1
|
Sharma R, Amdare NP, Ghosh A, Schloss J, Sidney J, Garforth SJ, Lopez Y, Celikgil A, Sette A, Almo SC, DiLorenzo TP. Structural and biochemical analysis of highly similar HLA-B allotypes differentially associated with type 1 diabetes. J Biol Chem 2024; 300:107702. [PMID: 39173948 PMCID: PMC11422593 DOI: 10.1016/j.jbc.2024.107702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease involving T cell-mediated destruction of the insulin-producing beta cells in the pancreatic islets of Langerhans. CD8+ T cells, responding to beta cell peptides presented by class I major histocompatibility complex (MHC) molecules, are important effectors leading to beta cell elimination. Human leukocyte antigen (HLA) B∗39:06, B∗39:01, and B∗38:01 are closely related class I MHC allotypes that nonetheless show differential association with T1D. HLA-B∗39:06 is the most predisposing of all HLA class I molecules and is associated with early age at disease onset. B∗39:01 is also associated with susceptibility to T1D, but to a lesser extent, though differing from B∗39:06 by only two amino acids. HLA-B∗38:01, in contrast, is associated with protection from the disease. Upon identifying a peptide that binds to both HLA-B∗39:06 and B∗39:01, we determined the respective X-ray structures of the two allotypes presenting this peptide to 1.7 Å resolution. The peptide residues available for T cell receptor contact and those serving as anchors were identified. Analysis of the F pocket of HLA-B∗39:06 and B∗39:01 provided an explanation for the distinct peptide C terminus preferences of the two allotypes. Structure-based modeling of the protective HLA-B∗38:01 suggested a potential reason for its peptide preferences and its reduced propensity to present 8-mer peptides compared to B∗39:06. Notably, the three allotypes showed differential binding to peptides derived from beta cell autoantigens. Taken together, our findings should facilitate identification of disease-relevant candidate T cell epitopes and structure-guided therapeutics to interfere with peptide binding.
Collapse
Affiliation(s)
- Ruby Sharma
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Nitin P Amdare
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Agnidipta Ghosh
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jennifer Schloss
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Scott J Garforth
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yessenia Lopez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Alev Celikgil
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA; Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, La Jolla, California, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York, USA.
| | - Teresa P DiLorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA; Division of Endocrinology and Diabetes, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA; Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA; Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, New York, USA.
| |
Collapse
|
2
|
Gorini F, Tonacci A. Vitamin D: An Essential Nutrient in the Dual Relationship between Autoimmune Thyroid Diseases and Celiac Disease-A Comprehensive Review. Nutrients 2024; 16:1762. [PMID: 38892695 PMCID: PMC11174782 DOI: 10.3390/nu16111762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Autoimmune thyroid diseases (AITD) are among the most frequent autoimmune disorders, with a multifactorial etiology in which both genetic and environmental determinants are probably involved. Celiac disease (CeD) also represents a public concern, given its increasing prevalence due to the recent improvement of screening programs, leading to the detection of silent subtypes. The two conditions may be closely associated due to common risk factors, including genetic setting, changes in the composition and diversity of the gut microbiota, and deficiency of nutrients like vitamin D. This comprehensive review discussed the current evidence on the pivotal role of vitamin D in modulating both gut microbiota dysbiosis and immune system dysfunction, shedding light on the possible relevance of an adequate intake of this nutrient in the primary prevention of AITD and CeD. While future technology-based strategies for proper vitamin D supplementation could be attractive in the context of personalized medicine, several issues remain to be defined, including standardized assays for vitamin D determination, timely recommendations on vitamin D intake for immune system functioning, and longitudinal studies and randomized controlled trials to definitely establish a causal relationship between serum vitamin D levels and the onset of AITD and CeD.
Collapse
Affiliation(s)
- Francesca Gorini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy;
| | | |
Collapse
|
3
|
Li W, Ke T, Wang J, Zhu F, Chi Y. Association Between HLA-DRB1 Alleles and Graves' Disease in Asian Populations: A Meta-Analysis. Horm Metab Res 2024. [PMID: 38698581 DOI: 10.1055/a-2298-4366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Graves' disease (GD) is an autoimmune disease that primarily affects the thyroid gland. It is the most common cause of hyperthyroidism. Genetic studies have shown that human leukocyte antigen (HLA) plays an important role in the development of GD. In this article, we performed a meta-analysis determined to evaluate the relationship between HLA-DRB1 alleles and GD. This meta-analysis included 9 studies (3582 cases in the case group and 23070 cases in the control group) and 27 alleles was performed. The combined results showed that, compared with the control group, GD patients have a significant increase in the frequency of DRB1*1403 (OR=2.50, 95% CI=1.78-3.51, pc<0.0001) and have a significant decrease in frequencies of DRB1* 0101 (OR=0.45, 95% CI=0.34-0.59, pc<0.0001) and DRB1*0701 (OR=0.44, 95% CI=0.35-0.55, pc<0.0001). The meta-analysis indicated that, in Asian populations, DRB1*1403 is a risk allele for GD, and DRB1*0101 and DRB1*0701 are protective against the occurrence of GD. We surprisingly discovered that the susceptibility alleles for GD in Asian populations are completely different from Caucasians and the protective alleles for GD in Asians are quite similar to those of Caucasians. The results of our study may provide new opportunities for gene-targeted therapy for GD in Asian populations.
Collapse
Affiliation(s)
- Wenyi Li
- Endocrinology Department, Kunming Medical University Second Affiliated Hospital, Kunming, China
| | - Tingyu Ke
- Endocrinology Department, Kunming Medical University Second Affiliated Hospital, Kunming, China
| | - Jia Wang
- Endocrinology Department, Kunming Medical University Second Affiliated Hospital, Kunming, China
| | - Fangling Zhu
- Endocrinology Department, Kunming Medical University Second Affiliated Hospital, Kunming, China
| | - Yan Chi
- Endocrinology Department, Kunming Medical University Second Affiliated Hospital, Kunming, China
| |
Collapse
|
4
|
Chiorean AD, Nicula GZ, Bâlici Ș, Vică ML, Iancu Loga LI, Dican L, Matei HV. HLA Class II Allele Groups Involved in Autoimmune Thyroid Diseases: Hashimoto's Thyroiditis and Basedow-Graves Disease. Life (Basel) 2024; 14:441. [PMID: 38672712 PMCID: PMC11050925 DOI: 10.3390/life14040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Autoimmune thyroid diseases (AITD), particularly Hashimoto's thyroiditis (HT) and Basedow-Graves disease (BGD) are diseases of global public health concern, characterized by autoimmune attacks on the thyroid gland, leading to hypothyroidism in HT and hyperthyroidism in BGD. We conducted a study between 2019 and 2021 in northwestern Transylvania (Romania) on patients with HT and with BGD compared to the control group. The aim of the study was to investigate the correlations of HLA class II alleles with AITD by identifying potential genetic susceptibility factors such as HLA-DRB1 and HLA-DQB1 genes in patients diagnosed with HT and BGD. Various molecular biology methods, including SSP-PCR low-resolution and PCR-SSO were employed to analyze DNA samples from patients and control subjects. Our study revealed the influence of the HLA-DRB1*03/*16 genotype as a genetic susceptibility factor for HT, a similar influence regarding BGD being observed for the HLA-DRB1*03 allele group, DRB1*03/*16 genotype, and the DRB1*03/DQB1*06 haplotype. The only protective factor detected in our study was the HLA-DRB1*13 allele group, for both HT and BGD. By elucidating any specific allele or genotype associations that might contribute to the development of AITD, our study can contribute to the prevention and early detection of these diseases.
Collapse
Affiliation(s)
- Alin-Dan Chiorean
- Department of Cell and Molecular Biology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.-D.C.); (G.Z.N.); (Ș.B.); (H.V.M.)
- Emergency Clinical Hospital for Children, 400370 Cluj-Napoca, Romania
| | - Gheorghe Zsolt Nicula
- Department of Cell and Molecular Biology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.-D.C.); (G.Z.N.); (Ș.B.); (H.V.M.)
| | - Ștefana Bâlici
- Department of Cell and Molecular Biology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.-D.C.); (G.Z.N.); (Ș.B.); (H.V.M.)
| | - Mihaela Laura Vică
- Department of Cell and Molecular Biology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.-D.C.); (G.Z.N.); (Ș.B.); (H.V.M.)
- Legal Medicine Institute Cluj-Napoca, 400006 Cluj-Napoca, Romania
| | - Luminita-Ioana Iancu Loga
- Clinical Institute of Urology and Renal Transplantation, 400000 Cluj-Napoca, Romania; (L.-I.I.L.); (L.D.)
| | - Lucia Dican
- Clinical Institute of Urology and Renal Transplantation, 400000 Cluj-Napoca, Romania; (L.-I.I.L.); (L.D.)
- Department of Medical Biochemistry, Faculty of Medicine, “Iuliu-Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Horea Vladi Matei
- Department of Cell and Molecular Biology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.-D.C.); (G.Z.N.); (Ș.B.); (H.V.M.)
- Legal Medicine Institute Cluj-Napoca, 400006 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Kulski JK, Suzuki S, Shiina T, Pfaff AL, Kõks S. Regulatory SVA retrotransposons and classical HLA genotyped-transcripts associated with Parkinson's disease. Front Immunol 2024; 15:1349030. [PMID: 38590523 PMCID: PMC10999589 DOI: 10.3389/fimmu.2024.1349030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/06/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction Parkinson's disease (PD) is a neurodegenerative and polygenic disorder characterised by the progressive loss of neural dopamine and onset of movement disorders. We previously described eight SINE-VNTR-Alu (SVA) retrotransposon-insertion-polymorphisms (RIPs) located and expressed within the Human Leucocyte Antigen (HLA) genomic region of chromosome 6 that modulate the differential co-expression of 71 different genes including the HLA classical class I and class II genes in a Parkinson's Progression Markers Initiative (PPMI) cohort. Aims and methods In the present study, we (1) reanalysed the PPMI genomic and transcriptomic sequencing data obtained from whole blood of 1521 individuals (867 cases and 654 controls) to infer the genotypes of the transcripts expressed by eight classical HLA class I and class II genes as well as DRA and the DRB3/4/5 haplotypes, and (2) examined the statistical differences between three different PD subgroups (cases) and healthy controls (HC) for the HLA and SVA transcribed genotypes and inferred haplotypes. Results Significant differences for 57 expressed HLA alleles (21 HLA class I and 36 HLA class II alleles) up to the three-field resolution and four of eight expressed SVA were detected at p<0.05 by the Fisher's exact test within one or other of three different PD subgroups (750 individuals with PD, 57 prodromes, 60 individuals who had scans without evidence of dopamine deficits [SWEDD]), when compared against a group of 654 HCs within the PPMI cohort and when not corrected by the Bonferroni test for multiple comparisons. Fourteen of 20 significant alleles were unique to the PD-HC comparison, whereas 31 of the 57 alleles overlapped between two or more different subgroup comparisons. Only the expressed HLA-DRA*01:01:01 and -DQA1*03:01:01 protective alleles (PD v HC), the -DQA1*03:03:01 risk (HC v Prodrome) or protective allele (PD v Prodrome), the -DRA*01:01:02 and -DRB4*01:03:02 risk alleles (SWEDD v HC), and the NR_SVA_381 present genotype (PD v HC) at a 5% homozygous insertion frequency near HLA-DPA1, were significant (Pc<0.1) after Bonferroni corrections. The homologous NR_SVA_381 insertion significantly decreased the transcription levels of HLA-DPA1 and HLA-DPB1 in the PPMI cohort and its presence as a homozygous genotype is a risk factor (Pc=0.012) for PD. The most frequent NR_SVA_381 insertion haplotype in the PPMI cohort was NR_SVA_381/DPA1*02/DPB1*01 (3.7%). Although HLA C*07/B*07/DRB5*01/DRB1*15/DQB1*06 was the most frequent HLA 5-loci phased-haplotype (n, 76) in the PPMI cohort, the NR_SVA_381 insertion was present in only six of them (8%). Conclusions These data suggest that expressed SVA and HLA gene alleles in circulating white blood cells are coordinated differentially in the regulation of immune responses and the long-term onset and progression of PD, the mechanisms of which have yet to be elucidated.
Collapse
Affiliation(s)
- Jerzy K. Kulski
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
- Health and Medical Science, Division of Immunology and Microbiology, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Shingo Suzuki
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Abigail L. Pfaff
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, Perth, WA, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
| |
Collapse
|
6
|
Marzouka NAD, Alnaqbi H, Al-Aamri A, Tay G, Alsafar H. Investigating the genetic makeup of the major histocompatibility complex (MHC) in the United Arab Emirates population through next-generation sequencing. Sci Rep 2024; 14:3392. [PMID: 38337023 PMCID: PMC10858242 DOI: 10.1038/s41598-024-53986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
The Human leukocyte antigen (HLA) molecules are central to immune response and have associations with the phenotypes of various diseases and induced drug toxicity. Further, the role of HLA molecules in presenting antigens significantly affects the transplantation outcome. The objective of this study was to examine the extent of the diversity of HLA alleles in the population of the United Arab Emirates (UAE) using Next-Generation Sequencing methodologies and encompassing a larger cohort of individuals. A cohort of 570 unrelated healthy citizens of the UAE volunteered to provide samples for Whole Genome Sequencing and Whole Exome Sequencing. The definition of the HLA alleles was achieved through the application of the bioinformatics tools, HLA-LA and xHLA. Subsequently, the findings from this study were compared with other local and international datasets. A broad range of HLA alleles in the UAE population, of which some were previously unreported, was identified. A comparison with other populations confirmed the current population's unique intertwined genetic heritage while highlighting similarities with populations from the Middle East region. Some disease-associated HLA alleles were detected at a frequency of > 5%, such as HLA-B*51:01, HLA-DRB1*03:01, HLA-DRB1*15:01, and HLA-DQB1*02:01. The increase in allele homozygosity, especially for HLA class I genes, was identified in samples with a higher level of genome-wide homozygosity. This highlights a possible effect of consanguinity on the HLA homozygosity. The HLA allele distribution in the UAE population showcases a unique profile, underscoring the need for tailored databases for traditional activities such as unrelated transplant matching and for newer initiatives in precision medicine based on specific populations. This research is part of a concerted effort to improve the knowledge base, particularly in the fields of transplant medicine and investigating disease associations as well as in understanding human migration patterns within the Arabian Peninsula and surrounding regions.
Collapse
Affiliation(s)
- Nour Al Dain Marzouka
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Halima Alnaqbi
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Amira Al-Aamri
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Guan Tay
- Division of Psychiatry, Faculty of Health and Medical Sciences, Medical School, The University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Habiba Alsafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
7
|
Xian W, Liu B, Li J, Yang Y, Hong S, Xiao H, Wu D, Li Y. Graves' disease and systemic lupus erythematosus: a Mendelian randomization study. Front Immunol 2024; 15:1273358. [PMID: 38352885 PMCID: PMC10863043 DOI: 10.3389/fimmu.2024.1273358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Previous observational studies have established a correlation between Graves' disease(GD) and systemic lupus erythematosus(SLE). However, whether a causal relationship exists between these two diseases remains unknown.We utilized Mendelian randomization to infer the causal association between GD and SLE. Methods This study employed GWAS summary statistics of GD and SLE in individuals of Asian descent. The random effect inverse variance weighted (IVW) method was utilized to aggregate the causal effect estimates of all SNPs. Cochran's Q values were computed to evaluate the heterogeneity among instrumental variables. Sensitivity analyses such as MR-Egger method, median weighting method, leave-one-out method, and MR-PRESSO method were used to test whether there was horizontal pleiotropy of instrumental variables. Results Our study found genetically predicted GD may increase risk of SLE (OR=1.17, 95% CI 0.99-1.40, p=0.069). Additionally, genetically predicted SLE elevated the risk of developing GD by 15% (OR=1.15, 95% CI 1.05-1.27, p= 0.004). After correcting for possible horizontal pleiotropy by excluding outlier SNPs, the results suggested that GD increased the risk of SLE (OR=1.27, 95% CI 1.09-1.48, p =0.018), while SLE also increased the risk of developing GD (OR=1.13, 95% CI 1.05-1.22, p =0.003). Conclusion The findings of the study indicate that there may be a correlation between GD and SLE, with each potentially increasing the risk of the other. These results have important implications for the screening and treatment of patients with co-morbidities in clinical settings, as well as for further research into the molecular mechanisms underlying the relationship between GD and SLE.
Collapse
Affiliation(s)
- Wei Xian
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Pediatric Allergy, Immunology & Rheumatology, Guangzhou Women and Children’s Medical Center, Guangzhou, Guangdong, China
| | - Boyuan Liu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jinjian Li
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yuxin Yang
- Zhongshan School of Medicine, Sun Yat Sen University, Guangzhou, Guangdong, China
| | - Shubin Hong
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Dide Wu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanbing Li
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Li X, Peng X, Zoulikha M, Boafo GF, Magar KT, Ju Y, He W. Multifunctional nanoparticle-mediated combining therapy for human diseases. Signal Transduct Target Ther 2024; 9:1. [PMID: 38161204 PMCID: PMC10758001 DOI: 10.1038/s41392-023-01668-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/14/2023] [Accepted: 10/10/2023] [Indexed: 01/03/2024] Open
Abstract
Combining existing drug therapy is essential in developing new therapeutic agents in disease prevention and treatment. In preclinical investigations, combined effect of certain known drugs has been well established in treating extensive human diseases. Attributed to synergistic effects by targeting various disease pathways and advantages, such as reduced administration dose, decreased toxicity, and alleviated drug resistance, combinatorial treatment is now being pursued by delivering therapeutic agents to combat major clinical illnesses, such as cancer, atherosclerosis, pulmonary hypertension, myocarditis, rheumatoid arthritis, inflammatory bowel disease, metabolic disorders and neurodegenerative diseases. Combinatorial therapy involves combining or co-delivering two or more drugs for treating a specific disease. Nanoparticle (NP)-mediated drug delivery systems, i.e., liposomal NPs, polymeric NPs and nanocrystals, are of great interest in combinatorial therapy for a wide range of disorders due to targeted drug delivery, extended drug release, and higher drug stability to avoid rapid clearance at infected areas. This review summarizes various targets of diseases, preclinical or clinically approved drug combinations and the development of multifunctional NPs for combining therapy and emphasizes combinatorial therapeutic strategies based on drug delivery for treating severe clinical diseases. Ultimately, we discuss the challenging of developing NP-codelivery and translation and provide potential approaches to address the limitations. This review offers a comprehensive overview for recent cutting-edge and challenging in developing NP-mediated combination therapy for human diseases.
Collapse
Affiliation(s)
- Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Xiuju Peng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Makhloufi Zoulikha
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China
| | - Kosheli Thapa Magar
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Yanmin Ju
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China.
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
| |
Collapse
|
9
|
Stasiak M, Stasiak B, Zawadzka-Starczewska K, Lewiński A. Significance of HLA in Graves' disease and Graves' orbitopathy in Asian and Caucasian populations - a systematic review. Front Immunol 2023; 14:1256922. [PMID: 37841270 PMCID: PMC10568027 DOI: 10.3389/fimmu.2023.1256922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/04/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Graves' disease (GD) and Graves' orbitopathy (GO) development were suspected to be HLA-related in both Asian and Caucasian populations. However, most studies were performed with application of serological methods or low resolution genetic typing, which led to inconsistent results even among the same population. The present review is intended to summarize the state-of-art knowledge on the HLA significance in GD and GO in Asians and Caucasians, as well as to find the most significant alleles for each of the populations. Methods PubMed was searched for relevant articles using the following search terms: HLA plus thyroid-associated ophthalmopathy or Graves' disease or Graves' orbitopathy or thyroid eye disease or thyroid-associated orbitopathy. Results In Asian population GD was found to be associated mostly with B*46:01, DPB1*05:01, DRB1*08:02/03, DRB1*16:02, DRB1*14:03, DRB1*04:05, DQB1*05:02 and DQB1*03:03, while DRB1*07:01, DRB1*01:01, DRB1*13:02, DRB1*12:02 are potentially protective. HLA-B*38:02, DRB1*16:02, DQA1*01:02, DQB1*05:02 can be considered associated with increased risk of GO in Asians, while HLA-B*54:01 may play protective role. In Caucasians, C*07:01, DQA1*05:01, DRB1*03, DQB1*02:01 are associated with GD risk while DRB1*07:01, DQA1*02:01 may be protective. Significance of HLA in the course of GD and novel aspects of HLA amino acid variants and potential HLA-based treatment modalities were also discussed.
Collapse
Affiliation(s)
- Magdalena Stasiak
- Department of Endocrinology and Metabolic Diseases, Polish Mother’s Memorial Hospital—Research Institute, Lodz, Poland
| | - Bartłomiej Stasiak
- Institute of Information Technology, Lodz University of Technology, Lodz, Poland
| | | | - Andrzej Lewiński
- Department of Endocrinology and Metabolic Diseases, Polish Mother’s Memorial Hospital—Research Institute, Lodz, Poland
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
10
|
Gerencer M, McGuffin LJ. Are the integrin binding motifs within SARS CoV-2 spike protein and MHC class II alleles playing the key role in COVID-19? Front Immunol 2023; 14:1177691. [PMID: 37492575 PMCID: PMC10364474 DOI: 10.3389/fimmu.2023.1177691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/22/2023] [Indexed: 07/27/2023] Open
Abstract
The previous studies on the RGD motif (aa403-405) within the SARS CoV-2 spike (S) protein receptor binding domain (RBD) suggest that the RGD motif binding integrin(s) may play an important role in infection of the host cells. We also discussed the possible role of two other integrin binding motifs that are present in S protein: LDI (aa585-587) and ECD (661-663), the motifs used by some other viruses in the course of infection. The MultiFOLD models for protein structure analysis have shown that the ECD motif is clearly accessible in the S protein, whereas the RGD and LDI motifs are partially accessible. Furthermore, the amino acids that are present in Epstein-Barr virus protein (EBV) gp42 playing very important role in binding to the HLA-DRB1 molecule and in the subsequent immune response evasion, are also present in the S protein heptad repeat-2. Our MultiFOLD model analyses have shown that these amino acids are clearly accessible on the surface in each S protein chain as monomers and in the homotrimer complex and bind to HLA-DRB1 β chain. Therefore, they may have the identical role in SARS CoV-2 immune evasion as in EBV infection. The prediction analyses of the MHC class II binding peptides within the S protein have shown that the RGD motif is present in the core 9-mer peptide IRGDEVRQI within the two HLA-DRB1*03:01 and HLA-DRB3*01.01 strong binding 15-mer peptides suggesting that RGD motif may be the potential immune epitope. Accordingly, infected HLA-DRB1*03:01 or HLA-DRB3*01.01 positive individuals may develop high affinity anti-RGD motif antibodies that react with the RGD motif in the host proteins, like fibrinogen, thrombin or von Willebrand factor, affecting haemostasis or participating in autoimmune disorders.
Collapse
Affiliation(s)
| | - Liam J. McGuffin
- School of Biological Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
11
|
Trovato M, Valenti A. Medical Applications of Molecular Biotechnologies in the Context of Hashimoto's Thyroiditis. Diagnostics (Basel) 2023; 13:2114. [PMID: 37371008 DOI: 10.3390/diagnostics13122114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Hashimoto's thyroiditis (HT) is a gender autoimmune disease that is manifested by chronic inflammation of the thyroid. Clinical trial studies (CTSs) use molecular biotechnologies (MB) to approach HT appearance. The aims of this study were to analyze the applications of MB in CTSs carried out in HT populations (HT-CTSs). Further, to evaluate the role of MB in the context of the hygiene hypothesis (HH). From 75 HT-CTSs found at clinicaltrials.gov web place, forty-five were considered for this investigation. Finally, six HT-CTSs were reported as molecular HT-CTSs (mHT-CTSs) because these were planning to utilize MB. Two of mHT-CTSs were programmed on the French population to isolate DNA viral sequences. Blood, urine, and thyroid tissue biospecimens were analyzed to pick out the parvo and polyoma viruses. Two mHT-CTSs carried out in China aimed to identify oral and fecal microbiotas by measuring PCR sequencing of the 16S rRNA gene. Two mHT-CTSs were programmed in the USA and Greece, respectively, for interception of DNA polymorphisms to associate with genetic susceptibility to HT. In conclusion, MB are mainly employed in HT-CTSs for infective pathogenesis and genetic fingerprinting of HT. Furthermore, MB do not provide evidence of HH; however, they are useful for providing direct evidence of the presence of viruses.
Collapse
Affiliation(s)
- Maria Trovato
- Department of Clinical and Experimental Medicine, University Hospital, 98125 Messina, Italy
| | - Andrea Valenti
- Department of Clinical and Experimental Medicine, University Hospital, 98125 Messina, Italy
| |
Collapse
|
12
|
Stasiak M, Zawadzka-Starczewska K, Tymoniuk B, Stasiak B, Lewiński A. Associations between Lipid Profiles and Graves' Orbitopathy can Be HLA-Dependent. Genes (Basel) 2023; 14:1209. [PMID: 37372389 DOI: 10.3390/genes14061209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The risk of Graves' orbitopathy (GO) is related to the human leukocyte antigen (HLA) profile and was demonstrated to be increased in patients with elevated total cholesterol (TC) and/or low-density lipoprotein (LDL) cholesterol. We hypothesized that there were some HLA alleles that were related to both GO and TC and/or LDL levels. Therefore, the aim of the study was to compare the TC/LDL results in patients in whom GO-related HLA alleles were present to those in whom they did not occur. HLA classes were genotyped using a next-generation sequencing method in 118 patients with Graves' disease (GD), including 63 and 55 patients with and without GO, respectively. Lipid profiles were assessed at the time of the GD diagnosis. A significant correlation between the presence of GO high-risk alleles (HLA-B*37:01 and C*03:02) and higher TC/LDL levels was found. Additionally, the presence of alleles associated with non-GO GD (HLA-C*17:01 and B*08:01), as well as alleles in linkage disequilibrium with B*08:01 (i.e., HLA-DRB1*03:01 and DQB1*02:01), was correlated with lower TC levels. These results further confirm the significance of TC/LDL in the risk of GO development and provide evidence that associations between TC/LDL and GO can be HLA-dependent.
Collapse
Affiliation(s)
- Magdalena Stasiak
- Department of Endocrinology and Metabolic Diseases, Polish Mother's Memorial Hospital-Research Institute, 281/289 Rzgowska St., 93-338 Lodz, Poland
| | - Katarzyna Zawadzka-Starczewska
- Department of Endocrinology and Metabolic Diseases, Polish Mother's Memorial Hospital-Research Institute, 281/289 Rzgowska St., 93-338 Lodz, Poland
| | - Bogusław Tymoniuk
- Department of Immunology, Rheumatology and Allergy, Medical University of Lodz, 251 Pomorska St., 92-213 Lodz, Poland
| | - Bartłomiej Stasiak
- Institute of Information Technology, Lodz University of Technology, 215 Wolczanska St., 90-924 Lodz, Poland
| | - Andrzej Lewiński
- Department of Endocrinology and Metabolic Diseases, Polish Mother's Memorial Hospital-Research Institute, 281/289 Rzgowska St., 93-338 Lodz, Poland
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 281/289 Rzgowska St., 93-338 Lodz, Poland
| |
Collapse
|
13
|
Zala A, Thomas R. Antigen-specific immunotherapy to restore antigen-specific tolerance in Type 1 diabetes and Graves' disease. Clin Exp Immunol 2023; 211:164-175. [PMID: 36545825 PMCID: PMC10019129 DOI: 10.1093/cei/uxac115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/23/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Type 1 diabetes and Graves' disease are chronic autoimmune conditions, characterized by a dysregulated immune response. In Type 1 diabetes, there is beta cell destruction and subsequent insulin deficiency whereas in Graves' disease, there is unregulated excessive thyroid hormone production. Both diseases result in significant psychosocial, physiological, and emotional burden. There are associated risks of diabetic ketoacidosis and hypoglycaemia in Type 1 diabetes and risks of thyrotoxicosis and orbitopathy in Graves' disease. Advances in the understanding of the immunopathogenesis and response to immunotherapy in Type 1 diabetes and Graves' disease have facilitated the introduction of targeted therapies to induce self-tolerance, and subsequently, the potential to induce long-term remission if effective. We explore current research surrounding the use of antigen-specific immunotherapies, with a focus on human studies, in Type 1 diabetes and Graves' disease including protein-based, peptide-based, dendritic-cell-based, and nanoparticle-based immunotherapies, including discussion of factors to be considered when translating immunotherapies to clinical practice.
Collapse
Affiliation(s)
- Aakansha Zala
- Frazer Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Ranjeny Thomas
- Correspondence: Ranjeny Thomas, Frazer Institute, The University of Queensland.
| |
Collapse
|
14
|
Vargas-Uricoechea H. Molecular Mechanisms in Autoimmune Thyroid Disease. Cells 2023; 12:918. [PMID: 36980259 PMCID: PMC10047067 DOI: 10.3390/cells12060918] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
The most common cause of acquired thyroid dysfunction is autoimmune thyroid disease, which is an organ-specific autoimmune disease with two presentation phenotypes: hyperthyroidism (Graves-Basedow disease) and hypothyroidism (Hashimoto's thyroiditis). Hashimoto's thyroiditis is distinguished by the presence of autoantibodies against thyroid peroxidase and thyroglobulin. Meanwhile, autoantibodies against the TSH receptor have been found in Graves-Basedow disease. Numerous susceptibility genes, as well as epigenetic and environmental factors, contribute to the pathogenesis of both diseases. This review summarizes the most common genetic, epigenetic, and environmental mechanisms involved in autoimmune thyroid disease.
Collapse
Affiliation(s)
- Hernando Vargas-Uricoechea
- Metabolic Diseases Study Group, Department of Internal Medicine, Universidad del Cauca, Carrera 6 Nº 13N-50, Popayán 190001, Colombia
| |
Collapse
|
15
|
Yasuda S, Suzuki S, Yanagisawa S, Morita H, Haisa A, Satomura A, Nakajima R, Oikawa Y, Inoue I, Shimada A. HLA typing of patients who developed subacute thyroiditis and Graves' disease after SARS-CoV-2 vaccination: a case report. BMC Endocr Disord 2023; 23:54. [PMID: 36879263 PMCID: PMC9988595 DOI: 10.1186/s12902-023-01287-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 01/27/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Cases of subacute thyroiditis (SAT) after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination have been reported. A human leukocyte antigen (HLA) allele, HLA-B*35, appears to be involved in the pathogenesis of SAT. CASE PRESENTATION We conducted HLA typing of one patient with SAT and another with both SAT and Graves' disease (GD), which developed after SARS-CoV-2 vaccination. Patient 1, a 58-year-old Japanese man, was inoculated with a SARS-CoV-2 vaccine (BNT162b2; Pfizer, New York, NY, USA). He developed fever (38 °C), cervical pain, palpitations, and fatigue on day 10 after vaccination. Blood chemistry tests revealed thyrotoxicosis and elevated serum C-reactive protein (CRP) and slightly increased serum antithyroid-stimulating antibody (TSAb) levels. Thyroid ultrasonography revealed the characteristic findings of SAT. Patient 2, a 36-year-old Japanese woman, was inoculated twice with a SARS-CoV-2 vaccine (mRNA-1273; Moderna, Cambridge, MA, USA). She developed fever (37.8 °C) and thyroid gland pain on day 3 after the second vaccination. Blood chemistry tests revealed thyrotoxicosis and elevated serum CRP, TSAb, and antithyroid-stimulating hormone receptor antibody levels. Fever and thyroid gland pain persisted. Thyroid ultrasonography revealed the characteristic findings of SAT (i.e., slight swelling and a focal hypoechoic area with decreased blood flow). Prednisolone treatment was effective for SAT. However, thyrotoxicosis causing palpitations relapsed thereafter, for which thyroid scintigraphy with 99mtechnetium pertechnetate was conducted, and the patient was diagnosed with GD. Thiamazole treatment was then initiated, which led to improvement in symptoms. CONCLUSION HLA typing revealed that both patients had the HLA-B*35:01, -C*04:01, and -DPB1*05:01 alleles. Only patient 2 had the HLA-DRB1*11:01 and HLA-DQB1*03:01 alleles. The HLA-B*35:01 and HLA-C*04:01 alleles appeared to be involved in the pathogenesis of SAT after SARS-CoV-2 vaccination, and the HLA-DRB1*11:01 and HLA-DQB1*03:01 alleles were speculated to be involved in the postvaccination pathogenesis of GD.
Collapse
Affiliation(s)
- Shigemitsu Yasuda
- Department of Endocrinology and Diabetes, Saitama Medical University, Morohongo 38, Moroyama, Iruma-gun, Saitama, 350-0495, Japan.
| | - Seiya Suzuki
- Department of Endocrinology and Diabetes, Saitama Medical University, Morohongo 38, Moroyama, Iruma-gun, Saitama, 350-0495, Japan
| | - Shinnosuke Yanagisawa
- Department of Endocrinology and Diabetes, Saitama Medical University, Morohongo 38, Moroyama, Iruma-gun, Saitama, 350-0495, Japan
| | - Hideo Morita
- Department of Endocrinology and Diabetes, Saitama Medical University, Morohongo 38, Moroyama, Iruma-gun, Saitama, 350-0495, Japan
| | - Akifumi Haisa
- Department of Endocrinology and Diabetes, Saitama Medical University, Morohongo 38, Moroyama, Iruma-gun, Saitama, 350-0495, Japan
| | - Atsushi Satomura
- Department of Endocrinology and Diabetes, Saitama Medical University, Morohongo 38, Moroyama, Iruma-gun, Saitama, 350-0495, Japan
| | - Ritsuko Nakajima
- Department of Endocrinology and Diabetes, Saitama Medical University, Morohongo 38, Moroyama, Iruma-gun, Saitama, 350-0495, Japan
| | - Yoichi Oikawa
- Department of Endocrinology and Diabetes, Saitama Medical University, Morohongo 38, Moroyama, Iruma-gun, Saitama, 350-0495, Japan
| | - Ikuo Inoue
- Department of Endocrinology and Diabetes, Saitama Medical University, Morohongo 38, Moroyama, Iruma-gun, Saitama, 350-0495, Japan
| | - Akira Shimada
- Department of Endocrinology and Diabetes, Saitama Medical University, Morohongo 38, Moroyama, Iruma-gun, Saitama, 350-0495, Japan
| |
Collapse
|
16
|
Stasiak M, Zawadzka-Starczewska K, Tymoniuk B, Stasiak B, Lewiński A. Significance of HLA in the development of Graves' orbitopathy. Genes Immun 2023; 24:32-38. [PMID: 36639701 PMCID: PMC9935388 DOI: 10.1038/s41435-023-00193-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Graves' disease (GD), similarly to most autoimmune disease, is triggered by environmental factors in genetically predisposed individuals. Particular HLA alleles increase or decrease GD risk. No such correlation was demonstrated for Graves' orbitopathy (GO) in Caucasian population. HLA-A, -B, -C, -DQB1 and -DRB1 genotyping was performed using a high-resolution method in a total number of 2378 persons including 70 patients with GO, 91 patients with non-GO GD and 2217 healthy controls to compare allele frequencies between GO, non-GO and controls. Significant associations between GO and HLA profile were demonstrated, with HLA-A*01:01, -A*32:01, -B*37:01, -B*39:01, -B*42:01, -C*08:02, C*03:02, DRB1*03:01, DRB1*14:01 and DQB1*02:01 being genetic markers of increased risk of GO, and HLA-C*04:01, -C*03:04, -C*07:02 and -DRB1*15:02 being protective alleles. Moreover, correlations between HLA alleles and increased or decreased risk of non-GO GD, but with no impact on risk of GO development, were revealed. Identification of these groups of GO-related and GO-protective alleles, as well as the alleles strongly related to non-GO GD, constitutes an important step in a development of personalized medicine, with individual risk assessment and patient-tailored treatment.
Collapse
Affiliation(s)
- Magdalena Stasiak
- Polish Mother's Memorial Hospital - Research Institute, Department of Endocrinology and Metabolic Diseases, Lodz, Poland.
| | - Katarzyna Zawadzka-Starczewska
- grid.415071.60000 0004 0575 4012Polish Mother’s Memorial Hospital - Research Institute, Department of Endocrinology and Metabolic Diseases, Lodz, Poland
| | - Bogusław Tymoniuk
- grid.8267.b0000 0001 2165 3025Medical University of Lodz, Department of Immunology, Rheumatology and Allergy, Lodz, Poland
| | - Bartłomiej Stasiak
- grid.412284.90000 0004 0620 0652Lodz University of Technology, Institute of Information Technology, Lodz, Poland
| | - Andrzej Lewiński
- grid.415071.60000 0004 0575 4012Polish Mother’s Memorial Hospital - Research Institute, Department of Endocrinology and Metabolic Diseases, Lodz, Poland ,grid.8267.b0000 0001 2165 3025Medical University of Lodz, Department of Endocrinology and Metabolic Diseases, Lodz, Poland
| |
Collapse
|
17
|
Zawadzka-Starczewska K, Stasiak B, Wojciechowska-Durczyńska K, Lewiński A, Stasiak M. Novel Insight into Non-Genetic Risk Factors of Graves' Orbitopathy. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16941. [PMID: 36554821 PMCID: PMC9779411 DOI: 10.3390/ijerph192416941] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
An assessment of the risk of Graves' orbitopathy (GO) is an important challenge in Graves' disease (GD) management. The purpose of this study was to compare non-genetic parameters in GD patients with and without GO in order to find novel risk factors and to verify the factors already reported. A total number of 161 people, 70 with GO and 91 non-GO patients were included in this study. GO was confirmed to be associated with smoking, older age, higher TSH receptor antibodies (TRAb) and lower thyroglobulin antibody (TgAb) levels and hypercholesterolemia. We demonstrated the latter correlation even for only a mild increase in LDL cholesterol. Importantly, our study provides novel potential GO risk factors, including higher serum creatinine levels, higher MCV and lower PLT. If further confirmed, these new, simple and easily accessible potential GO markers may constitute valuable auxiliary markers in GO risk assessments. We additionally proved that in moderate to severe GO, gender-related differences attenuate. No impact of vitamin D deficiency in GO development in patients with 25-hydroxyvitamin D [25(OH)D] > 20 ng/mL was found. The present report provides a set of GO risk factors, which can be used as a precise tool for an individual GO risk assessment.
Collapse
Affiliation(s)
- Katarzyna Zawadzka-Starczewska
- Department of Endocrinology and Metabolic Diseases, Polish Mother’s Memorial-Hospital Research Institute, 281/289 Rzgowska St., 93-338 Lodz, Poland
| | - Bartłomiej Stasiak
- Institute of Information Technology, Lodz University of Technology, 215 Wolczanska St., 90-924 Lodz, Poland
| | - Katarzyna Wojciechowska-Durczyńska
- Department of Endocrinology and Metabolic Diseases, Polish Mother’s Memorial-Hospital Research Institute, 281/289 Rzgowska St., 93-338 Lodz, Poland
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 281/289 Rzgowska St., 93-338 Lodz, Poland
| | - Andrzej Lewiński
- Department of Endocrinology and Metabolic Diseases, Polish Mother’s Memorial-Hospital Research Institute, 281/289 Rzgowska St., 93-338 Lodz, Poland
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 281/289 Rzgowska St., 93-338 Lodz, Poland
| | - Magdalena Stasiak
- Department of Endocrinology and Metabolic Diseases, Polish Mother’s Memorial-Hospital Research Institute, 281/289 Rzgowska St., 93-338 Lodz, Poland
| |
Collapse
|