1
|
Safont G, Villar-Hernández R, Smalchuk D, Stojanovic Z, Marín A, Lacoma A, Pérez-Cano C, López-Martínez A, Molina-Moya B, Solis AJ, Arméstar F, Matllo J, Díaz-Fernández S, Romero I, Casas I, Strecker K, Preyer R, Rosell A, Latorre I, Domínguez J. Measurement of IFN-γ and IL-2 for the assessment of the cellular immunity against SARS-CoV-2. Sci Rep 2024; 14:1137. [PMID: 38212416 PMCID: PMC10784529 DOI: 10.1038/s41598-024-51505-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/05/2024] [Indexed: 01/13/2024] Open
Abstract
The study of specific T-cell responses against SARS-CoV-2 is important for understanding long-term immunity and infection management. The aim of this study was to assess the dual IFN-γ and IL-2 detection, using a SARS-CoV-2 specific fluorescence ELISPOT, in patients undergoing acute disease, during convalescence, and after vaccination. We also evaluated humoral response and compared with T-cells with the aim of correlating both types of responses, and increase the number of specific response detection. Blood samples were drawn from acute COVID-19 patients and convalescent individuals classified according to disease severity; and from unvaccinated and vaccinated uninfected individuals. IgGs against Spike and nucleocapsid, IgMs against nucleocapsid, and neutralizing antibodies were also analyzed. Our results show that IFN-γ in combination with IL-2 increases response detection in acute and convalescent individuals (p = 0.023). In addition, IFN-γ detection can be a useful biomarker for monitoring severe acute patients, as our results indicate that those individuals with a poor outcome have lower levels of this cytokine. In some cases, the lack of cellular immunity is compensated by antibodies, confirming the role of both types of immune responses in infection, and confirming that their dual detection can increase the number of specific response detections. In summary, IFN-γ/IL-2 dual detection is promising for characterizing and assessing the immunization status, and helping in the patient management.
Collapse
Affiliation(s)
- Guillem Safont
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Raquel Villar-Hernández
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- Genome Identification Diagnostics GmbH (GenID), Straßberg, Germany
| | - Daria Smalchuk
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- Odesa I. I. Mechnykov National University, Odesa, Ukraine
| | - Zoran Stojanovic
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pulmonology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Alicia Marín
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pulmonology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Alicia Lacoma
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Pérez-Cano
- Basic Unit for the Prevention of Occupational Risks (UBP), Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Anabel López-Martínez
- Basic Unit for the Prevention of Occupational Risks (UBP), Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Bárbara Molina-Moya
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alan Jhunior Solis
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pulmonology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Fernando Arméstar
- Intensive Care Medicine Department, Hospital Universitari Germans Trias I Pujol, Badalona, Spain
| | - Joan Matllo
- Basic Unit for the Prevention of Occupational Risks (UBP), Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Sergio Díaz-Fernández
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Iris Romero
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Irma Casas
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
- Preventive Medicine Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Kevin Strecker
- Genome Identification Diagnostics GmbH (GenID), Straßberg, Germany
| | - Rosemarie Preyer
- Genome Identification Diagnostics GmbH (GenID), Straßberg, Germany
| | - Antoni Rosell
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
- Pulmonology Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Irene Latorre
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jose Domínguez
- Institut d'Investigació Germans Trias i Pujol, Barcelona, Spain.
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
2
|
Pitiriga VC, Papamentzelopoulou M, Konstantinakou KE, Vasileiou IV, Sakellariou KS, Spyrou NI, Tsakris A. Persistence of T-Cell Immunity Responses against SARS-CoV-2 for over 12 Months Post COVID-19 Infection in Unvaccinated Individuals with No Detectable IgG Antibodies. Vaccines (Basel) 2023; 11:1764. [PMID: 38140169 PMCID: PMC10747023 DOI: 10.3390/vaccines11121764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/09/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Immune response to SARS-CoV-2 is crucial for preventing reinfection or reducing disease severity. T-cells' long-term protection, elicited either by COVID-19 vaccines or natural infection, has been extensively studied thus far; however, it is still attracting considerable scientific interest. The aim of the present epidemiological study was to define the levels of T-cellular immunity response in a specific group of unvaccinated individuals from the general population with a prior confirmed COVID-19 infection and no measurable levels of IgG antibodies. METHODS We performed a retrospective descriptive analysis of data collected from the medical records of consecutive unvaccinated individuals recovered from COVID-19, who had proceeded to a large private medical center in the Attica region from September 2021 to September 2022 in order to be examined on their own initiative for SARS-CoV-2 T-cell immunity response. The analysis of T-cell responses was divided into three time periods post infection: Group A: up to 6 months; Group B: 6-12 months; Group C: >12 months. The SARS-CoV-2 T-cell response was estimated against spike (S) and nucleocapsid (N) structural proteins by performing the T-SPOT. COVID test methodology. SARS-CoV-2 IgG antibody levels were measured by the SARS-CoV-2 IgG II Quant assay (Abbott Diagnostics). RESULTS A total of 182 subjects were retrospectively included in the study, 85 females (46.7%) and 97 (53.3%) males, ranging from 19 to 91 years old (mean 50.84 ± 17.2 years). Among them, 59 (32.4%) had been infected within the previous 6 months from the examination date (Group A), 69 (37.9%) had been infected within a time period > 6 months and <1 year (Group B) and 54 (29.7%) had been infected within a time period longer than 1 year from the examination date (Group C). Among the three groups, a positive T-cell reaction against the S antigen was reported in 47/58 (81%) of Group A, 61/69 (88.4%) of Group B and 40/54 (74.1%) of Group C (chi square, p = 0.27). T-cell reaction against the N antigen was present in 45/58 (77.6%) of Group A, 61/69 (88.4%) of Group B and 36/54 (66.7%) of Group C (chi square, p = 0.02). The median Spot-Forming Cells (SFC) count for the S antigen was 18 (range from 0-160) in Group A, 19 (range from 0-130) in Group B and 17 (range from 0-160) in Group C (Kruskal-Wallis test, p = 0.11; pairwise comparisons: groups A-B, p = 0.95; groups A-C, p = 0.89; groups B-C, p = 0.11). The median SFCs count for the N antigen was 14.5 (ranging from 0 to 116) for Group A, 24 (ranging from 0-168) in Group B and 16 (ranging from 0-112) for Group C (Kruskal-Wallis test, p = 0.01; pairwise comparisons: groups A-B, p = 0.02; groups A-C, p = 0.97; groups B-C, p = 0.03). CONCLUSIONS Our data suggest that protective adaptive T-cellular immunity following natural infection by SARS-CoV-2 may persist for over 12 months, despite the undetectable humoral element.
Collapse
Affiliation(s)
- Vassiliki C. Pitiriga
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece;
| | - Myrto Papamentzelopoulou
- Molecular Biology Unit, 1st Department of Obstetrics and Gynecology, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Kanella E. Konstantinakou
- Bioiatriki Healthcare Group, Kifisias 132 and Papada Street, 11526 Athens, Greece; (K.E.K.); (I.V.V.); (K.S.S.); (N.I.S.)
| | - Irene V. Vasileiou
- Bioiatriki Healthcare Group, Kifisias 132 and Papada Street, 11526 Athens, Greece; (K.E.K.); (I.V.V.); (K.S.S.); (N.I.S.)
| | - Konstantina S. Sakellariou
- Bioiatriki Healthcare Group, Kifisias 132 and Papada Street, 11526 Athens, Greece; (K.E.K.); (I.V.V.); (K.S.S.); (N.I.S.)
| | - Natalia I. Spyrou
- Bioiatriki Healthcare Group, Kifisias 132 and Papada Street, 11526 Athens, Greece; (K.E.K.); (I.V.V.); (K.S.S.); (N.I.S.)
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece;
| |
Collapse
|
3
|
García-García A, Fortuny C, Fumadó V, Jordan I, Ruiz-López L, González-Navarro EA, Egri N, Esteve-Solé A, Luo Y, Vlagea A, Cabedo MM, Launes C, Soler A, Codina A, Juan M, Pascal M, Deyà-Martínez A, Alsina L. Acute and long-term immune responses to SARS-CoV-2 infection in unvaccinated children and young adults with inborn errors of immunity. Front Immunol 2023; 14:1084630. [PMID: 36742319 PMCID: PMC9896004 DOI: 10.3389/fimmu.2023.1084630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/03/2023] [Indexed: 01/22/2023] Open
Abstract
Purpose To describe SARS-CoV-2 infection outcome in unvaccinated children and young adults with inborn errors of immunity (IEI) and to compare their specific acute and long-term immune responses with a sex-, age-, and severity-matched healthy population (HC). Methods Unvaccinated IEI patients up to 22 years old infected with SARS-CoV-2 were recruited along with a cohort of HC. SARS-CoV-2 serology and ELISpot were performed in the acute phase of infection (up to 6 weeks) and at 3, 6, 9, and 12 months. Results Twenty-five IEI patients (median age 14.3 years, min.-max. range 4.5-22.8; 15/25 males; syndromic combined immunodeficiencies: 48.0%, antibody deficiencies: 16.0%) and 17 HC (median age 15.3 years, min.-max. range 5.4-20.0; 6/17 males, 35.3%) were included. Pneumonia occurred in 4/25 IEI patients. In the acute phase SARS-CoV-2 specific immunoglobulins were positive in all HC but in only half of IEI in whom it could be measured (n=17/25): IgG+ 58.8% (10/17) (p=0.009); IgM+ 41.2% (7/17)(p<0.001); IgA+ 52.9% (9/17)(p=0.003). Quantitative response (index) was also lower compared with HC: IgG IEI (3.1 ± 4.4) vs. HC (3.5 ± 1.5)(p=0.06); IgM IEI (1.9 ± 2.4) vs. HC (3.9 ± 2.4)(p=0.007); IgA IEI (3.3 ± 4.7) vs. HC (4.6 ± 2.5)(p=0.04). ELISpots positivity was qualitatively lower in IEI vs. HC (S-ELISpot IEI: 3/11, 27.3% vs. HC: 10/11, 90.9%; p=0.008; N-ELISpot IEI: 3/9, 33.3% vs. HC: 11/11, 100%; p=0.002) and also quantitatively lower (S-ELISpot IEI: mean index 3.2 ± 5.0 vs. HC 21.2 ± 17.0; p=0.001; N-ELISpot IEI: mean index 9.3 ± 16.6 vs. HC: 39.1 ± 23.7; p=0.004). As for long term response, SARS-CoV-2-IgM+ at 6 months was qualitatively lower in IEI(3/8, 37.5% vs. 9/10 HC: 90.0%; p=0.043), and quantitatively lower in all serologies IgG, M, and A (IEI n=9, 1.1 ± 0.9 vs. HC n=10, 2.1 ± 0.9, p=0.03; IEI n=9, 1.3 ± 1.5 vs. HC n=10, 2.9 ± 2.8, p=0.02; and IEI n=9, 0.6 ± 0.5 vs. HC n=10, 1.7 ± 0.8, p=0.002 -respectively) but there were no differences at remaining time points. Conclusions Our IEI pediatric cohort had a higher COVID-19 pneumonia rate than the general age-range population, with lower humoral and cellular responses in the acute phase (even lower compared to the reported IEI serological response after SARS-CoV-2 vaccination), and weaker humoral responses at 6 months after infection compared with HC.
Collapse
Affiliation(s)
- Ana García-García
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Clinical Immunology Program, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Claudia Fortuny
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Paediatric Infectious Diseases Unit, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- CIBER of Epidemiology and Public Health, Madrid, Spain
- Translational Research Network in Paediatric Infectious Diseases (RITIP), Madrid, Spain
| | - Victoria Fumadó
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Paediatric Infectious Diseases Unit, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- CIBER of Epidemiology and Public Health, Madrid, Spain
- Translational Research Network in Paediatric Infectious Diseases (RITIP), Madrid, Spain
| | - Iolanda Jordan
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Translational Research Network in Paediatric Infectious Diseases (RITIP), Madrid, Spain
- Paediatric Intensive Care Unit, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Laura Ruiz-López
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Program, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | | | - Natalia Egri
- Department of Immunology-CDB, Hospital Clínic-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Ana Esteve-Solé
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Program, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Yiyi Luo
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology Program, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Alexandru Vlagea
- Clinical Immunology Program, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
- Department of Immunology-CDB, Hospital Clínic-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Manel Monsonís Cabedo
- Department of Microbiology, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
| | - Cristian Launes
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Paediatrics Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Paediatric Infectious Diseases Research Group, Institut de Recerca Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Aleix Soler
- Paediatrics Department, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Anna Codina
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Pathology Department and Biobank Department, Hospital Sant Joan de Deu, Esplugues de Llobregat, Barcelona, Spain
| | - Manel Juan
- Clinical Immunology Program, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
- Department of Immunology-CDB, Hospital Clínic-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- Immunotherapy Platform, Hospital Sant Joan de Déu-Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Mariona Pascal
- Clinical Immunology Program, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
- Department of Immunology-CDB, Hospital Clínic-IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- Spanish Network for Allergy - RETIC de Asma, Reacciones Adversas y Alérgicas (ARADYAL), Madrid, Spain
| | - Angela Deyà-Martínez
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Clinical Immunology Program, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
| | - Laia Alsina
- Study Group for Immune Dysfunction Diseases in Children (GEMDIP), Institut de Recerca Sant Joan de Déu, Barcelona, Spain
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Clinical Immunology Program, Hospital Sant Joan de Déu-Hospital Clínic Barcelona, Barcelona, Spain
- Immunotherapy Platform, Hospital Sant Joan de Déu-Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Dhawan M, Rabaan AA, Fawarah MMA, Almuthree SA, Alsubki RA, Alfaraj AH, Mashraqi MM, Alshamrani SA, Abduljabbar WA, Alwashmi ASS, Ibrahim FA, Alsaleh AA, Khamis F, Alsalman J, Sharma M, Emran TB. Updated Insights into the T Cell-Mediated Immune Response against SARS-CoV-2: A Step towards Efficient and Reliable Vaccines. Vaccines (Basel) 2023; 11:101. [PMID: 36679947 PMCID: PMC9861463 DOI: 10.3390/vaccines11010101] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
The emergence of novel variants of SARS-CoV-2 and their abilities to evade the immune response elicited through presently available vaccination makes it essential to recognize the mechanisms through which SARS-CoV-2 interacts with the human immune response. It is essential not only to comprehend the infection mechanism of SARS-CoV-2 but also for the generation of effective and reliable vaccines against COVID-19. The effectiveness of the vaccine is supported by the adaptive immune response, which mainly consists of B and T cells, which play a critical role in deciding the prognosis of the COVID-19 disease. T cells are essential for reducing the viral load and containing the infection. A plethora of viral proteins can be recognized by T cells and provide a broad range of protection, especially amid the emergence of novel variants of SARS-CoV-2. However, the hyperactivation of the effector T cells and reduced number of lymphocytes have been found to be the key characteristics of the severe disease. Notably, excessive T cell activation may cause acute respiratory distress syndrome (ARDS) by producing unwarranted and excessive amounts of cytokines and chemokines. Nevertheless, it is still unknown how T-cell-mediated immune responses function in determining the prognosis of SARS-CoV-2 infection. Additionally, it is unknown how the functional perturbations in the T cells lead to the severe form of the disease and to reduced protection not only against SARS-CoV-2 but many other viral infections. Hence, an updated review has been developed to understand the involvement of T cells in the infection mechanism, which in turn determines the prognosis of the disease. Importantly, we have also focused on the T cells' exhaustion under certain conditions and how these functional perturbations can be modulated for an effective immune response against SARS-CoV-2. Additionally, a range of therapeutic strategies has been discussed that can elevate the T cell-mediated immune response either directly or indirectly.
Collapse
Affiliation(s)
- Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, Punjab, India
- Trafford College, Altrincham, Manchester WA14 5PQ, UK
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Mahmoud M. Al Fawarah
- Microbiology Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
| | - Souad A. Almuthree
- Department of Infectious Disease, King Abdullah Medical City, Makkah 43442, Saudi Arabia
| | - Roua A. Alsubki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Amal H. Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Mutaib M. Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Saleh A. Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Wesam A. Abduljabbar
- Department of Medical Laboratory Sciences, Fakeeh College for Medical Science, Jeddah 21134, Saudi Arabia
| | - Ameen S. S. Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Fatimah Al Ibrahim
- Infectious Disease Division, Department of Internal Medicine, Dammam Medical Complex, Dammam 32245, Saudi Arabia
| | - Abdulmonem A. Alsaleh
- Clinical Laboratory Science Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Faryal Khamis
- Infection Diseases Unit, Department of Internal Medicine, Royal Hospital, Muscat 1331, Oman
| | - Jameela Alsalman
- Infection Disease Unit, Department of Internal Medicine, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 435, Bahrain
| | - Manish Sharma
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| |
Collapse
|