1
|
Soto ME, Pérez-Torres I, Manzano-Pech L, Palacios-Chavarría A, Valdez-Vázquez RR, Guarner-Lans V, Soria-Castro E, Díaz-Díaz E, Castrejón-Tellez V. Redox Homeostasis Alteration Is Restored through Melatonin Treatment in COVID-19 Patients: A Preliminary Study. Int J Mol Sci 2024; 25:4543. [PMID: 38674128 PMCID: PMC11050031 DOI: 10.3390/ijms25084543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Type II pneumocytes are the target of the SARS-CoV-2 virus, which alters their redox homeostasis to increase reactive oxygen species (ROS). Melatonin (MT) has antioxidant proprieties and protects mitochondrial function. In this study, we evaluated whether treatment with MT compensated for the redox homeostasis alteration in serum from COVID-19 patients. We determined oxidative stress (OS) markers such as carbonyls, glutathione (GSH), total antioxidant capacity (TAC), thiols, nitrites (NO2-), lipid peroxidation (LPO), and thiol groups in serum. We also studied the enzymatic activities of glutathione peroxidase (GPx), glutathione-S-transferase (GST), reductase (GR), thioredoxin reductase (TrxR), extracellular superoxide dismutase (ecSOD) and peroxidases. There were significant increases in LPO and carbonyl quantities (p ≤ 0.03) and decreases in TAC and the quantities of NO2-, thiols, and GSH (p < 0.001) in COVID-19 patients. The activities of the antioxidant enzymes such as ecSOD, TrxR, GPx, GST, GR, and peroxidases were decreased (p ≤ 0.04) after the MT treatment. The treatment with MT favored the activity of the antioxidant enzymes that contributed to an increase in TAC and restored the lost redox homeostasis. MT also modulated glucose homeostasis, functioning as a glycolytic agent, and inhibited the Warburg effect. Thus, MT restores the redox homeostasis that is altered in COVID-19 patients and can be used as adjuvant therapy in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- María Elena Soto
- Research Direction, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico;
| | - Israel Pérez-Torres
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (L.M.-P.); (E.S.-C.)
| | - Linaloe Manzano-Pech
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (L.M.-P.); (E.S.-C.)
| | - Adrían Palacios-Chavarría
- Critical Care Units, Temporal COVID-19 Unit, Citibanamex Center, Mexico City 11200, Mexico; (A.P.-C.); (R.R.V.-V.)
| | | | - Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico; (V.G.-L.)
| | - Elizabeth Soria-Castro
- Department of Cardiovascular Biomedicine, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (L.M.-P.); (E.S.-C.)
| | - Eulises Díaz-Díaz
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, Sección XVI, Tlalpan, Mexico City 14000, Mexico;
| | - Vicente Castrejón-Tellez
- Department of Physiology, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, Mexico City 14080, Mexico; (V.G.-L.)
| |
Collapse
|
2
|
Naidu AS, Wang CK, Rao P, Mancini F, Clemens RA, Wirakartakusumah A, Chiu HF, Yen CH, Porretta S, Mathai I, Naidu SAG. Precision nutrition to reset virus-induced human metabolic reprogramming and dysregulation (HMRD) in long-COVID. NPJ Sci Food 2024; 8:19. [PMID: 38555403 PMCID: PMC10981760 DOI: 10.1038/s41538-024-00261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
SARS-CoV-2, the etiological agent of COVID-19, is devoid of any metabolic capacity; therefore, it is critical for the viral pathogen to hijack host cellular metabolic machinery for its replication and propagation. This single-stranded RNA virus with a 29.9 kb genome encodes 14 open reading frames (ORFs) and initiates a plethora of virus-host protein-protein interactions in the human body. These extensive viral protein interactions with host-specific cellular targets could trigger severe human metabolic reprogramming/dysregulation (HMRD), a rewiring of sugar-, amino acid-, lipid-, and nucleotide-metabolism(s), as well as altered or impaired bioenergetics, immune dysfunction, and redox imbalance in the body. In the infectious process, the viral pathogen hijacks two major human receptors, angiotensin-converting enzyme (ACE)-2 and/or neuropilin (NRP)-1, for initial adhesion to cell surface; then utilizes two major host proteases, TMPRSS2 and/or furin, to gain cellular entry; and finally employs an endosomal enzyme, cathepsin L (CTSL) for fusogenic release of its viral genome. The virus-induced HMRD results in 5 possible infectious outcomes: asymptomatic, mild, moderate, severe to fatal episodes; while the symptomatic acute COVID-19 condition could manifest into 3 clinical phases: (i) hypoxia and hypoxemia (Warburg effect), (ii) hyperferritinemia ('cytokine storm'), and (iii) thrombocytosis (coagulopathy). The mean incubation period for COVID-19 onset was estimated to be 5.1 days, and most cases develop symptoms after 14 days. The mean viral clearance times were 24, 30, and 39 days for acute, severe, and ICU-admitted COVID-19 patients, respectively. However, about 25-70% of virus-free COVID-19 survivors continue to sustain virus-induced HMRD and exhibit a wide range of symptoms that are persistent, exacerbated, or new 'onset' clinical incidents, collectively termed as post-acute sequelae of COVID-19 (PASC) or long COVID. PASC patients experience several debilitating clinical condition(s) with >200 different and overlapping symptoms that may last for weeks to months. Chronic PASC is a cumulative outcome of at least 10 different HMRD-related pathophysiological mechanisms involving both virus-derived virulence factors and a multitude of innate host responses. Based on HMRD and virus-free clinical impairments of different human organs/systems, PASC patients can be categorized into 4 different clusters or sub-phenotypes: sub-phenotype-1 (33.8%) with cardiac and renal manifestations; sub-phenotype-2 (32.8%) with respiratory, sleep and anxiety disorders; sub-phenotype-3 (23.4%) with skeleto-muscular and nervous disorders; and sub-phenotype-4 (10.1%) with digestive and pulmonary dysfunctions. This narrative review elucidates the effects of viral hijack on host cellular machinery during SARS-CoV-2 infection, ensuing detrimental effect(s) of virus-induced HMRD on human metabolism, consequential symptomatic clinical implications, and damage to multiple organ systems; as well as chronic pathophysiological sequelae in virus-free PASC patients. We have also provided a few evidence-based, human randomized controlled trial (RCT)-tested, precision nutrients to reset HMRD for health recovery of PASC patients.
Collapse
Affiliation(s)
- A Satyanarayan Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA.
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA.
| | - Chin-Kun Wang
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- School of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung, 40201, Taiwan
| | - Pingfan Rao
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- College of Food and Bioengineering, Fujian Polytechnic Normal University, No.1, Campus New Village, Longjiang Street, Fuqing City, Fujian, China
| | - Fabrizio Mancini
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President-Emeritus, Parker University, 2540 Walnut Hill Lane, Dallas, TX, 75229, USA
| | - Roger A Clemens
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- University of Southern California, Alfred E. Mann School of Pharmacy/D. K. Kim International Center for Regulatory & Quality Sciences, 1540 Alcazar St., CHP 140, Los Angeles, CA, 90089, USA
| | - Aman Wirakartakusumah
- International Union of Food Science and Technology (IUFoST), Guelph, ON, Canada
- IPMI International Business School Jakarta; South East Asian Food and Agriculture Science and Technology, IPB University, Bogor, Indonesia
| | - Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital, Ministry of Health & Well-being, Taichung, Taiwan
| | - Chi-Hua Yen
- Department of Family and Community Medicine, Chung Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Sebastiano Porretta
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President, Italian Association of Food Technology (AITA), Milan, Italy
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121, Parma, Italy
| | - Issac Mathai
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- Soukya International Holistic Health Center, Whitefield, Bengaluru, India
| | - Sreus A G Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA
| |
Collapse
|
3
|
Lempesis IG, Georgakopoulou VE, Reiter RJ, Spandidos DA. A mid‑pandemic night's dream: Melatonin, from harbinger of anti‑inflammation to mitochondrial savior in acute and long COVID‑19 (Review). Int J Mol Med 2024; 53:28. [PMID: 38299237 PMCID: PMC10852014 DOI: 10.3892/ijmm.2024.5352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/23/2024] [Indexed: 02/02/2024] Open
Abstract
Coronavirus disease 2019 (COVID‑19), a systemic illness caused by severe acute respiratory distress syndrome 2 (SARS‑CoV‑2), has triggered a worldwide pandemic with symptoms ranging from asymptomatic to chronic, affecting practically every organ. Melatonin, an ancient antioxidant found in all living organisms, has been suggested as a safe and effective therapeutic option for the treatment of SARS‑CoV‑2 infection due to its good safety characteristics and broad‑spectrum antiviral medication properties. Melatonin is essential in various metabolic pathways and governs physiological processes, such as the sleep‑wake cycle and circadian rhythms. It exhibits oncostatic, anti‑inflammatory, antioxidant and anti‑aging properties, exhibiting promise for use in the treatment of numerous disorders, including COVID‑19. The preventive and therapeutic effects of melatonin have been widely explored in a number of conditions and have been well‑established in experimental ischemia/reperfusion investigations, particularly in coronary heart disease and stroke. Clinical research evaluating the use of melatonin in COVID‑19 has shown various improved outcomes, including reduced hospitalization durations; however, the trials are small. Melatonin can alleviate mitochondrial dysfunction in COVID‑19, improve immune cell function and provide antioxidant properties. However, its therapeutic potential remains underexplored due to funding limitations and thus further investigations are required.
Collapse
Affiliation(s)
- Ioannis G. Lempesis
- Department of Pathophysiology, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Vasiliki Epameinondas Georgakopoulou
- Department of Pathophysiology, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Department of Infectious Diseases-COVID-19 Unit, Laiko General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX 78229, USA
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
4
|
Yiang GT, Wu CC, Lu CL, Hu WC, Tsai YJ, Huang YM, Su WL, Lu KC. Endoplasmic Reticulum Stress in Elderly Patients with COVID-19: Potential of Melatonin Treatment. Viruses 2023; 15:156. [PMID: 36680196 PMCID: PMC9863214 DOI: 10.3390/v15010156] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
Aging processes, including immunosenescence, inflammation, inflammasome formation, genomic instability, telomeric attrition, and altered autophagy, are involved in viral infections and they may contribute to increased pathophysiological responses to the SARS-CoV-2 infection in the elderly; this poses additional risks of accelerated aging, which could be found even after recovery. Aging is associated with oxidative damage. Moreover, SARS-CoV-2 infections may increase the production of reactive oxygen species and such infections will disturb the Ca++ balance via an endoplasmic reticulum (ER) stress-mediated unfolded protein response. Although vaccine development and anti-inflammation therapy lower the severity of COVID-19, the prevalence and mortality rates are still alarming in some countries worldwide. In this review, we describe the involvement of viral proteins in activating ER stress transducers and their downstream signals and in inducing inflammation and inflammasome formation. Furthermore, we propose the potential of melatonin as an ER stress modulator, owing to its antioxidant, anti-inflammatory, and immunoregulatory effects in viral infections. Considering its strong safety profile, we suggest that additive melatonin supplementation in the elderly could be beneficial in treating COVID-19.
Collapse
Affiliation(s)
- Giou-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan
| | - Chia-Chao Wu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
| | - Chien-Lin Lu
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei 24352, Taiwan
| | - Wan-Chung Hu
- Department of Clinical Pathology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan
| | - Yi-Ju Tsai
- Graduate Institute of Biomedical and Pharmaceutical Science, College of Medicine, Fu Jen Catholic University, New Taipei 243, Taiwan
| | - Yiao-Mien Huang
- Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan
| | - Wen-Lin Su
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei 24352, Taiwan
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan
| |
Collapse
|
5
|
Faridzadeh A, Tabashiri A, Miri HH, Mahmoudi M. The role of melatonin as an adjuvant in the treatment of COVID-19: A systematic review. Heliyon 2022; 8:e10906. [PMID: 36254292 PMCID: PMC9540685 DOI: 10.1016/j.heliyon.2022.e10906] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/24/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction Since November 2019, the world has been grappling with the rapid spread of the Coronavirus disease 2019 (COVID-19). In response to this major health crisis, the first vaccination rollout was launched in December 2020. However, even fully vaccinated individuals are not completely immune to infection, albeit with less severe symptoms. Melatonin is known as an anti-oxidant, anti-inflammatory, and immunomodulatory agent whose anti-viral properties, cost-effectiveness, and relatively few side effects make it a potential adjuvant in the treatment of COVID-19. This systematic review aims to summarize the clinical studies on the effects of melatonin on COVID-19 patients. Methods The search of articles was carried out in the Web of Science, PubMed/MEDLINE, Cochrane library, and Scopus databases up to January 2022. Results Ten articles were included in our study. It seems melatonin can decrease inflammatory markers, inflammatory cytokines, and the expression of some genes, including the signal transducer and activator of transcription (STAT)4, STAT6, T-box expressed in T cell (T-bet), GATA binding protein 3 (GATA3), apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), and caspase-1 (CASP1). In addition, melatonin appears to alleviate some clinical signs and symptoms and accelerate recovery. The use of melatonin in severe cases reduces thrombosis, sepsis, and mortality rate. Conclusion This systematic review highlights the probable role of melatonin as a potential adjuvant in the treatment of COVID-19 after about two weeks of consumption. However, further high-quality randomized clinical trials are required.
Collapse
Affiliation(s)
- Arezoo Faridzadeh
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arefeh Tabashiri
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Heidarian Miri
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Wang XC, Wu GL, Cai YF, Zhang SJ. The safety and efficacy of melatonin in the treatment of COVID-19: A systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e30874. [PMID: 36181086 PMCID: PMC9524532 DOI: 10.1097/md.0000000000030874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND As an infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the common signs of coronavirus disease 2019 (COVID-19) are respiratory symptoms, fever, cough, shortness of breath, and dyspnea, with multiple organ injuries in severe cases. Therefore, finding drugs to prevent and treat COVID-19 is urgently needed and expected by the public. Several studies suggested beneficial effects of melatonin for the relevant prevention and treatment. To explore the effect and safety of melatonin in the treatment and provide theoretical support and reference for seeking the most suitable drug for COVID-19, the meta-analysis was carried out accordingly. METHODS It included randomized clinical trials of patients with COVID-19 treated with melatonin. Total effective rate was the primary outcome, while C-reactive protein (CRP), arterial oxygen saturation (SaO2), white blood cell count (WBC) were the secondary measures. Random-effect and fixed-effect models were used to evaluate the effect size of some indicators in this meta-analysis. RESULTS Six eligible studies with 338 participants were included. One hundred seventy subjects were treated with melatonin adjuvant therapy and 168 subjects were assigned to the control group, with total excellent effective rate in subjects treated with melatonin [odds ratio = 3.05, 95 % confidence interval (CI) = 1.47, 6.31, P = .003]. Homogeneity was analyzed by fixed effect model (I2 = 0%). There was no significant difference in CRP between the melatonin group and the control group (weighted mean difference [WMD] = -0.36, 95% CI = -3.65, 2.92, P = .83). Significant difference was not existed in SaO2 between the melatonin treatment group and the control group (WMD = 1, 95% CI = -1.21, 3.22, P = .37). In terms of WBC, there was no significant difference between the 2 groups (WMD = -1.07, 95% CI = -2.44, 0.30, P = .13). CONCLUSIONS The meta-analysis showed that melatonin had the beneficial effects for COVID-19 prevention and treatment as an adjunctive agent in combination with basic treatment for the treatment.
Collapse
Affiliation(s)
- Xin-Chen Wang
- School of Food and Pharmaceutical Engineering, Zhaoqing College, Duanzhou District, Zhaoqing City, China
| | - Guang-Liang Wu
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ye-Feng Cai
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- *Correspondence: Ye-Feng Cai, Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, China (e-mail: )
| | - Shi-Jie Zhang
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
7
|
Essential Oils and Melatonin as Functional Ingredients in Dogs. Animals (Basel) 2022; 12:ani12162089. [PMID: 36009679 PMCID: PMC9405278 DOI: 10.3390/ani12162089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/07/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Phytogenics are plant-based compounds with beneficial actions in feed technology and/or animal health. These so-called plant secondary metabolites are very diverse and with wide possible applications in humans and animals. Among them, essential oils (EOs) are the most used in feed for livestock and pets. Lately, melatonin has acquired new and interesting applications in dogs. Recent studies using EOs and/or melatonin in dog feeding and their involvement in health aspects are presented. Abstract The use of nutraceuticals or functional ingredients is increasingly widespread in human food; their use is also widespread in animal feed. These natural compounds generally come from plant materials and comprise a wide range of substances of a very diverse chemical nature. In animals, these compounds, so-called phytogenics, are used to obtain improvements in feed production/stability and also as functional components with repercussions on animal health. Along with polyphenols, isoprenoid compounds represent a family of substances with wide applications in therapy and pet nutrition. Essential oils (EOs) are a group of complex substances with fat-soluble nature that are widely used. Melatonin is an indolic amine present in all living with amphiphilic nature. In this work, we present a review of the most relevant phytogenics (polyphenol, isoprenoid, and alkaloid compounds), their characteristics, and possible uses as nutraceuticals in dogs, with special emphasis on EOs and their regulatory aspects, applied in foods and topically. Additionally, a presentation of the importance of the use of melatonin in dogs is developed, giving physiological and practical aspects about its use in dog feeding and also in topical application, with examples and future projections. This review points to the combination of EOs and melatonin in food supplements and in the topical application as an innovative product and shows excellent perspectives aimed at addressing dysfunctions in pets, such as the treatment of stress and anxiety, sleep disorders, alopecia, and hair growth problems, among others.
Collapse
|
8
|
Effect of Melatonin in Broccoli Postharvest and Possible Melatonin Ingestion Level. PLANTS 2022; 11:plants11152000. [PMID: 35956477 PMCID: PMC9370688 DOI: 10.3390/plants11152000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 01/28/2023]
Abstract
The post-harvest stage of broccoli production requires cold storage to obtain enough days of shelf life. It has been proved that melatonin is useful as a post-harvest agent in fruits and vegetables, including broccoli. In this study, the broccoli heads treated with melatonin have a longer shelf life than the control samples, which was reflected in parameters such as fresh weight, hue angle (expresses color quality), and chlorophyll and carotenoid contents. Treatments with 100 μM melatonin for 15 or 30 min seem to be the most appropriate, extending the broccoli’s shelf life to almost 42 days, when it is normally around 4 weeks. In addition, a study on the possible impact that melatonin treatments in broccoli could have on melatonin intake in humans is presented. The levels of superficial melatonin, called washing or residual melatonin, are measured, showing the possible incidence in estimated blood melatonin levels. Our results suggest that post-harvest treatments with melatonin do not have to be a handicap from a nutritional point of view, but more research is needed.
Collapse
|
9
|
Unbalanced IDO1/IDO2 Endothelial Expression and Skewed Keynurenine Pathway in the Pathogenesis of COVID-19 and Post-COVID-19 Pneumonia. Biomedicines 2022; 10:biomedicines10061332. [PMID: 35740354 PMCID: PMC9220124 DOI: 10.3390/biomedicines10061332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 11/17/2022] Open
Abstract
Despite intense investigation, the pathogenesis of COVID-19 and the newly defined long COVID-19 syndrome are not fully understood. Increasing evidence has been provided of metabolic alterations characterizing this group of disorders, with particular relevance of an activated tryptophan/kynurenine pathway as described in this review. Recent histological studies have documented that, in COVID-19 patients, indoleamine 2,3-dioxygenase (IDO) enzymes are differentially expressed in the pulmonary blood vessels, i.e., IDO1 prevails in early/mild pneumonia and in lung tissues from patients suffering from long COVID-19, whereas IDO2 is predominant in severe/fatal cases. We hypothesize that IDO1 is necessary for a correct control of the vascular tone of pulmonary vessels, and its deficiency in COVID-19 might be related to the syndrome’s evolution toward vascular dysfunction. The complexity of this scenario is discussed in light of possible therapeutic manipulations of the tryptophan/kynurenine pathway in COVID-19 and post-acute COVID-19 syndromes.
Collapse
|
10
|
Hosseini A, Badri T, Esmaeili Gouvarchin Ghaleh H, Hassanpour K, Alishiri G, Akbariqomi M, Farnoosh G. Melatonin as a complementary and prophylactic agent against COVID‐19 in high‐risk populations: A narrative review of recent findings from clinical and preclinical studies. Fundam Clin Pharmacol 2022; 36:918-929. [DOI: 10.1111/fcp.12805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/23/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Abdolkarim Hosseini
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology Shahid Beheshti University Tehran Iran
| | - Taleb Badri
- Neuroscience Research Center Baqiyatallah University of Medical Sciences Tehran Iran
| | | | - Kazem Hassanpour
- Department of Pediatric, School of Medicine Sabzevar University of Medical Sciences Sabzevar Iran
| | - Gholamhossein Alishiri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute Baqiyatallah University of Medical Sciences Tehran Iran
| | - Mostafa Akbariqomi
- Applied Biotechnology Research Center Baqiyatallah University of Medical Sciences Tehran Iran
| | - Gholamreza Farnoosh
- Applied Biotechnology Research Center Baqiyatallah University of Medical Sciences Tehran Iran
| |
Collapse
|
11
|
Di Micco P. Editorial: Unusual Clinical Presentation of COVID-19. J Clin Med 2022; 11:2953. [PMID: 35683342 PMCID: PMC9181597 DOI: 10.3390/jcm11112953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/19/2022] [Indexed: 12/07/2022] Open
Abstract
Nearly two years ago, the SARS-CoV2 outbreak began, and our lives have changed significantly since then [...].
Collapse
Affiliation(s)
- Pierpaolo Di Micco
- UOC Medicina, Ospedale Buon Consiglio Fatebenefratelli di Napoli, 80122 Naples, Italy
| |
Collapse
|
12
|
Tan DX, Reiter RJ. Mechanisms and clinical evidence to support melatonin's use in severe COVID-19 patients to lower mortality. Life Sci 2022; 294:120368. [PMID: 35108568 PMCID: PMC8800937 DOI: 10.1016/j.lfs.2022.120368] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023]
Abstract
The fear of SARS-CoV-2 infection is due to its high mortality related to seasonal flu. To date, few medicines have been developed to significantly reduce the mortality of the severe COVID-19 patients, especially those requiring tracheal intubation. The severity and mortality of SARS-CoV-2 infection not only depend on the viral virulence, but are primarily determined by the cytokine storm and the destructive inflammation driven by the host immune reaction. Thus, to target the host immune response might be a better strategy to combat this pandemic. Melatonin is a molecule with multiple activities on a virus infection. These include that it downregulates the overreaction of innate immune response to suppress inflammation, promotes the adaptive immune reaction to enhance antibody formation, inhibits the entrance of the virus into the cell as well as limits its replication. These render it a potentially excellent candidate for treatment of the severe COVID-19 cases. Several clinical trials have confirmed that melatonin when added to the conventional therapy significantly reduces the mortality of the severe COVID-19 patients. The cost of melatonin is a small fraction of those medications approved by FDA for emergency use to treat COVID-19. Because of its self-administered, low cost and high safety margin, melatonin could be made available to every country in the world at an affordable cost. We recommend melatonin be used to treat severe COVID-19 patients with the intent of reducing mortality. If successful, it would make the SARS-CoV-2 pandemic less fearful and help to return life back to normalcy.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA.
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|