resources, National Cancer Institute, National Institutes of HealthBethesdaUnited States
| | - Margaret C Cam
- CCR Collaborative Bioinformatics Resource, Office of Science and Technology Resources, National Cancer Institute, National Institutes of HealthBethesdaUnited States
| | - Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesdaUnited States
| | - David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of HealthBethesdaUnited States
| |
Collapse
|
8
|
Suthar PP, Ozen M, Bhanot S, Dua SG. Imaging review of the atypical spinal epidural space pathologies. Curr Probl Diagn Radiol 2024; 53:507-516. [PMID: 38341368 DOI: 10.1067/j.cpradiol.2024.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 01/28/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024]
Abstract
Pathologies affecting the spinal epidural space (SES) comprise various abnormalities. However, they all have the potential to cause thecal sac narrowing or spinal cord compression. In this review, we group these pathologies into degenerative, infective, neoplastic, vascular, traumatic, and others, focusing on their imaging features. Degenerative pathologies of the SES range from disc to facet disease, with a particular emphasis on the less common degenerative pathologies in this review. Infective pathologies affecting the epidural space include spondylodiscitis and associated epidural phlegmon and abscess. Neoplasms arising from typical SES components include neurofibroma, hemangioma, and liposarcoma. MRI is the best modality to assess the anatomy and abnormalities of the epidural space. MRI, combined with computed tomography, or a radiograph, is useful for the evaluation of bones or radiopaque foreign bodies.
Collapse
Affiliation(s)
- Pokhraj Prakashchandra Suthar
- Rush University Medical Center, Diagnostic Radiology and Nuclear Medicine, 1653 West Congress Parkway, Chicago, IL 60612, USA
| | - Merve Ozen
- Assistant Professor of Radiology, Surgery, Obstetrics and Gynecology, University of Kentuky College of Medicine, Faculty, Vascular & Interventional Radiology, 800 Ross Steet, Room HX-318, Lexington, KY 40536-0293, USA
| | - Shelly Bhanot
- Rush University Medical Center, Vascular & Interventional Radiology, 1653 West Congress Parkway, Chicago, IL 60612, USA
| | - Sumeet G Dua
- Rush University Medical Center, Diagnostic Radiology and Nuclear Medicine, 1653 West Congress Parkway, Chicago, IL 60612, USA.
| |
Collapse
|
9
|
Lin Y, Yang B, Liu H, Ran G, Song L, Meng M, Yin X, Bi Q, Yan D, Deng Y, Lu Y. DNA demethylase Tet2 promotes the terminal maturation of natural killer cells. Immunol Res 2024:10.1007/s12026-024-09506-4. [PMID: 38869819 DOI: 10.1007/s12026-024-09506-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 06/02/2024] [Indexed: 06/14/2024]
Abstract
The cytotoxicity feature to eliminate malignant cells makes natural killer (NK) cells a candidate for tumor immunotherapy. However, this scenario is currently hampered by inadequate understanding of the regulatory mechanisms of NK cell development. Ten-Eleven-Translocation 2 (Tet2) is a demethylase whose mutation was recently shown to cause phenotypic defects in NK cells. However, the role of Tet2 in the development and maturation of NK cells is not entirely clear. Here we studied the modulatory role of Tet2 in NK cell development and maturation by generating hematopoietic Tet2 knockout mice and mice with Tet2 conditional deletion in NKp46+ NK cells. The results showed that both hematopoietic and NK cell conditional deletion of Tet2 had no effect on the early steps of NK cell development, but impaired the terminal maturation of NK cells defined by CD11b, CD43, and KLRG1 expression. In the liver, Tet2 deletion not only prevented the terminal maturation of NK cells, but also increased the proportion of type 1 innate lymphoid cells (ILC1s) and reduced the proportion of conventional NK cells (cNK). Moreover, hematopoietic deletion of Tet2 lowered the protein levels of perforin in NK cells. Furthermore, hematopoietic deletion of Tet2 downregulated the protein levels of Eomesodermin (Eomes), but not T-bet, in NK cells. In conclusion, our results demonstrate that Tet2 plays an important role in the terminal maturation of NK cells, and the Eomes transcription factor may be involved.
Collapse
Affiliation(s)
- Yuqing Lin
- Department of Immunology, School of Basic Medical, Jiamusi University, Jiamusi, 154007, China
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, 400038, China
- Department of Pathology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Biyun Yang
- Department of Immunology, School of Basic Medical, Jiamusi University, Jiamusi, 154007, China
| | - Hailin Liu
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, 400038, China
- Department of Pharmacy, First People's Hospital of Chongqing Liangjiang New Area, Chongqing, 401121, China
| | - Guanghe Ran
- Department of Immunology, School of Basic Medical, Jiamusi University, Jiamusi, 154007, China
| | - Liang Song
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, 400038, China
| | - Meng Meng
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, 400038, China
| | - Xiaofeng Yin
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, 400038, China
| | - Qinghua Bi
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, 400038, China.
| | - Dongmei Yan
- Department of Immunology, School of Basic Medical, Jiamusi University, Jiamusi, 154007, China.
| | - Youcai Deng
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, 400038, China.
| | - Yonghui Lu
- Department of Clinical Hematology, College of Pharmacy and Laboratory Medicine Science, Army Medical University, Chongqing, 400038, China.
- Department of Occupational Health, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
10
|
Malaih AA, Kirkwood AA, Johnson P, Radhakrishnan V, Fischer BM, Barrington SF. Healthy tissue metabolism assessed by [ 18F]FDG PET/CT as a marker of prognosis and adverse events in advanced Hodgkin lymphoma patients. Sci Rep 2024; 14:12613. [PMID: 38824206 PMCID: PMC11144227 DOI: 10.1038/s41598-024-63349-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024] Open
Abstract
The aim of the study was to assess healthy tissue metabolism (HTM) using 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography/computed tomography (PET/CT) during chemotherapy in Hodgkin lymphoma (HL) and the association of HTM with baseline metabolic tumour volume (MTV), haematological parameters, adverse events (AEs), early response and progression-free survival (PFS). We retrospectively identified 200 patients with advanced HL from the RATHL trial with [18F]FDG-PET/CT before (PET0) and following 2 cycles of chemotherapy (PET2). [18F]FDG-uptake was measured in bone marrow (BM), spleen, liver and mediastinal blood pool (MBP). Deauville score (DS) 1-3 was used to classify responders and DS 4-5, non-responders. [18F]FDG-uptake decreased significantly in BM and spleen and increased in liver and MBP at PET2 (all p < 0.0001), but was not associated with MTV. Higher BM uptake at PET0 was associated with lower baseline haemoglobin and higher absolute neutrophil counts, platelets, and white blood cells. High BM, spleen, and liver uptake at PET0 was associated with neutropenia after cycles 1-2. BM uptake at PET0 was associated with treatment failure at PET2 and non-responders with higher BM uptake at PET2 had significantly inferior PFS (p = 0.023; hazard ratio = 2.31). Based on these results, we concluded that the change in HTM during chemotherapy was most likely a direct impact of chemotherapy rather than a change in MTV. BM uptake has prognostic value in HL.
Collapse
Affiliation(s)
- Afnan A Malaih
- King's College London and Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College London, Kings Health Partners, London, UK
- Radiologic Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amy A Kirkwood
- Cancer Research UK and UCL Cancer Trials Centre, UCL Cancer Institute, University College London, London, UK
| | - Peter Johnson
- Cancer Research UK Centre, University of Southampton, Southampton, UK
| | | | - Barbara M Fischer
- King's College London and Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College London, Kings Health Partners, London, UK
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sally F Barrington
- King's College London and Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College London, Kings Health Partners, London, UK.
| |
Collapse
|
11
|
Banerjee R, Meyer TJ, Cam MC, Kaur S, Roberts DD. Differential regulation by CD47 and thrombospondin-1 of extramedullary erythropoiesis in mouse spleen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.28.559992. [PMID: 37808833 PMCID: PMC10557659 DOI: 10.1101/2023.09.28.559992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Extramedullary erythropoiesis is not expected in healthy adult mice, but erythropoietic gene expression was elevated in lineage-depleted spleen cells from cd47-/- mice. Expression of several genes associated with early stages of erythropoiesis was elevated in mice lacking CD47 or its signaling ligand thrombospondin-1, consistent with previous evidence that this signaling pathway inhibits expression of multipotent stem cell transcription factors in spleen. In contrast, cells expressing markers of committed erythroid progenitors were more abundant in cd47-/- spleens but significantly depleted in thbs1-/- spleens. Single cell transcriptome and flow cytometry analyses indicated that loss of CD47 is associated with accumulation and increased proliferation in spleen of Ter119-CD34+ progenitors and Ter119+CD34- committed erythroid progenitors with elevated mRNA expression of Kit, Ermap, and Tfrc. Induction of committed erythroid precursors is consistent with the known function of CD47 to limit the phagocytic removal of aged erythrocytes. Conversely, loss of thrombospondin-1 delays the turnover of aged red blood cells, which may account for the suppression of committed erythroid precursors in thbs1-/- spleens relative to basal levels in wild type mice. In addition to defining a role for CD47 to limit extramedullary erythropoiesis, these studies reveal a thrombospondin-1-dependent basal level of extramedullary erythropoiesis in adult mouse spleen.
Collapse
Affiliation(s)
- Rajdeep Banerjee
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics Resource, Office of Science and Technology Resources, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Margaret C. Cam
- CCR Collaborative Bioinformatics Resource, Office of Science and Technology Resources, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
Liu X, Dong M, Li Y, Li L, Zhang Y, Zhou A, Wang D. Structural characterization of Russula griseocarnosa polysaccharide and its improvement on hematopoietic function. Int J Biol Macromol 2024; 263:130355. [PMID: 38395281 DOI: 10.1016/j.ijbiomac.2024.130355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/25/2024]
Abstract
The hematopoietic function of a polysaccharide derived from Russula griseocarnosa was demonstrated in K562 cells, and subsequently purified through chromatography to obtain RGP1. RGP1 is a galactan composed of 1,6-α-D-Galp as the main chain, with partial substitutions. A -CH3 substitution was detected at O-3 of 1,6-α-D-Galp. The possible branches at O-2 of 1,6-α-D-Galp was α-L-Fucp. In mice with cyclophosphamide (CTX)-induced hematopoietic dysfunction, RGP1 alleviated bone marrow damage and multinucleated giant cell infiltration of the spleen, increased the number of long-term hematopoietic stem cells, and regulated the levels of myeloid cells in the peripheral blood. Furthermore, RGP1 promoted the differentiation of activated T cells and CD4+ T cells without affecting natural killer cells and B cells. Proteomic analysis, detection of cytokines, and western blotting revealed that RGP1 could alleviate hematopoietic dysfunction by promoting the activation of CD4+ T cells and the Janus kinase/ signal transducer and activator of transcription 3 pathway. The present study provides experimental evidence to support the application of RGP1 in CTX-induced hematopoietic dysfunction.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences, Jilin University, Changchun 130012, China; School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin 300131, China.
| | - Mingyuan Dong
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yuan Li
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| | - Yongfeng Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Andong Zhou
- School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China; Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, School of Plant Protection, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
13
|
Mamand DR, Bazaz S, Mohammad DK, Saher O, Wiklander OPB, Sadeghi B, Hassan M, El-Andaloussi S, Abedi-Valugerdi M. Tumor cell derived osteopontin and prostaglandin E2 synergistically promote the expansion of myeloid derived suppressor cells during the tumor immune escape phase. Int Immunopharmacol 2024; 129:111584. [PMID: 38364741 DOI: 10.1016/j.intimp.2024.111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
The immune escape stage in cancer immunoediting is a pivotal feature, transitioning immune-controlled tumor dormancy to progression, and augmenting invasion and metastasis. Tumors employ diverse mechanisms for immune escape, with generating immunosuppressive cells from skewed hematopoiesis being a crucial mechanism. This led us to suggest that tumor cells with immune escape properties produce factors that induce dysregulations in hematopoiesis. In support of this suggestion, this study found that mice bearing advanced-stage tumors exhibited dysregulated hematopoiesis characterized by the development of splenomegaly, anemia, extramedullary hematopoiesis, production of immunosuppressive mediators, and expanded medullary myelopoiesis. Further ex vivo studies exhibited that conditioned medium derived from EL4lu2 cells could mediate the expansion of myeloid derived suppressor cells (MDSCs) in bone marrow cell cultures. The protein array profiling results revealed the presence of elevated levels of osteopontin (OPN), prostaglandin E2 (PGE2) and interleukin 17 (IL-17) in the culture medium derived from EL4luc2 cells. Accordingly, substantial levels of these factors were also detected in the sera of mice bearing EL4luc2 tumors. Among these factors, only PGE2 alone could increase the number of MDSCs in the BM cell cultures. This effect of PGE2 was significantly potentiated by the presence of OPN but not IL-17. Finally, in vitro treatment of EL4luc2 cells with pioglitazone, a modulator of OPN and cyclooxygenase 2 (COX-2) resulted in a significant reduction in cell proliferation in EL4luc2 cells. Our findings highlight the significant role played by tumor cell-derived OPN and PGE2 in fostering the expansion of medullary MDSCs and in promoting tumor cell proliferation. Furthermore, these intertwined cancer processes could be key targets for pioglitazone intervention.
Collapse
Affiliation(s)
- Doste R Mamand
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Safa Bazaz
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Dara K Mohammad
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, SE-141 83 Stockholm, Sweden; College of Agricultural Engineering Sciences, Salahaddin University-Erbil, Kurdistan Region, Erbil 44002, Iraq
| | - Osama Saher
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, 11562 Cairo, Egypt
| | - Oscar P B Wiklander
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Behnam Sadeghi
- Translational Cell Therapy Research (TCR), Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Moustapha Hassan
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Experimental Cancer Medicine, Karolinska Institutet and Karolinska University Hospital, Huddinge, Sweden
| | - Samir El-Andaloussi
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| | - Manuchehr Abedi-Valugerdi
- Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer Center, Stockholm, Sweden.
| |
Collapse
|
14
|
Barisas DAG, Choi K. Extramedullary hematopoiesis in cancer. Exp Mol Med 2024; 56:549-558. [PMID: 38443597 PMCID: PMC10985111 DOI: 10.1038/s12276-024-01192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 03/07/2024] Open
Abstract
Hematopoiesis can occur outside of the bone marrow during inflammatory stress to increase the production of primarily myeloid cells at extramedullary sites; this process is known as extramedullary hematopoiesis (EMH). As observed in a broad range of hematologic and nonhematologic diseases, EMH is now recognized for its important contributions to solid tumor pathology and prognosis. To initiate EMH, hematopoietic stem cells (HSCs) are mobilized from the bone marrow into the circulation and to extramedullary sites such as the spleen and liver. At these sites, HSCs primarily produce a pathological subset of myeloid cells that contributes to tumor pathology. The EMH HSC niche, which is distinct from the bone marrow HSC niche, is beginning to be characterized. The important cytokines that likely contribute to initiating and maintaining the EMH niche are KIT ligands, CXCL12, G-CSF, IL-1 family members, LIF, TNFα, and CXCR2. Further study of the role of EMH may offer valuable insights into emergency hematopoiesis and therapeutic approaches against cancer. Exciting future directions for the study of EMH include identifying common and distinct EMH mechanisms in cancer, infectious diseases, and chronic autoimmune diseases to control these conditions.
Collapse
Affiliation(s)
- Derek A G Barisas
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
15
|
Healey AM, Fenner KN, O'Dell CT, Lawrence BP. Aryl hydrocarbon receptor activation alters immune cell populations in the lung and bone marrow during coronavirus infection. Am J Physiol Lung Cell Mol Physiol 2024; 326:L313-L329. [PMID: 38290163 PMCID: PMC11281796 DOI: 10.1152/ajplung.00236.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
Respiratory viral infections are one of the major causes of illness and death worldwide. Symptoms associated with respiratory infections can range from mild to severe, and there is limited understanding of why there is large variation in severity. Environmental exposures are a potential causative factor. The aryl hydrocarbon receptor (AHR) is an environment-sensing molecule expressed in all immune cells. Although there is considerable evidence that AHR signaling influences immune responses to other immune challenges, including respiratory pathogens, less is known about the impact of AHR signaling on immune responses during coronavirus (CoV) infection. In this study, we report that AHR activation significantly altered immune cells in the lungs and bone marrow of mice infected with a mouse CoV. AHR activation transiently reduced the frequency of multiple cells in the mononuclear phagocyte system, including monocytes, interstitial macrophages, and dendritic cells in the lung. In the bone marrow, AHR activation altered myelopoiesis, as evidenced by a reduction in granulocyte-monocyte progenitor cells and an increased frequency of myeloid-biased progenitor cells. Moreover, AHR activation significantly affected multiple stages of the megakaryocyte lineage. Overall, these findings indicate that AHR activation modulates multiple aspects of the immune response to a CoV infection. Given the significant burden of respiratory viruses on human health, understanding how environmental exposures shape immune responses to infection advances our knowledge of factors that contribute to variability in disease severity and provides insight into novel approaches to prevent or treat disease.NEW & NOTEWORTHY Our study reveals a multifaceted role for aryl hydrocarbon receptor (AHR) signaling in the immune response to coronavirus (CoV) infection. Sustained AHR activation during in vivo mouse CoV infection altered the frequency of mature immune cells in the lung and modulated emergency hematopoiesis, specifically myelopoiesis and megakaryopoiesis, in bone marrow. This provides new insight into immunoregulation by the AHR and extends our understanding of how environmental exposures can impact host responses to respiratory viral infections.
Collapse
Affiliation(s)
- Alicia M Healey
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| | - Kristina N Fenner
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| | - Colleen T O'Dell
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| | - B Paige Lawrence
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States
| |
Collapse
|
16
|
Bucknoff MC, Rolph KE. Splenic torsion in a cat with chronic anemia. JFMS Open Rep 2024; 10:20551169231216405. [PMID: 38304753 PMCID: PMC10832429 DOI: 10.1177/20551169231216405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Case summary A 4-year-old female spayed domestic shorthair cat with chronic anemia was evaluated for acute-onset lethargy, vomiting, abdominal distension, and a palpably enlarged and firm spleen. Abdominal ultrasound confirmed marked splenomegaly and concern for a splenic infarct, prompting exploratory abdominal surgery, where splenic torsion was diagnosed. A splenectomy was performed, and the cat recovered uneventfully. Splenitis was diagnosed on histopathology. Anemia improved postoperatively. The role of chronic anemia and other concurrent findings in the development of splenic torsion in this case remains unknown. Relevance and novel information Splenic torsion has not been previously reported in cats, making this the first case of its kind. In cases of splenomegaly and abnormal splenic blood flow, splenic torsion should be considered a differential diagnosis in cats.
Collapse
Affiliation(s)
- Melissa C Bucknoff
- Center for Integrative Mammalian Research, Ross University School of Veterinary Medicine, Basseterre, St Kitts, West Indies
| | - Kerry E Rolph
- Center for Integrative Mammalian Research, Ross University School of Veterinary Medicine, Basseterre, St Kitts, West Indies
| |
Collapse
|
17
|
Aiassa LV, Battaglia G, Rizzello L. The multivalency game ruling the biology of immunity. BIOPHYSICS REVIEWS 2023; 4:041306. [PMID: 38505426 PMCID: PMC10914136 DOI: 10.1063/5.0166165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/27/2023] [Indexed: 03/21/2024]
Abstract
Macrophages play a crucial role in our immune system, preserving tissue health and defending against harmful pathogens. This article examines the diversity of macrophages influenced by tissue-specific functions and developmental origins, both in normal and disease conditions. Understanding the spectrum of macrophage activation states, especially in pathological situations where they contribute significantly to disease progression, is essential to develop targeted therapies effectively. These states are characterized by unique receptor compositions and phenotypes, but they share commonalities. Traditional drugs that target individual entities are often insufficient. A promising approach involves using multivalent systems adorned with multiple ligands to selectively target specific macrophage populations based on their phenotype. Achieving this requires constructing supramolecular structures, typically at the nanoscale. This review explores the theoretical foundation of engineered multivalent nanosystems, dissecting the key parameters governing specific interactions. The goal is to design targeting systems based on distinct cell phenotypes, providing a pragmatic approach to navigating macrophage heterogeneity's complexities for more effective therapeutic interventions.
Collapse
|
18
|
Araie H, Hosono N, Tsujikawa T, Kiyono Y, Okazawa H, Yamauchi T. Hematopoiesis in the spleen after engraftment in unrelated cord blood transplantation evaluated by 18F-FLT PET imaging. Int J Hematol 2023; 118:618-626. [PMID: 37782417 PMCID: PMC10615934 DOI: 10.1007/s12185-023-03658-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023]
Abstract
Cord blood is an important donor source for allogeneic hematopoietic stem cell transplantation (allo-HSCT), with its unique composition and quality of hematopoietic cells. The proliferation site and potency of infused hematopoietic stem cells in humans may vary between stem cell sources. We investigated this possibility in a prospective, exploratory study to assess hematopoietic dynamics using the radiopharmaceutical 3'-deoxy-3'-18F-fluorothymidine (18F-FLT), a thymidine analog used in positron emission tomography imaging, before allo-HSCT and on days 50 and 180 after allo-HSCT. We evaluated 11 patients with hematological malignancies who underwent allo-HSCT [five with peripheral blood stem cell transplantation (PBSCT) and six with unrelated cord blood transplantation (UCBT)]. Before allo-HSCT, 18F-FLT uptake did not differ between the two groups. At day 50, 18F-FLT uptake in the spleen was significantly greater in the UCBT group than in the PBSCT group (p = 0.0043), with no difference in whole-body bone marrow. At day 180, the differences in spleen uptake had diminished, and there were no differences between groups in whole-body bone marrow or the spleen, except for the sternum. The persistence of splenic hematopoiesis after engraftment in the UCBT group may reflect the complex systemic homing and proliferation mechanisms of cord blood hematopoietic cells.
Collapse
Affiliation(s)
- Hiroaki Araie
- Department of Hematology and Oncology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Naoko Hosono
- Department of Hematology and Oncology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan.
| | - Tetsuya Tsujikawa
- Department of Radiology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yasushi Kiyono
- Biomedical Imaging Research Center, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hidehiko Okazawa
- Biomedical Imaging Research Center, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Takahiro Yamauchi
- Department of Hematology and Oncology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| |
Collapse
|
19
|
Naeem M, Ittermann T, Markus MRP, Mousa MFM, von Heder L, Bülow R, Dörr M, Nauck M, Agdassi A, Heidel FH, Völzke H. Associations of spleen volume with markers of blood count and lipid profile in a large population-based study. Ups J Med Sci 2023; 128:9785. [PMID: 37807997 PMCID: PMC10552697 DOI: 10.48101/ujms.v128.9785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023] Open
Abstract
Background The aim of our study was to investigate associations of spleen volume with blood count markers and lipid profile in the general population. Materials & methods Cross-sectional data from 1,106 individuals aged 30-90 years from the population-based Study of Health in Pomerania (SHIP-START-2) were analyzed. Blood count markers included red blood cell (RBC) counts, hemoglobin, platelet count, and white blood cell (WBC) counts. Lipid profile included total-cholesterol, high-density lipoprotein-cholesterol (HDL-C), and low-density lipoprotein-cholesterol (LDL-C) as well as triglycerides. Linear regression models adjusted for age, sex, body height, and weight were used to associate standardized spleen volume with blood counts and lipid profile markers. Results Spleen volume was positively associated with RBC (β = 0.05; 95% confidence interval [CI] = 0.03 to 0.08) and hemoglobin (β = 0.05; 95% CI = 0.01 to 0.09) but inversely with platelet count (β = -16.3; 95% CI = -20.5 to -12.1) and WBC (β = -0.25; 95% CI = -0.37 to -0.14). Furthermore, spleen volume showed inverse associations with total cholesterol (β = -0.17; 95% CI = -0.24 to -0.09), HDL-C (β = -0.08; 95% CI = -0.10 to -0.05), and LDL-C (β = -0.12; 95% CI = -0.17 to -0.06). There was no significant association of spleen volume with triglycerides. Conclusion Our study showed that the spleen volume is associated with markers of the blood count and lipid profile in the general population.
Collapse
Affiliation(s)
- Muhammad Naeem
- Institute for Community Medicine, University Medicine Greifswald, Germany
| | - Till Ittermann
- Institute for Community Medicine, University Medicine Greifswald, Germany
- Department of Zoology, University of Malakand, 18800, Pakistan
| | - Marcello Ricardo Paulista Markus
- Department of Internal Medicine B – Cardiology, Intensive Care, Pulmonary Medicine and Infectious Diseases, University Medicine Greifswald, Germany
| | | | - Laura von Heder
- Institute for Community Medicine, University Medicine Greifswald, Germany
| | - Robin Bülow
- Institute for Radiology and Neuradiology, University Medicine Greifswald, Germany
| | - Marcus Dörr
- Department of Internal Medicine B – Cardiology, Intensive Care, Pulmonary Medicine and Infectious Diseases, University Medicine Greifswald, Germany
| | - Matthias Nauck
- Institute for Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Germany
| | - Ali Agdassi
- Department of Internal Medicine A, University Medicine Greifswald, Germany
| | - Florian H. Heidel
- Department of Internal Medicine C, University Medicine Greifswald, Germany
- Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Germany
| |
Collapse
|
20
|
Utsunomiya N, Nakano S, Katsube M, Yamada S. Three-dimensional morphological analysis of the human spleen and its surrounding organs during the early fetal period. Congenit Anom (Kyoto) 2023; 63:154-163. [PMID: 37526049 DOI: 10.1111/cga.12530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/23/2023] [Accepted: 06/09/2023] [Indexed: 08/02/2023]
Abstract
The spleen has variations in its morphology and is considered to acquire a defined shape in the third month of gestation. However, few studies have investigated spleen development during the first 3 months of fetal life. This study aimed to determine the three-dimensional (3D) morphogenesis of the spleen during the third month of gestation. In this study, 30 fetal specimens (crown-rump length [CRL]: 22-103 mm) were subjected to magnetic resonance imaging analysis. We manually segmented the spleen, stomach, and adrenal gland, reconstructed 3D models, and analyzed the volume and shape of these organs. The results showed that the variation in spleen size was large compared to that in other organs. Spleen morphology was classified into six types based on the number of splenic surfaces as follows: two-faced, three-faced, four-faced, five-faced, ovoid, and irregular. Two-faced spleens were only observed in small specimens, whereas three- and four-faced spleens were observed in larger specimens. We also revealed that the number of fetal splenic surfaces increased as CRL enlarged. Additionally, 3D models indicated that some specimens formed their splenic surfaces without contact with the adjacent organs. This suggested that the splenic surface may be caused not only by pressure from the faced organs but also by an intrinsic program. This study may provide a better understanding of the normal development of the spleen during the early fetal period, and may potentially assist future studies in investigating congenital morphological anomalies of the spleen.
Collapse
Affiliation(s)
- Natsuko Utsunomiya
- Congenital Anomaly Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shiori Nakano
- Congenital Anomaly Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Motoki Katsube
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shigehito Yamada
- Congenital Anomaly Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
21
|
Zhang Y, Shen J, Cheng W, Roy B, Zhao R, Chai T, Sheng Y, Zhang Z, Chen X, Liang W, Hu W, Liao Q, Pan S, Zhuang W, Zhang Y, Chen R, Mei J, Wei H, Fang X. Microbiota-mediated shaping of mouse spleen structure and immune function characterized by scRNA-seq and Stereo-seq. J Genet Genomics 2023; 50:688-701. [PMID: 37156441 DOI: 10.1016/j.jgg.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
Gut microbes exhibit complex interactions with their hosts and shape an organism's immune system throughout its lifespan. As the largest secondary lymphoid organ, the spleen has a wide range of immunological functions. To explore the role of microbiota in regulating and shaping the spleen, we employ scRNA-seq and Stereo-seq technologies based on germ-free (GF) mice to detect differences in tissue size, anatomical structure, cell types, functions, and spatial molecular characteristics. We identify 18 cell types, 9 subtypes of T cells, and 7 subtypes of B cells. Gene differential expression analysis reveals that the absence of microorganisms results in alterations in erythropoiesis within the red pulp region and congenital immune deficiency in the white pulp region. Stereo-seq results demonstrate a clear hierarchy of immune cells in the spleen, including marginal zone (MZ) macrophages, MZ B cells, follicular B cells and T cells, distributed in a well-defined pattern from outside to inside. However, this hierarchical structure is disturbed in GF mice. Ccr7 and Cxcl13 chemokines are specifically expressed in the spatial locations of T cells and B cells, respectively. We speculate that the microbiota may mediate the structural composition or partitioning of spleen immune cells by modulating the expression levels of chemokines.
Collapse
Affiliation(s)
- Yin Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Juan Shen
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Wei Cheng
- College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bhaskar Roy
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Ruizhen Zhao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Tailiang Chai
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Yifei Sheng
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Zhao Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Xueting Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | | | - Weining Hu
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Qijun Liao
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China
| | - Shanshan Pan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Wen Zhuang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, Shandong 266555, China
| | - Yangrui Zhang
- BGI-Sanya, BGI-Shenzhen, Sanya, Hainan 572025, China
| | - Rouxi Chen
- BGI-Sanya, BGI-Shenzhen, Sanya, Hainan 572025, China
| | - Junpu Mei
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China; BGI-Sanya, BGI-Shenzhen, Sanya, Hainan 572025, China
| | - Hong Wei
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Xiaodong Fang
- BGI-Shenzhen, Shenzhen, Guangdong 518083, China; BGI-Sanya, BGI-Shenzhen, Sanya, Hainan 572025, China.
| |
Collapse
|
22
|
Chapchap EC, Silva MMA, Baroni RH, Araujo ADS, de Assis RA, Loggetto SR, Junior AF, Verissimo MPDA, Baldanzi GR, Fertrin KY, Tricta F, Piga AG, Hamerschlak N. Extramedullary haematopoiesis in patients with thalassemia: a cross-sectional description of its prevalence, clinical features and survival. Hematol Transfus Cell Ther 2023:S2531-1379(23)00158-X. [PMID: 37690980 DOI: 10.1016/j.htct.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/06/2023] [Accepted: 07/07/2023] [Indexed: 09/12/2023] Open
Abstract
INTRODUCTION Despite knowledge advances on extramedullary haematopoiesis (EMH) in thalassemic patients, the real picture remains an open issue. OBJECTIVES To assess EMH prevalence in patients with thalassemia major (TM) and intermedia (TI), to describe magnetic resonance imaging (MRI) findings and to explore clinical risk factors. METHODS In this cross-sectional study, images and clinical records of 184 consecutive patients with thalassemia who underwent T2* MRI between 2004 and 2011 were reviewed. Association of EMH with survival was investigated for patients with available follow-up charts. RESULTS EMH was detected in 16/168 (9.5%) patients with TM (aged 19-49 years) and in 3/16 (18.8%) with TI (aged 36-41 years). Most (88%) had paravertebral thoracic and/or abdominal masses. Age was significantly associated with EMH risk (hazard ratio, [HR] 1.10/year; confidence interval [CI]: 1.03-1.18; p-value < 0.001), while lower pancreatic iron content by T2*MRI (HR: 0.94/ms; CI: 0.89-0.99; p-value = 0.049) was a protective factor. Estimated survival rate was superior for EMH-positive (n = 19) when compared to EMH-negative patients (n = 75) (p-value = 0.013). CONCLUSIONS The prevalence of EMH was 10.3% (19/184), presented mainly as tumoral masses of 3 to 10 cm. Age was a risk factor for EMH development, while lower pancreatic iron might be a protective factor in this cohort.
Collapse
|
23
|
Bennett-Caso C, Srinath A, de la Roza G, Stock H, Damron TA. Extramedullary Hematopoiesis Adjacent to Vertebral Fracture in a Patient with Pernicious Anemia: Support for a Mechanical Extrusion Mechanism. JBJS Case Connect 2023; 13:01709767-202306000-00028. [PMID: 37172112 DOI: 10.2106/jbjs.cc.22.00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
CASE A 68-year-old woman presented with a paraspinal mass of indeterminate imaging characteristics. Workup and computed tomography-guided Fine Needle Aspiration (FNA) aspiration revealed extramedullary hematopoiesis (EMH) adjacent to a prior compression fracture in the setting of pernicious anemia. CONCLUSION The combination of findings suggests a possible relationship of the compression fracture and the EMH because of traumatic extravasation of marrow contents, with the patient's underlying anemia possibly providing an underlying predisposition to EMH.
Collapse
Affiliation(s)
| | - Arjun Srinath
- Department of Orthopaedic Surgery and Sports Medicine, University of Kentucky, Lexington, Kentucky
| | - Gustavo de la Roza
- Department of Orthopedics, SUNY Upstate Medical University, Syracuse, New York
- Department of Pathology, SUNY Upstate Medical University, Syracuse, New York
| | - Harlan Stock
- Department of Orthopedics, SUNY Upstate Medical University, Syracuse, New York
- Department of Radiology, SUNY Upstate Medical University, Syracuse, New York
| | - Timothy A Damron
- Department of Orthopedics, SUNY Upstate Medical University, Syracuse, New York
| |
Collapse
|
24
|
Dorochow E, Gurke R, Rischke S, Geisslinger G, Hahnefeld L. Effects of Different Storage Conditions on Lipid Stability in Mice Tissue Homogenates. Metabolites 2023; 13:metabo13040504. [PMID: 37110163 PMCID: PMC10144362 DOI: 10.3390/metabo13040504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Lipids are biomolecules involved in numerous (patho-)physiological processes and their elucidation in tissue samples is of particular interest. However, tissue analysis goes hand in hand with many challenges and the influence of pre-analytical factors can intensively change lipid concentrations ex vivo, compromising the results of the whole research project. Here, we study the influence of pre-analytical factors on lipid profiles during the processing of homogenized tissues. Homogenates from four different mice tissues (liver, kidney, heart, spleen) were stored at room temperature as well as in ice water for up to 120 min and analyzed via ultra-high-performance liquid chromatography-high-resolution mass spectrometry (UHPLC-HRMS). Lipid class ratios were calculated since their suitability as indicators for sample stability has been previously illustrated. Only approx. 40% of lipid class ratios were unchanged after 35 min, which was further reduced to 25% after 120 min during storage at room temperature. In contrast, lipids in tissue homogenates were generally stable when samples were kept in ice water, as more than 90% of investigated lipid class ratios remained unchanged after 35 min. Ultimately, swift processing of tissue homogenates under cooled conditions represents a viable option for lipid analysis and pre-analytical factors require more attention to achieve reliable results.
Collapse
Affiliation(s)
- Erika Dorochow
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Robert Gurke
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Correspondence: (R.G.); (L.H.)
| | - Samuel Rischke
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Lisa Hahnefeld
- Pharmazentrum Frankfurt/ZAFES, Institute of Clinical Pharmacology, Johann Wolfgang Goethe University, Theodor Stern-Kai 7, 60590 Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence for Immune Mediated Diseases CIMD, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Correspondence: (R.G.); (L.H.)
| |
Collapse
|
25
|
Cenariu D, Bumbea H, Colita A, Constantinescu C, Desmirean M, Iluta S, Lysák D, Mussetti A, Tichil I, Tanase A, Tomuleasa C. Progress in Hematopoietic Stem Cell Transplantation and Cellular Therapies. J Clin Med 2022; 11:jcm11247354. [PMID: 36555970 PMCID: PMC9784161 DOI: 10.3390/jcm11247354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Hematological malignancies are considered to be one of the most important causes of mortality and morbidity in the modern world [...].
Collapse
Affiliation(s)
- Diana Cenariu
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Horia Bumbea
- Department of Stem Cell Transplantation, University Emergency Hospital Bucharest, 022314 Bucharest, Romania
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, 022314 Bucharest, Romania
| | - Anca Colita
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, 022314 Bucharest, Romania
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Catalin Constantinescu
- Intensive Care Unit, Emergency Hospital, 400006 Cluj-Napoca, Romania
- Department of Anesthesia and Intensive Care, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Minodora Desmirean
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Sabina Iluta
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400124 Cluj Napoca, Romania
| | - Daniel Lysák
- Department of Hematology and Oncology, University Hospital Pilsen, 32300 Pilsen, Czech Republic
- Faculty of Medicine in Pilsen, Charles University, 32300 Pilsen, Czech Republic
| | - Alberto Mussetti
- Clinical Hematology Department, Institut Català d’Oncologia-Hospitalet, 08901 Barcelona, Spain
- Institut d’Investigació Biomèdica de Bellvitge (IDIBELL), 08908 Barcelona, Spain
| | - Ioana Tichil
- Department of Anesthesia and Intensive Care, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
| | - Alina Tanase
- Department of Hematology, Carol Davila University of Medicine and Pharmacy, 022314 Bucharest, Romania
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Ciprian Tomuleasa
- Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, 400124 Cluj Napoca, Romania
- Correspondence:
| |
Collapse
|
26
|
Nguyen HTT, Radwanska M, Magez S. Tipping the balance between erythroid cell differentiation and induction of anemia in response to the inflammatory pathology associated with chronic trypanosome infections. Front Immunol 2022; 13:1051647. [PMID: 36420267 PMCID: PMC9676970 DOI: 10.3389/fimmu.2022.1051647] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Infection caused by extracellular single-celled trypanosomes triggers a lethal chronic wasting disease in livestock and game animals. Through screening of 10 Trypanosoma evansi field isolates, exhibiting different levels of virulence in mice, the current study identifies an experimental disease model in which infection can last well over 100 days, mimicking the major features of chronic animal trypanosomosis. In this model, despite the well-controlled parasitemia, infection is hallmarked by severe trypanosomosis-associated pathology. An in-depth scRNA-seq analysis of the latter revealed the complexity of the spleen macrophage activation status, highlighting the crucial role of tissue resident macrophages (TRMs) in regulating splenic extramedullary erythropoiesis. These new data show that in the field of experimental trypanosomosis, macrophage activation profiles have so far been oversimplified into a bi-polar paradigm (M1 vs M2). Interestingly, TRMs exert a double-sided effect on erythroid cells. On one hand, these cells express an erythrophagocytosis associated signature. On another hand, TRMs show high levels of Vcam1 expression, known to support their interaction with hematopoietic stem and progenitor cells (HSPCs). During chronic infection, the latter exhibit upregulated expression of Klf1, E2f8, and Gfi1b genes, involved in erythroid differentiation and extramedullary erythropoiesis. This process gives rise to differentiation of stem cells to BFU-e/CFU-e, Pro E, and Baso E subpopulations. However, infection truncates progressing differentiation at the orthochromatic erythrocytes level, as demonstrated by scRNAseq and flow cytometry. As such, these cells are unable to pass to the reticulocyte stage, resulting in reduced number of mature circulating RBCs and the occurrence of chronic anemia. The physiological consequence of these events is the prolonged poor delivery of oxygen to various tissues, triggering lactic acid acidosis and the catabolic breakdown of muscle tissue, reminiscent of the wasting syndrome that is characteristic for the lethal stage of animal trypanosomosis.
Collapse
Affiliation(s)
- Hang Thi Thu Nguyen
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Magdalena Radwanska
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Stefan Magez
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
27
|
Marked Hyperbilirubinemia Associated with Primary Myelofibrosis Responsive to Ruxolitinib. Case Reports Hepatol 2022; 2022:9630996. [PMID: 35669160 PMCID: PMC9167125 DOI: 10.1155/2022/9630996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
Primary myelofibrosis (PMF) is a chronic myeloproliferative disorder seen in older adults which can present both with hepatosplenomegaly as well as mild nonspecific liver enzyme abnormalities. Mild elevations in bilirubin can occasionally be seen due to both intravascular hemolysis as well as extramedullary hematopoiesis. Marked hyperbilirubinemia as a presenting sign of PMF progression, however, has not been reported. We present the case of a patient with a remote diagnosis of PMF, who presented with marked hyperbilirubinemia with a notable response to ruxolitinib.
Collapse
|