1
|
Chiang B, Heng K, Jang K, Dalal R, Liao YJ, Myung D, Goldberg JL. Development of a novel SupraChoroidal-to-Optic-NervE (SCONE) drug delivery system. Drug Deliv 2024; 31:2379369. [PMID: 39010743 PMCID: PMC467098 DOI: 10.1080/10717544.2024.2379369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
PURPOSE Targeted drug delivery to the optic nerve head may be useful in the preclinical study and later clinical management of optic neuropathies, however, there are no FDA-approved drug delivery systems to achieve this. The purpose of this work was to develop an optic nerve head drug delivery technique. METHODS Different strategies to approach the optic nerve head were investigated, including standard intravitreal and retroorbital injections. A novel SupraChoroidal-to-Optic-NervE (SCONE) delivery was optimized by creating a sclerotomy and introducing a catheter into the suprachoroidal space. Under direct visualization, the catheter was guided to the optic nerve head. India ink was injected. The suprachoroidal approach was performed in New Zealand White rabbit eyes in vivo (25 animals total). Parameters, including microneedle size and design, catheter design, and catheter tip angle, were optimized ex vivo and in vivo. RESULTS Out of the candidate optic nerve head approaches, intravitreal, retroorbital, and suprachoroidal approaches were able to localize India ink to within 2 mm of the optic nerve. The suprachoroidal approach was further investigated, and after optimization, was able to deposit India ink directly within the optic nerve head in up to 80% of attempts. In eyes with successful SCONE delivery, latency and amplitude of visual evoked potentials was not different than the naïve untreated eye. CONCLUSIONS SCONE delivery can be used for targeted drug delivery to the optic nerve head of rabbits without measurable toxicity measured anatomically or functionally. Successful development of this system may yield novel opportunities to study optic nerve head-specific drug delivery in animal models, and paradigm-shifting management strategies for treating optic neuropathies. TRANSLATIONAL RELEVANCE Here we demonstrate data on a new method for targeted delivery to the optic nerve head, addressing a significant unmet need in therapeutics for optic neuropathies.
Collapse
Affiliation(s)
- Bryce Chiang
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Palo Alto, CA, USA
| | - Kathleen Heng
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Palo Alto, CA, USA
- Department of Comparative Medicine, Stanford University, Stanford, CA, USA
| | - Kyeongwoo Jang
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Palo Alto, CA, USA
| | - Roopa Dalal
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Palo Alto, CA, USA
| | - Yaping Joyce Liao
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Palo Alto, CA, USA
- Department of Neurology, Stanford University, Palo Alto, CA, USA
| | - David Myung
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Palo Alto, CA, USA
- Department of Chemical Engineering, Stanford University, Palo Alto, CA, USA
| | - Jeffrey L Goldberg
- Department of Ophthalmology, Spencer Center for Vision Research, Byers Eye Institute, Palo Alto, CA, USA
| |
Collapse
|
2
|
Alsalloum A, Gornostal E, Mingaleva N, Pavlov R, Kuznetsova E, Antonova E, Nadzhafova A, Kolotova D, Kadyshev V, Mityaeva O, Volchkov P. A Comparative Analysis of Models for AAV-Mediated Gene Therapy for Inherited Retinal Diseases. Cells 2024; 13:1706. [PMID: 39451224 PMCID: PMC11506034 DOI: 10.3390/cells13201706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Inherited retinal diseases (IRDs) represent a diverse group of genetic disorders leading to progressive degeneration of the retina due to mutations in over 280 genes. This review focuses on the various methodologies for the preclinical characterization and evaluation of adeno-associated virus (AAV)-mediated gene therapy as a potential treatment option for IRDs, particularly focusing on gene therapies targeting mutations, such as those in the RPE65 and FAM161A genes. AAV vectors, such as AAV2 and AAV5, have been utilized to deliver therapeutic genes, showing promise in preserving vision and enhancing photoreceptor function in animal models. Despite their advantages-including high production efficiency, low pathogenicity, and minimal immunogenicity-AAV-mediated therapies face limitations such as immune responses beyond the retina, vector size constraints, and challenges in large-scale manufacturing. This review systematically compares different experimental models used to investigate AAV-mediated therapies, such as mouse models, human retinal explants (HREs), and induced pluripotent stem cell (iPSC)-derived retinal organoids. Mouse models are advantageous for genetic manipulation and detailed investigations of disease mechanisms; however, anatomical differences between mice and humans may limit the translational applicability of results. HREs offer valuable insights into human retinal pathophysiology but face challenges such as tissue degradation and lack of systemic physiological effects. Retinal organoids, on the other hand, provide a robust platform that closely mimics human retinal development, thereby enabling more comprehensive studies on disease mechanisms and therapeutic strategies, including AAV-based interventions. Specific outcomes targeted in these studies include vision preservation and functional improvements of retinas damaged by genetic mutations. This review highlights the strengths and weaknesses of each experimental model and advocates for their combined use in developing targeted gene therapies for IRDs. As research advances, optimizing AAV vector design and delivery methods will be critical for enhancing therapeutic efficacy and improving clinical outcomes for patients with IRDs.
Collapse
Affiliation(s)
- Almaqdad Alsalloum
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
| | | | - Natalia Mingaleva
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Roman Pavlov
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | | | - Ekaterina Antonova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Aygun Nadzhafova
- Moscow Center for Advanced Studies, Kulakova Str. 20, 123592 Moscow, Russia
| | - Daria Kolotova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 117485 Moscow, Russia
| | | | - Olga Mityaeva
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Pavel Volchkov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, 125315 Moscow, Russia (P.V.)
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
- Moscow Clinical Scientific Center N.A. A.S. Loginov, 111123 Moscow, Russia
| |
Collapse
|
3
|
Guan JX, Wang YL, Wang JL. How Advanced are Nanocarriers for Effective Subretinal Injection? Int J Nanomedicine 2024; 19:9273-9289. [PMID: 39282576 PMCID: PMC11401526 DOI: 10.2147/ijn.s479327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Subretinal injection (SR injection) is a commonly used method of ocular drug delivery and has been mainly applied for the treatment of neovascular age-associated macular degeneration (nAMD) and sub-macular hemorrhage (SMH) caused by nAMD, as well as various types of hereditary retinopathies (IRD) such as Stargardt's disease (STGD), retinitis pigmentosa (RP), and a series of fundus diseases such as Leber's congenital dark haze (LCA), choroidal defects, etc. The commonly used carriers of SR injection are mainly divided into viral and non-viral vectors. Leber's congenital amaurosis (LCA), choroidal agenesis, and a series of other fundus diseases are also commonly treated using SR injection. The commonly used vectors for SR injection are divided into two categories: viral vectors and non-viral vectors. Viral vectors are a traditional class of SR injection drug carriers that have been extensively studied in clinical treatment, but they still have many limitations that cannot be ignored, such as poor reproduction efficiency, small loading genes, and triggering of immune reactions. With the rapid development of nanotechnology in the treatment of ocular diseases, nanovectors have become a research hotspot in the field of non-viral vectors. Nanocarriers have numerous attractive properties such as low immunogenicity, robust loading capacity, stable structure, and easy modification. These valuable features imply greater safety, improved therapeutic efficacy, longer duration, and more flexible indications. In recent years, there has been a growing interest in nanocarriers, which has led to significant advancements in the treatment of ocular diseases. Nanocarriers have not only successfully addressed clinical problems that viral vectors have failed to overcome but have also introduced new therapeutic possibilities for certain classical disease types. Nanocarriers offer undeniable advantages over viral vectors. This review discusses the advantages of subretinal (SR) injection, the current status of research, and the research hotspots of gene therapy with viral vectors. It focuses on the latest progress of nanocarriers in SR injection and enumerates the limitations and future perspectives of nanocarriers in the treatment of fundus lesions. Furthermore, this review also covers the research progress of nanocarriers in the field of subretinal injection and highlights the value of nanocarrier-mediated SR injection in the treatment of fundus disorders. Overall, it provides a theoretical basis for the application of nanocarriers in SR injection.
Collapse
Affiliation(s)
- Jia-Xin Guan
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| | - Yan-Ling Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| | - Jia-Lin Wang
- Department of Ophthalmology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
- Institute of Ophthalmology, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
4
|
Jain R, Daigavane S. Advances and Challenges in Gene Therapy for Inherited Retinal Dystrophies: A Comprehensive Review. Cureus 2024; 16:e69895. [PMID: 39439625 PMCID: PMC11494405 DOI: 10.7759/cureus.69895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 10/25/2024] Open
Abstract
Inherited retinal dystrophies (IRDs) are a diverse group of genetic disorders leading to progressive vision loss due to the degeneration of retinal photoreceptors. Gene therapy has emerged as a promising approach to address the underlying genetic causes of IRDs, offering the potential for restoring vision and halting disease progression. This review provides a comprehensive overview of gene therapy innovations for IRDs, focusing on the mechanisms, recent advancements, and ongoing challenges. We discuss the fundamental principles of gene therapy, including the use of viral and non-viral vectors, and highlight key developments such as the approval of Luxturna for RPE65-mediated retinal dystrophy and the application of gene editing technologies like CRISPR/Cas9. Despite these advancements, significant challenges remain, including vector delivery, long-term safety, and variable patient responses. This review also explores the future directions of gene therapy, emphasizing the need for further research to address these challenges and enhance therapeutic efficacy. By examining the current state of gene therapy for IRDs, this review aims to provide valuable insights into the potential for these treatments to transform the management of retinal diseases and improve the quality of life for affected individuals.
Collapse
Affiliation(s)
- Raina Jain
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| | - Sachin Daigavane
- Ophthalmology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education & Research, Wardha, IND
| |
Collapse
|
5
|
Stranak Z, Ardan T, Nemesh Y, Toms M, Toualbi L, Harbottle R, Ellederova Z, Lytvynchuk L, Petrovski G, Motlik J, Moosajee M, Kozak I. Feasibility of Direct Vitrectomy-Sparing Subretinal Injection for Gene Delivery in Large Animals. Curr Eye Res 2024; 49:879-887. [PMID: 38666493 DOI: 10.1080/02713683.2024.2343335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/09/2024] [Indexed: 07/18/2024]
Abstract
PURPOSE To assess the safety and feasibility of direct vitrectomy-sparing subretinal injection for gene delivery in a large animal model. METHODS The experimental Liběchov minipigs were used for subretinal delivery of a plasmid DNA vector (pS/MAR-CMV-copGFP) with cytomegalovirus (CMV) promoter, green fluorescent protein (GFP) reporter (copGFP) and a scaffold/matrix attachment region (S/MAR) sequence. The eyes were randomized to subretinal injection of the vector following pars plana vitrectomy (control group) or a direct injection without prior vitrectomy surgery (experimental group). Intra- and post-operative observations up to 30 days after surgery were compared. RESULTS Six eyes of three mini-pigs underwent surgery for delivery into the subretinal space. Two eyes in the control group were operated with a classical approach (lens-sparing vitrectomy and posterior hyaloid detachment). The other four eyes in the experimental group were injected directly with a subretinal cannula without vitrectomy surgery. No adverse events, such as endophthalmitis, retinal detachment and intraocular pressure elevation were observed post-operatively. The eyes in the experimental group had both shorter surgical time and recovery while achieving the same surgical goal. CONCLUSIONS This pilot study demonstrates that successful subretinal delivery of gene therapy vectors is achievable using a direct injection without prior vitrectomy surgery.
Collapse
Affiliation(s)
- Zbynek Stranak
- Department of Ophthalmology, Charles University, Prague and the Kralovske Vinohrady University Hospital, Prague, Czech Republic
| | - Taras Ardan
- Libechov Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - Yaroslav Nemesh
- Libechov Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - Maria Toms
- UCL Institute of Ophthalmology, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Lyes Toualbi
- UCL Institute of Ophthalmology, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | | | - Zdenka Ellederova
- Libechov Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - Lyubomyr Lytvynchuk
- Department of Ophthalmology, Justus-Liebig-University Giessen, Eye Clinic, University Hospital Giessen and Marburg GmbH, Giessen, Germany
- Karl Landsteiner Institute for Retinal Research and Imaging, Vienna, Austria
| | - Goran Petrovski
- Department of Ophthalmology, Oslo University Hospital, Kirkeveien 166, Oslo, Norway
- Center for Eye Research and Innovative Diagnostics, Department of Ophthalmology, Oslo University Hospital and Institute for Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Ophthalmology, University of Split School of Medicine and University Hospital Centre, Split, Croatia
| | - Jan Motlik
- Libechov Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - Mariya Moosajee
- UCL Institute of Ophthalmology, London, United Kingdom
- The Francis Crick Institute, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
| | - Igor Kozak
- Department of Vitreoretinal Surgery and Research and Innovation, Moorfields Eye Hospitals UAE, Abu Dhabi
| |
Collapse
|
6
|
MacLaren RE, Audo I, Fischer MD, Huckfeldt RM, Lam BL, Pennesi ME, Sisk R, Gow JA, Li J, Zhu K, Tsang SF. An Open-Label Phase II Study Assessing the Safety of Bilateral, Sequential Administration of Retinal Gene Therapy in Participants with Choroideremia: The GEMINI Study. Hum Gene Ther 2024; 35:564-575. [PMID: 38970425 DOI: 10.1089/hum.2024.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024] Open
Abstract
Choroideremia, an incurable, progressive retinal degeneration primarily affecting young men, leads to sight loss. GEMINI was a multicenter, open-label, prospective, two-period, interventional Phase II study assessing the safety of bilateral sequential administration of timrepigene emparvovec, a gene therapy, in adult males with genetically confirmed choroideremia (NCT03507686, ClinicalTrials.gov). Timrepigene emparvovec is an adeno-associated virus serotype 2 vector encoding the cDNA of Rab escort protein 1, augmented by a downstream woodchuck hepatitis virus post-transcriptional regulatory element. Up to 0.1 mL of timrepigene emparvovec, containing 1 × 1011 vector genomes, was administered by subretinal injection following vitrectomy and retinal detachment. The second eye was treated after an intrasurgery window of <6, 6-12, or >12 months. Each eye was followed at up to nine visits over 12 months. Overall, 66 participants received timrepigene emparvovec, and 53 completed the study. Visual acuity (VA) was generally maintained in both eyes, independent of intrasurgery window duration, even after bilateral retinal detachment and subretinal injection. Bilateral treatment was well tolerated, with predominantly mild or moderate treatment-emergent adverse events (TEAEs) and a low rate of serious surgical complications (7.6%). Retinal inflammation TEAEs were reported in 45.5% of participants, with similar rates in both eyes; post hoc analyses found that these were not associated with clinically significant vision loss at month 12 versus baseline. Two participants (3.0%) reported serious noninfective retinitis. Prior timrepigene emparvovec exposure did not increase the risk of serious TEAEs or serious ocular TEAEs upon injection of the second eye; furthermore, no systemic immune reaction or inoculation effect was observed. Presence of antivector neutralizing antibodies at baseline was potentially associated with a higher percentage of TEAEs related to ocular inflammation or reduced VA after injection of the first eye. The GEMINI study results may inform decisions regarding bilateral sequential administration of other gene therapies for retinal diseases.
Collapse
Affiliation(s)
- Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Oxford NIHR Biomedical Research Centre, Oxford, United Kingdom
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, Centre de Référence Maladies Rares REFERET and INSERM-DGOS CIC 1423, Paris, France
| | - M Dominik Fischer
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Rachel M Huckfeldt
- MEE Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, USA
| | - Byron L Lam
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Mark E Pennesi
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Robert Sisk
- Cincinnati Eye Institute, Blue Ash, Ohio, USA
| | | | - Jiang Li
- Biogen Inc., Cambridge, Massachusetts, USA
| | - Kan Zhu
- Biogen Inc., Cambridge, Massachusetts, USA
| | | |
Collapse
|
7
|
Giansanti F, Nicolosi C, Giorgio D, Sodi A, Mucciolo DP, Pavese L, Pollazzi L, Virgili G, Vicini G, Passerini I, Pelo E, Murro V. Myopic Macular Hole and Detachment after Gene Therapy in Atypical RPE65 Retinal Dystrophy: A Case Report. Genes (Basel) 2024; 15:879. [PMID: 39062658 PMCID: PMC11276487 DOI: 10.3390/genes15070879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
PURPOSE To report a case of macular hole and detachment occurring after the subretinal injection of Voretigene Neparvovec (VN) in a patient affected by atypical RPE65 retinal dystrophy with high myopia and its successful surgical management. CASE DESCRIPTION We report a case of a 70-year-old man treated with VN in both eyes. The best corrected visual acuity (BCVA) was 0.7 LogMar in the right eye (RE) and 0.92 LogMar in the left eye (LE). Axial length was 29.60 mm in the RE and 30.28 mm in the LE. Both eyes were pseudophakic. In both eyes, fundus examination revealed high myopia, posterior staphyloma, and extended retinal atrophy areas at the posterior pole, circumscribing a central island of surviving retina. Both eyes were treated with VN subretinal injection, but a full-thickness macular hole and retinal detachment occurred in the LE three weeks after surgery. The patient underwent 23-gauge vitrectomy with internal limiting membrane (ILM) peeling and the inverted flap technique with sulfur hexafluoride (SF6) 20% tamponade. Postoperative follow-up showed that the macular hole was closed and the BCVA was maintained. CONCLUSIONS Our experience suggests that patients with atypical RPE65 retinal dystrophy and high myopia undergoing VN subretinal injection require careful management to minimize the risk of macular hole and detachment occurrence and promptly detect and address these potential complications.
Collapse
Affiliation(s)
- Fabrizio Giansanti
- Eye Clinic, Neuromuscular and Sense Organs Department, Careggi University Hospital, 50134 Florence, Italy; (F.G.); (A.S.); (D.P.M.); (L.P.); (G.V.); (V.M.)
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50121 Florence, Italy; (D.G.); (L.P.); (G.V.)
| | - Cristina Nicolosi
- Eye Clinic, Neuromuscular and Sense Organs Department, Careggi University Hospital, 50134 Florence, Italy; (F.G.); (A.S.); (D.P.M.); (L.P.); (G.V.); (V.M.)
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50121 Florence, Italy; (D.G.); (L.P.); (G.V.)
| | - Dario Giorgio
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50121 Florence, Italy; (D.G.); (L.P.); (G.V.)
- Azienda USL Toscana Nordovest, 56121 Pisa, Italy
| | - Andrea Sodi
- Eye Clinic, Neuromuscular and Sense Organs Department, Careggi University Hospital, 50134 Florence, Italy; (F.G.); (A.S.); (D.P.M.); (L.P.); (G.V.); (V.M.)
| | - Dario Pasquale Mucciolo
- Eye Clinic, Neuromuscular and Sense Organs Department, Careggi University Hospital, 50134 Florence, Italy; (F.G.); (A.S.); (D.P.M.); (L.P.); (G.V.); (V.M.)
| | - Laura Pavese
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50121 Florence, Italy; (D.G.); (L.P.); (G.V.)
| | - Liliana Pollazzi
- Eye Clinic, Neuromuscular and Sense Organs Department, Careggi University Hospital, 50134 Florence, Italy; (F.G.); (A.S.); (D.P.M.); (L.P.); (G.V.); (V.M.)
| | - Gianni Virgili
- Eye Clinic, Neuromuscular and Sense Organs Department, Careggi University Hospital, 50134 Florence, Italy; (F.G.); (A.S.); (D.P.M.); (L.P.); (G.V.); (V.M.)
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50121 Florence, Italy; (D.G.); (L.P.); (G.V.)
| | - Giulio Vicini
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50121 Florence, Italy; (D.G.); (L.P.); (G.V.)
- Azienda USL Toscana Nordovest, 56121 Pisa, Italy
| | - Ilaria Passerini
- SODc Diagnostica Genetica, Careggi University Hospital, 50134 Florence, Italy; (I.P.); (E.P.)
| | - Elisabetta Pelo
- SODc Diagnostica Genetica, Careggi University Hospital, 50134 Florence, Italy; (I.P.); (E.P.)
| | - Vittoria Murro
- Eye Clinic, Neuromuscular and Sense Organs Department, Careggi University Hospital, 50134 Florence, Italy; (F.G.); (A.S.); (D.P.M.); (L.P.); (G.V.); (V.M.)
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50121 Florence, Italy; (D.G.); (L.P.); (G.V.)
| |
Collapse
|
8
|
Boyd RF, Petersen-Jones SM. Techniques for subretinal injections in animals. Vet Ophthalmol 2024. [PMID: 38700998 DOI: 10.1111/vop.13219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024]
Abstract
Subretinal injections are not commonly performed during clinical treatment of animals but are frequently used in laboratory animal models to assess therapeutic efficacy and safety of gene and cell therapy products. Veterinary ophthalmologists are often employed to perform the injections in the laboratory animal setting, due to knowledge of comparative ocular anatomy between species and familiarity with operating on non-human eyes. Understanding the different approaches used for subretinal injection in each species and potential complications that may be encountered is vital to achieving successful and reproducible results. This manuscript provides a summary of different approaches to subretinal injections in the most common animal model species, along with information from published literature and experience of the authors to educate novice or experienced surgeons tasked with performing these injections for the first time.
Collapse
Affiliation(s)
- Ryan F Boyd
- Charles River Laboratories, Mattawan, Michigan, USA
| | - Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
9
|
Waldock WJ, Taylor LJ, Sperring S, Staurenghi F, Martinez-Fernandez de la Camara C, Whitfield J, Clouston P, Yusuf IH, MacLaren RE. A hypomorphic variant of choroideremia is associated with a novel intronic mutation that leads to exon skipping. Ophthalmic Genet 2024; 45:210-217. [PMID: 38273808 DOI: 10.1080/13816810.2023.2270554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/09/2023] [Indexed: 01/27/2024]
Abstract
INTRODUCTION Molecular confirmation of pathogenic sequence variants in the CHM gene is required prior to enrolment in retinal gene therapy clinical trials for choroideremia. Individuals with mild choroideremia have been reported. The molecular basis of genotype-phenotype associations is of clinical relevance since it may impact on selection for retinal gene therapy. METHODS AND MATERIALS Genetic testing and RNA analysis were undertaken in a patient with mild choroideremia to confirm the pathogenicity of a novel intronic variant in CHM and to explore the mechanism underlying the mild clinical phenotype. RESULTS A 42-year-old male presented with visual field loss. Fundoscopy and autofluorescence imaging demonstrated mild choroideremia for his age. Genetic analysis revealed a variant at a splice acceptor site in the CHM gene (c.1350-3C > G). RNA analysis demonstrated two out-of-frame transcripts, suggesting pathogenicity, without any detectable wildtype transcripts. One of the two out-of-frame transcripts is present in very low levels in healthy controls. DISCUSSION Mild choroideremia may result from +3 or -3 splice site variants in CHM. It is presumed that the resulting mRNA transcripts may be partly functional, thereby preventing the development of the null phenotype. Choroideremia patients with such variants may present challenges for gene therapy since there may be residual transcript activity which could result in long-lasting visual function which is atypical for this disease.
Collapse
Affiliation(s)
| | - Laura J Taylor
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sian Sperring
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
| | - Federica Staurenghi
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Cristina Martinez-Fernandez de la Camara
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Penny Clouston
- Oxford Regional Genetics Laboratories, Churchill Hospital, Oxford, UK
| | - Imran H Yusuf
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Robert E MacLaren
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, UK
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Appell MB, Pejavar J, Pasupathy A, Rompicharla SVK, Abbasi S, Malmberg K, Kolodziejski P, Ensign LM. Next generation therapeutics for retinal neurodegenerative diseases. J Control Release 2024; 367:708-736. [PMID: 38295996 PMCID: PMC10960710 DOI: 10.1016/j.jconrel.2024.01.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/05/2024] [Accepted: 01/28/2024] [Indexed: 02/13/2024]
Abstract
Neurodegenerative diseases affecting the visual system encompass glaucoma, macular degeneration, retinopathies, and inherited genetic disorders such as retinitis pigmentosa. These ocular pathologies pose a serious burden of visual impairment and blindness worldwide. Current treatment modalities include small molecule drugs, biologics, or gene therapies, most of which are administered topically as eye drops or as injectables. However, the topical route of administration faces challenges in effectively reaching the posterior segment and achieving desired concentrations at the target site, while injections and implants risk severe complications, such as retinal detachment and endophthalmitis. This necessitates the development of innovative therapeutic strategies that can prolong drug release, deliver effective concentrations to the back of the eye with minimal systemic exposure, and improve patient compliance and safety. In this review, we introduce retinal degenerative diseases, followed by a discussion of the existing clinical standard of care. We then delve into detail about drug and gene delivery systems currently in preclinical and clinical development, including formulation and delivery advantages/drawbacks, with a special emphasis on potential for clinical translation.
Collapse
Affiliation(s)
- Matthew B Appell
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jahnavi Pejavar
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Ashwin Pasupathy
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Sri Vishnu Kiran Rompicharla
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Saed Abbasi
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kiersten Malmberg
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Patricia Kolodziejski
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Laura M Ensign
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Departments of Gynecology and Obstetrics, Biomedical Engineering, Oncology, and Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
11
|
Whalen M, Akula M, McNamee SM, DeAngelis MM, Haider NB. Seeing the Future: A Review of Ocular Therapy. Bioengineering (Basel) 2024; 11:179. [PMID: 38391665 PMCID: PMC10886198 DOI: 10.3390/bioengineering11020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Ocular diseases present a unique challenge and opportunity for therapeutic development. The eye has distinct advantages as a therapy target given its accessibility, compartmentalization, immune privilege, and size. Various methodologies for therapeutic delivery in ocular diseases are under investigation that impact long-term efficacy, toxicity, invasiveness, and delivery range. While gene, cell, and antibody therapy and nanoparticle delivery directly treat regions that have been damaged by disease, they can be limited in the duration of the therapeutic delivery and have a focal effect. In contrast, contact lenses and ocular implants can more effectively achieve sustained and widespread delivery of therapies; however, they can increase dilution of therapeutics, which may result in reduced effectiveness. Current therapies either offer a sustained release or a broad therapeutic effect, and future directions should aim toward achieving both. This review discusses current ocular therapy delivery systems and their applications, mechanisms for delivering therapeutic products to ocular tissues, advantages and challenges associated with each delivery system, current approved therapies, and clinical trials. Future directions for the improvement in existing ocular therapies include combination therapies, such as combined cell and gene therapies, as well as AI-driven devices, such as cortical implants that directly transmit visual information to the cortex.
Collapse
Affiliation(s)
- Maiya Whalen
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | | | | | - Margaret M DeAngelis
- Department of Ophthalmology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Neena B Haider
- Shifa Precision, Boston, MA 02138, USA
- Department of Cell Biology, Harvard Medical School, Boston, MA 02138, USA
| |
Collapse
|
12
|
Ke X, Jiang H, Li Q, Luo S, Qin Y, Li J, Xie Q, Zheng Q. Preclinical evaluation of KH631, a novel rAAV8 gene therapy product for neovascular age-related macular degeneration. Mol Ther 2023; 31:3308-3321. [PMID: 37752703 PMCID: PMC10638048 DOI: 10.1016/j.ymthe.2023.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/31/2023] [Accepted: 09/23/2023] [Indexed: 09/28/2023] Open
Abstract
The upregulation of vascular endothelial growth factor (VEGF) is strongly associated with the development of choroidal neovascularization (CNV) in patients with neovascular age-related macular degeneration (nAMD). Currently, the standard treatment for nAMD involves frequent intravitreal injections of anti-VEGF agents, which inhibit the growth of new blood vessels and prevent leakage. However, this treatment regimen places a significant burden on patients, their families, and healthcare providers due to the need for repeated visits to the clinic for injections. Gene therapy, which enables the sustained expression of anti-VEGF proteins after a single injection, can dramatically reduce the treatment burden. KH631 is a recombinant adeno-associated virus 8 vector that encodes a human VEGF receptor fusion protein, and it is being developed as a long-term treatment for nAMD. In preclinical studies using non-human primates, subretinal administration of KH631 at a low dose of 3 × 108 vg/eye resulted in remarkable retention of the transgene product in the retina and prevented the formation and progression of grade IV CNV lesions. Furthermore, sustained transgene expression was observed for more than 96 weeks. These findings suggest that a single subretinal injection of KH631 has the potential to offer a one-time, low-dose treatment for nAMD patients.
Collapse
Affiliation(s)
- Xiao Ke
- Chengdu Origen Biotechnology Co., Ltd, Chengdu, China; Chengdu Kanghong Pharmaceuticals Group Co Ltd, Chengdu, China
| | - Hao Jiang
- Chengdu Origen Biotechnology Co., Ltd, Chengdu, China; Therapeutic Proteins Key Laboratory of Sichuan Province, Chengdu, China
| | - Qingwei Li
- Chengdu Origen Biotechnology Co., Ltd, Chengdu, China; Therapeutic Proteins Key Laboratory of Sichuan Province, Chengdu, China
| | - Shuang Luo
- Chengdu Origen Biotechnology Co., Ltd, Chengdu, China; Therapeutic Proteins Key Laboratory of Sichuan Province, Chengdu, China
| | - Yingfei Qin
- Chengdu Origen Biotechnology Co., Ltd, Chengdu, China
| | - Jing Li
- Chengdu Origen Biotechnology Co., Ltd, Chengdu, China
| | - Qing Xie
- Chengdu Origen Biotechnology Co., Ltd, Chengdu, China; Therapeutic Proteins Key Laboratory of Sichuan Province, Chengdu, China
| | - Qiang Zheng
- Chengdu Origen Biotechnology Co., Ltd, Chengdu, China; Chengdu Kanghong Pharmaceuticals Group Co Ltd, Chengdu, China; Therapeutic Proteins Key Laboratory of Sichuan Province, Chengdu, China.
| |
Collapse
|
13
|
Liu LC, Chen YH, Lu DW. Overview of Recent Advances in Nano-Based Ocular Drug Delivery. Int J Mol Sci 2023; 24:15352. [PMID: 37895032 PMCID: PMC10607833 DOI: 10.3390/ijms242015352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Ocular diseases profoundly impact patients' vision and overall quality of life globally. However, effective ocular drug delivery presents formidable challenges within clinical pharmacology and biomaterial science, primarily due to the intricate anatomical and physiological barriers unique to the eye. In this comprehensive review, we aim to shed light on the anatomical and physiological features of the eye, emphasizing the natural barriers it presents to drug administration. Our goal is to provide a thorough overview of various characteristics inherent to each nano-based drug delivery system. These encompass nanomicelles, nanoparticles, nanosuspensions, nanoemulsions, microemulsions, nanofibers, dendrimers, liposomes, niosomes, nanowafers, contact lenses, hydrogels, microneedles, and innovative gene therapy approaches employing nano-based ocular delivery techniques. We delve into the biology and methodology of these systems, introducing their clinical applications over the past decade. Furthermore, we discuss the advantages and challenges illuminated by recent studies. While nano-based drug delivery systems for ophthalmic formulations are gaining increasing attention, further research is imperative to address potential safety and toxicity concerns.
Collapse
Affiliation(s)
| | | | - Da-Wen Lu
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (L.-C.L.); (Y.-H.C.)
| |
Collapse
|
14
|
Choi SW, Seo S, Hong HK, Yoon SJ, Kim M, Moon S, Lee JY, Lim J, Lee JB, Woo SJ. Therapeutic Extracellular Vesicles from Tonsil-Derived Mesenchymal Stem Cells for the Treatment of Retinal Degenerative Disease. Tissue Eng Regen Med 2023; 20:951-964. [PMID: 37440108 PMCID: PMC10519919 DOI: 10.1007/s13770-023-00555-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Retinal degenerative disease (RDD), one of the most common causes of blindness, is predominantly caused by the gradual death of retinal pigment epithelial cells (RPEs) and photoreceptors due to various causes. Cell-based therapies, such as stem cell implantation, have been developed for the treatment of RDD, but potential risks, including teratogenicity and immune reactions, have hampered their clinical application. Stem cell-derived extracellular vesicles (EVs) have recently emerged as a cell-free alternative therapeutic strategy; however, additional invasiveness and low yield of the stem cell extraction process is problematic. METHODS To overcome these limitations, we developed therapeutic EVs for the treatment of RDD which were extracted from tonsil-derived mesenchymal stem cells obtained from human tonsil tissue discarded as medical waste following tonsillectomy (T-MSC EVs). To verify the biocompatibility and cytoprotective effect of T-MSC EVs, we measured cell viability by co-culture with human RPE without or with toxic all-trans-retinal. To elucidate the cytoprotective mechanism of T-MSC EVs, we performed transcriptome sequencing using RNA extracted from RPEs. The in vivo protective effect of T-MSC EVs was evaluated using Pde6b gene knockout rats as an animal model of retinitis pigmentosa. RESULTS T-MSC EVs showed high biocompatibility and the human pigment epithelial cells were significantly protected in the presence of T-MSC EVs from the toxic effect of all-trans-retinal. In addition, T-MSC EVs showed a dose-dependent cell death-delaying effect in real-time quantification of cell death. Transcriptome sequencing analysis revealed that the efficient ability of T-MSC EVs to regulate intracellular oxidative stress may be one of the reasons explaining their excellent cytoprotective effect. Additionally, intravitreally injected T-MSC EVs had an inhibitory effect on the destruction of the outer nuclear layer in the Pde6b gene knockout rat. CONCLUSIONS Together, the results of this study indicate the preventive and therapeutic effects of T-MSC EVs during the initiation and development of retinal degeneration, which may be a beneficial alternative for the treatment of RDD.
Collapse
Affiliation(s)
- Seung Woo Choi
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - Sooin Seo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - Hye Kyoung Hong
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - So Jung Yoon
- Bundang CHA Biobank, CHA University College of Medicine, CHA University Bundang Medical Center, Seongnam, 13496, Korea
| | - Minah Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Korea
| | - Sunghyun Moon
- Department of Chemical Engineering, University of Seoul, 163 Seoul Siripdaero, Dongdaemun-Gu, Seoul, 02504, Korea
| | - Joo Yong Lee
- Department of Ophthalmology, Asan Medical Center, Ulsan University College of Medicine, Seoul, Korea
| | - Jaeseung Lim
- Cellatoz Therapeutics Lnc, Seongnam, 13487, Korea
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, 163 Seoul Siripdaero, Dongdaemun-Gu, Seoul, 02504, Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Korea.
| |
Collapse
|
15
|
Malvasi M, Casillo L, Avogaro F, Abbouda A, Vingolo EM. Gene Therapy in Hereditary Retinal Dystrophies: The Usefulness of Diagnostic Tools in Candidate Patient Selections. Int J Mol Sci 2023; 24:13756. [PMID: 37762059 PMCID: PMC10531171 DOI: 10.3390/ijms241813756] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
PURPOSE Gene therapy actually seems to have promising results in the treatment of Leber Congenital Amaurosis and some different inherited retinal diseases (IRDs); the primary goal of this strategy is to change gene defects with a wild-type gene without defects in a DNA sequence to achieve partial recovery of the photoreceptor function and, consequently, partially restore lost retinal functions. This approach led to the introduction of a new drug (voretigene neparvovec-rzyl) for replacement of the RPE65 gene in patients affected by Leber Congenital Amaurosis (LCA); however, the treatment results are inconstant and with variable long-lasting effects due to a lack of correctly evaluating the anatomical and functional conditions of residual photoreceptors. These variabilities may also be related to host immunoreactive reactions towards the Adenovirus-associated vector. A broad spectrum of retinal dystrophies frequently generates doubt as to whether the disease or the patient is a good candidate for a successful gene treatment, because, very often, different diseases share similar genetic characteristics, causing an inconstant genotype/phenotype correlation between clinical characteristics also within the same family. For example, mutations on the RPE65 gene cause Leber Congenital Amaurosis (LCA) but also some forms of Retinitis Pigmentosa (RP), Bardet Biedl Syndrome (BBS), Congenital Stationary Night Blindness (CSNB) and Usher syndrome (USH), with a very wide spectrum of clinical manifestations. These confusing elements are due to the different pathways in which the product protein (retinoid isomer-hydrolase) is involved and, consequently, the overlapping metabolism in retinal function. Considering this point and the cost of the drug (over USD one hundred thousand), it would be mandatory to follow guidelines or algorithms to assess the best-fitting disease and candidate patients to maximize the output. Unfortunately, at the moment, there are no suggestions regarding who to treat with gene therapy. Moreover, gene therapy might be helpful in other forms of inherited retinal dystrophies, with more frequent incidence of the disease and better functional conditions (actually, gene therapy is proposed only for patients with poor vision, considering possible side effects due to the treatment procedures), in which this approach leads to better function and, hopefully, visual restoration. But, in this view, who might be a disease candidate or patient to undergo gene therapy, in relationship to the onset of clinical trials for several different forms of IRD? Further, what is the gold standard for tests able to correctly select the patient? Our work aims to evaluate clinical considerations on instrumental morphofunctional tests to assess candidate subjects for treatment and correlate them with clinical and genetic defect analysis that, often, is not correspondent. We try to define which parameters are an essential and indispensable part of the clinical rationale to select patients with IRDs for gene therapy. This review will describe a series of models used to characterize retinal morphology and function from tests, such as optical coherence tomography (OCT) and electrophysiological evaluation (ERG), and its evaluation as a primary outcome in clinical trials. A secondary aim is to propose an ancillary clinical classification of IRDs and their accessibility based on gene therapy's current state of the art. MATERIAL AND METHODS OCT, ERG, and visual field examinations were performed in different forms of IRDs, classified based on clinical and retinal conditions; compared to the gene defect classification, we utilized a diagnostic algorithm for the clinical classification based on morphofunctional information of the retina of patients, which could significantly improve diagnostic accuracy and, consequently, help the ophthalmologist to make a correct diagnosis to achieve optimal clinical results. These considerations are very helpful in selecting IRD patients who might respond to gene therapy with possible therapeutic success and filter out those in which treatment has a lower chance or no chance of positive results due to bad retinal conditions, avoiding time-consuming patient management with unsatisfactory results.
Collapse
Affiliation(s)
- Mariaelena Malvasi
- Department of Sense Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00185 Rome, Italy; (L.C.); (E.M.V.)
| | - Lorenzo Casillo
- Department of Sense Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00185 Rome, Italy; (L.C.); (E.M.V.)
| | - Filippo Avogaro
- Department of Sense Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00185 Rome, Italy; (L.C.); (E.M.V.)
| | - Alessandro Abbouda
- Department of Ophthalmology, Fiorini Hospital Terracina AUSL, 04019 Terracina, Italy
| | - Enzo Maria Vingolo
- Department of Sense Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00185 Rome, Italy; (L.C.); (E.M.V.)
- Department of Ophthalmology, Fiorini Hospital Terracina AUSL, 04019 Terracina, Italy
| |
Collapse
|
16
|
Rusciano D, Bagnoli P. Pharmacotherapy and Nutritional Supplements for Neovascular Eye Diseases. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1334. [PMID: 37512145 PMCID: PMC10383223 DOI: 10.3390/medicina59071334] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/27/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
In this review, we aim to provide an overview of the recent findings about the treatment of neovascular retinal diseases. The use of conventional drugs and nutraceuticals endowed with antioxidant and anti-inflammatory properties that may support conventional therapies will be considered, with the final aim of achieving risk reduction (prevention) and outcome improvement (cooperation between treatments) of such sight-threatening proliferative retinopathies. For this purpose, we consider a medicinal product one that contains well-defined compound(s) with proven pharmacological and therapeutic effects, usually given for the treatment of full-blown diseases. Rarely are prescription drugs given for preventive purposes. A dietary supplement refers to a compound (often an extract or a mixture) used in the prevention or co-adjuvant treatment of a given pathology. However, it must be kept in mind that drug-supplement interactions may exist and might affect the efficacy of certain drug treatments. Moreover, the distinction between medicinal products and dietary supplements is not always straightforward. For instance, melatonin is formulated as a medicinal product for the treatment of sleep and behavioral problems; at low doses (usually below 1 mg), it is considered a nutraceutical, while at higher doses, it is sold as a psychotropic drug. Despite their lower status with respect to drugs, increasing evidence supports the notion of the beneficial effects of dietary supplements on proliferative retinopathies, a major cause of vision loss in the elderly. Therefore, we believe that, on a patient-by-patient basis, the administration of nutraceuticals, either alone or in association, could benefit many patients, delaying the progression of their disease and likely improving the efficacy of pharmaceutical drugs.
Collapse
Affiliation(s)
| | - Paola Bagnoli
- Department of Biology, University of Pisa, 56123 Pisa, Italy
| |
Collapse
|
17
|
Parsons NB, Annamalai B, Rohrer B. Regulatable Complement Inhibition of the Alternative Pathway Mitigates Wet Age-Related Macular Degeneration Pathology in a Mouse Model. Transl Vis Sci Technol 2023; 12:17. [PMID: 37462980 PMCID: PMC10362922 DOI: 10.1167/tvst.12.7.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Purpose Risk for developing age-related macular degeneration (AMD) is linked to an overactive complement system. In the mouse model of laser-induced choroidal neovascularization (CNV), elevated levels of complement effector molecules, including complement C3, have been identified, and the alternative pathway (AP) is required for pathology. The main soluble AP regular is complement factor H (fH). We have previously shown that AP inhibition via subretinal AAV-mediated delivery of CR2-fH using a constitutive promoter is efficacious in reducing CNV. Here we ask whether the C3 promoter (pC3) effectively drives CR2-fH bioavailability for gene therapy. Methods Truncated pC3 was used to generate plasmids pC3-mCherry/CR2-fH followed by production of corresponding AAV5 vectors. pC3 activation was determined in transiently transfected ARPE-19 cells stimulated with H2O2 or normal human serum (+/- antioxidant or humanized CR2-fH, respectively). CNV was analyzed in C57BL/6J mice treated subretinally with AAV5-pC3-mCherry/CR2-fH using imaging (optical coherence tomography [OCT] and fundus imaging), functional (electroretinography [ERG]), and molecular (protein expression) readouts. Results Modulation of pC3 in vitro is complement and oxidative stress dependent, as shown by mCherry fluorescence. AAV5-pC3-CR2-fH were identified as safe and effective using OCT and ERG. CR2-fH expression significantly reduced CNV compared to mCherry and was correlated with reduced levels of C3dg/C3d in the retinal pigment epithelium/choroid fraction. Conclusions We conclude that complement-dependent regulation of AP inhibition ameliorates AMD pathology as effectively as using a constitutive promoter. Translational Relevance The goal of anticomplement therapy is to restore homeostatic levels of complement activation, which might be more easily achievable using a self-regulating system.
Collapse
Affiliation(s)
- Nathaniel B. Parsons
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
| | | | - Bärbel Rohrer
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, Division of Research, Charleston, SC, USA
| |
Collapse
|
18
|
Tripepi D, Jalil A, Ally N, Buzzi M, Moussa G, Rothschild PR, Rossi T, Ferrara M, Romano MR. The Role of Subretinal Injection in Ophthalmic Surgery: Therapeutic Agent Delivery and Other Indications. Int J Mol Sci 2023; 24:10535. [PMID: 37445711 DOI: 10.3390/ijms241310535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Subretinal injection is performed in vitreoretinal surgery with two main aims, namely, the subretinal delivery of therapeutic agents and subretinal injection of fluid to induce a controlled and localized macular detachment. The growing interest in this technique is mainly related to its suitability to deliver gene therapy in direct contact with target tissues. However, subretinal injection has been also used for the surgical management of submacular hemorrhage through the subretinal delivery of tissue plasminogen activator, and for the repair of full-thickness macular holes, in particular refractory ones. In the light of the increasing importance of this maneuver in vitreoretinal surgery as well as of the lack of a standardized surgical approach, we conducted a comprehensive overview on the current indications for subretinal injection, surgical technique with the available variations, and the potential complications.
Collapse
Affiliation(s)
- Domenico Tripepi
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, Italy
| | - Assad Jalil
- Manchester Royal Eye Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Naseer Ally
- Manchester Royal Eye Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Matilde Buzzi
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, Italy
| | - George Moussa
- Manchester Royal Eye Hospital, Oxford Road, Manchester M13 9WL, UK
- Lancashire Teaching Hospitals NHS Foundation Trust, Preston PR2 9HT, UK
| | - Pierre-Raphaël Rothschild
- Department of Ophthalmology, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, 75014 Paris, France
- Centre de Recherche des Cordeliers, INSERM, UMR_1138, Université Paris Cité, 75270 Paris, France
| | | | - Mariantonia Ferrara
- Manchester Royal Eye Hospital, Oxford Road, Manchester M13 9WL, UK
- Faculty of Medicine, University of Malaga, 29016 Malaga, Spain
| | - Mario R Romano
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, Italy
- Eye Center, Humanitas Gavazzeni-Castelli, 24128 Bergamo, Italy
| |
Collapse
|
19
|
Swirski S, May O, Ahlers M, Wissinger B, Greschner M, Jüschke C, Neidhardt J. In Vivo Efficacy and Safety Evaluations of Therapeutic Splicing Correction Using U1 snRNA in the Mouse Retina. Cells 2023; 12:cells12060955. [PMID: 36980294 PMCID: PMC10047704 DOI: 10.3390/cells12060955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/14/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Efficacy and safety considerations constitute essential steps during development of in vivo gene therapies. Herein, we evaluated efficacy and safety of splice factor-based treatments to correct mutation-induced splice defects in an Opa1 mutant mouse line. We applied adeno-associated viruses to the retina. The viruses transduced retinal cells with an engineered U1 snRNA splice factor designed to correct the Opa1 splice defect. We found the treatment to be efficient in increasing wild-type Opa1 transcripts. Correspondingly, Opa1 protein levels increased significantly in treated eyes. Measurements of retinal morphology and function did not reveal therapy-related side-effects supporting the short-term safety of the treatment. Alterations of potential off-target genes were not detected. Our data suggest that treatments of splice defects applying engineered U1 snRNAs represent a promising in vivo therapeutic approach. The therapy increased wild-type Opa1 transcripts and protein levels without detectable morphological, functional or genetic side-effects in the mouse eye. The U1 snRNA-based therapy can be tailored to specific disease gene mutations, hence, raising the possibility of a wider applicability of this promising technology towards treatment of different inherited retinal diseases.
Collapse
Affiliation(s)
- Sebastian Swirski
- Human Genetics, Department of Human Medicine, Faculty of Medicine and Health Sciences, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Oliver May
- Human Genetics, Department of Human Medicine, Faculty of Medicine and Health Sciences, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Malte Ahlers
- Visual Neuroscience, Department of Neuroscience, Faculty of Medicine and Health Sciences, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Straße 7, 72076 Tübingen, Germany
| | - Martin Greschner
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Elfriede-Aulhorn-Straße 7, 72076 Tübingen, Germany
- Research Center Neurosensory Science, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Christoph Jüschke
- Human Genetics, Department of Human Medicine, Faculty of Medicine and Health Sciences, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - John Neidhardt
- Human Genetics, Department of Human Medicine, Faculty of Medicine and Health Sciences, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
- Research Center Neurosensory Science, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| |
Collapse
|
20
|
Zhao X, Zhao Q, Wang E, Li N, Meng L, Zhang W, Wang T, Chen Y, Min H. Three-dimensional heads-up system assisted pars plana vitrectomy and subretinal recombinant tissue plasminogen activator injection for submacular hemorrhage. EYE AND VISION (LONDON, ENGLAND) 2023; 10:8. [PMID: 36855186 PMCID: PMC9976487 DOI: 10.1186/s40662-023-00326-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/03/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND To evaluate the outcomes of three-dimensional (3D) heads-up system assisted pars plana vitrectomy (PPV) and subretinal injection of recombinant tissue plasminogen activator (rt-PA) for submacular hemorrhage (SMH). METHODS Medical records of SMH patients who underwent 3D heads-up system assisted-PPV and subretinal injection of rt-PA from June 2021 to January 2022 were reviewed. The main outcomes included best-corrected visual acuity (BCVA), SMH absorption, and perioperative complications. RESULTS We finally included 18 SMH eyes, most of which happened secondary to polypoidal choroidal vasculopathy (PCV) (10, 55.56%), followed by retinal arterial microaneurysm (RAM) (5, 27.78%), traumatic retinopathy (2, 11.11%) and neovascular age-related macular degeneration (nAMD) (1, 5.56%). The greatest linear dimension (GLD) and height of SMH were 6538.17 ± 2533.11 μm and 937.36 ± 420.21 μm, respectively. After an average postoperative follow-up period of 131.06 ± 38.96 days, patients' BCVA improved significantly from 1.85 ± 0.62 to 1.14 ± 0.82 logMAR (P < 0.05). SMH was completely and partially absorbed in 9 (50.00%) and 6 (33.33%) eyes, with no occurrence of iatrogenic retinal break. However, 4 additional PPVs were performed to manage the postoperative SMH and/or vitreous hemorrhage (VH) recurrence (2, 11.11%) and retinal detachment (RD) occurrence (2, 11.11%). Preoperative BCVA was significantly correlated with postoperative BCVA in multiple linear regression analysis (P < 0.05), and hemorrhagic pigment epithelial detachment (PED) was significantly correlated with SMH and VH recurrence in univariate binary logistic regression analysis (P < 0.05). CONCLUSIONS The 3D heads-up system assisted-PPV and subretinal injection of rt-PA were efficacious in eliminating SMH and improving visual prognosis with satisfactory safety profile, while caution should be taken for PCV patients with hemorrhagic PED and massive SMH.
Collapse
Affiliation(s)
- Xinyu Zhao
- grid.413106.10000 0000 9889 6335Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730 China ,grid.506261.60000 0001 0706 7839Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qing Zhao
- grid.413106.10000 0000 9889 6335Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730 China ,grid.506261.60000 0001 0706 7839Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Erqian Wang
- grid.413106.10000 0000 9889 6335Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730 China ,grid.506261.60000 0001 0706 7839Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ningning Li
- grid.413106.10000 0000 9889 6335Department of Operating Room, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Lihui Meng
- grid.413106.10000 0000 9889 6335Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730 China ,grid.506261.60000 0001 0706 7839Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Wenfei Zhang
- grid.413106.10000 0000 9889 6335Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730 China ,grid.506261.60000 0001 0706 7839Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tan Wang
- grid.413106.10000 0000 9889 6335Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730 China ,grid.506261.60000 0001 0706 7839Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Youxin Chen
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China. .,Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Hanyi Min
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No.1 Shuaifuyuan, Wangfujing, Dongcheng District, Beijing, 100730, China. .,Key Laboratory of Ocular Fundus Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
21
|
Paliwal H, Prajapati BG, Srichana T, Singh S, Patel RJ. Novel Approaches in the Drug Development and Delivery Systems for Age-Related Macular Degeneration. Life (Basel) 2023; 13:life13020568. [PMID: 36836923 PMCID: PMC9960288 DOI: 10.3390/life13020568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/24/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The number of patients with ocular disorders has increased due to contributing factors such as aging populations, environmental changes, smoking, genetic abnormalities, etc. Age-related macular degeneration (AMD) is one of the common ocular disorders which may advance to loss of vision in severe cases. The advanced form of AMD is classified into two types, dry (non-exudative) and wet (exudative) AMD. Although several therapeutic approaches are explored for the management of AMD, no approved therapy can substantially slow down the progression of dry AMD into the later stages. The focus of researchers in recent times has been engaged in developing targeted therapeutic products to halt the progression and maintain or improve vision in individuals diagnosed with AMD. The delivery of anti-VEGF agents using intravitreal therapy has found some success in managing AMD, and novel formulation approaches have been introduced in various studies to potentiate the efficacy. Some of the novel approaches, such as hydrogel, microspheres, polymeric nanoparticles, liposomes, implants, etc. have been discussed. Apart from this, subretinal, suprachoroidal, and port delivery systems have also been investigated for biologics and gene therapies. The unmet potential of approved therapeutic products has contributed to several patent applications in recent years. This review outlines the current treatment options, outcomes of recent research studies, and patent details around the novel drug delivery approach for the treatment of AMD.
Collapse
Affiliation(s)
- Himanshu Paliwal
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Kherva, Mehsana 384012, Gujarat, India
| | - Bhupendra Gopalbhai Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S. K. Patel College of Pharmaceutical Education & Research, Ganpat University, Kherva, Mehsana 384012, Gujarat, India
- Correspondence: or ; Tel.: +91-9429225025
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sudarshan Singh
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Ravish J. Patel
- Ramanbhai Patel College of Pharmacy (RPCP), Charotar University of Science and Technology, Anand 388421, Gujarat, India
| |
Collapse
|