1
|
Sheng Y, Zhai R, Li S, Wang X, Wang Y, Cui Z, Wang C, Wang Q, Zhang Y, Wu C. Enhanced understanding of cinnamaldehyde's therapeutic potential in osteoarthritis through bioinformatics and mechanistic validation of its anti-apoptotic effect. Front Med (Lausanne) 2024; 11:1448937. [PMID: 39376659 PMCID: PMC11456544 DOI: 10.3389/fmed.2024.1448937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/04/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction Osteoarthritis (OA) is a globally prevalent joint disorder affecting approximately 240 million individuals worldwide. Cinnamaldehyde, known for its broad anti-inflammatory and anti-aging effects across various cell types, has not been investigated for its potential impact on apoptosis in OA chondrocytes. Methods To explore the effectiveness of cinnamaldehyde in mitigating knee osteoarthritis by reducing chondrocyte apoptosis, bioinformatics analysis was first conducted to identify apoptosis-associated differentially expressed genes (APDEGs). Gene expression datasets GSE55235 and GSE114007 were analyzed using weighted gene co-expression network analysis (WGCNA). Gene modules of interest were cross-referenced with APDEGs to identify those specific to OA. LASSO regression analysis was employed to build a risk model, and this model, along with datasets GSE114007, GSE55457, and GSE12021, was validated using ROC analysis. Cellular experiments and blood analyses from OA patients were performed to evaluate the effects of cinnamaldehyde on apoptosis-related gene expression. Results Cinnamaldehyde administration was found to rectify the abnormal expression of key apoptosis-related genes in OA patients. Specifically, cinnamaldehyde may affect knee osteoarthritis by regulating apoptosis-related genes such as ZFAND5, BCL6, ELL2, FOSL2, MARCKS, and SGCD. Additionally, three novel apoptotic targets in OA chondrocytes-ZFAND5, ELL2, and SGCD-were identified. Discussion These findings provide significant theoretical support for the clinical use of cinnamaldehyde in OA treatment. The discovery of novel apoptotic targets presents new therapeutic possibilities for future OA interventions.
Collapse
Affiliation(s)
- Yueyang Sheng
- Department of Molecular Orthopaedics, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Ruiqing Zhai
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shan Li
- Department of Molecular Orthopaedics, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Xinyu Wang
- Department of Molecular Orthopaedics, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Ying Wang
- Department of Molecular Orthopaedics, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Zhengguo Cui
- Department of Environmental Health, University of Fukui School of Medical Sciences, University of Fukui, Fukui, Japan
| | - Chao Wang
- Department of Molecular Orthopaedics, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Qianqian Wang
- Department of Molecular Orthopaedics, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Yanzhuo Zhang
- Department of Molecular Orthopaedics, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Chengai Wu
- Department of Molecular Orthopaedics, National Center for Orthopaedics, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Gao W, Liu R, Huang K, Fu W, Wang A, Du G, Tang H, Yin L, Yin ZS. CHMP5 attenuates osteoarthritis via inhibiting chondrocyte apoptosis and extracellular matrix degradation: involvement of NF-κB pathway. Mol Med 2024; 30:55. [PMID: 38664616 PMCID: PMC11046779 DOI: 10.1186/s10020-024-00819-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA), the most common joint disease, is linked with chondrocyte apoptosis and extracellular matrix (ECM) degradation. Charged multivesicular body protein 5 (CHMP5), a member of the multivesicular body, has been reported to serve as an anti-apoptotic protein to participate in leukemia development. However, the effects of CHMP5 on apoptosis and ECM degradation in OA remain unclear. METHODS In this study, quantitative proteomics was performed to analyze differential proteins between normal and OA patient articular cartilages. The OA mouse model was constructed by the destabilization of the medial meniscus (DMM). In vitro, interleukin-1 beta (IL-1β) was used to induce OA in human chondrocytes. CHMP5 overexpression and silencing vectors were created using an adenovirus system. The effects of CHMP5 on IL-1β-induced chondrocyte apoptosis were investigated by CCK-8, flow cytometry, and western blot. The effects on ECM degradation were examined by western blot and immunofluorescence. The potential mechanism was explored by western blot and Co-IP assays. RESULTS Downregulated CHMP5 was identified by proteomics in OA patient cartilages, which was verified in human and mouse articular cartilages. CHMP5 overexpression repressed cell apoptosis and ECM degradation in OA chondrocytes. However, silencing CHMP5 exacerbated OA chondrocyte apoptosis and ECM degradation. Furthermore, we found that the protective effect of CHMP5 against OA was involved in nuclear factor kappa B (NF-κB) signaling pathway. CONCLUSIONS This study demonstrated that CHMP5 repressed IL-1β-induced chondrocyte apoptosis and ECM degradation and blocked NF-κB activation. It was shown that CHMP5 might be a novel potential therapeutic target for OA in the future.
Collapse
Affiliation(s)
- Weilu Gao
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China
| | - Rui Liu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China
- Department of Orthopedics, Wan Bei General Hospital of Wanbei Coal power Group, Suzhou, Anhui, China
| | - Keke Huang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China
| | - Wenhan Fu
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China
| | - Anquan Wang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China
| | - Gongwen Du
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China
| | - Hao Tang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China
| | - Li Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China
| | - Zongsheng S Yin
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, Anhui, China.
| |
Collapse
|
3
|
Brylka LJ, Alimy AR, Tschaffon-Müller MEA, Jiang S, Ballhause TM, Baranowsky A, von Kroge S, Delsmann J, Pawlus E, Eghbalian K, Püschel K, Schoppa A, Haffner-Luntzer M, Beech DJ, Beil FT, Amling M, Keller J, Ignatius A, Yorgan TA, Rolvien T, Schinke T. Piezo1 expression in chondrocytes controls endochondral ossification and osteoarthritis development. Bone Res 2024; 12:12. [PMID: 38395992 PMCID: PMC10891122 DOI: 10.1038/s41413-024-00315-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/18/2023] [Accepted: 01/01/2024] [Indexed: 02/25/2024] Open
Abstract
Piezo proteins are mechanically activated ion channels, which are required for mechanosensing functions in a variety of cell types. While we and others have previously demonstrated that the expression of Piezo1 in osteoblast lineage cells is essential for bone-anabolic processes, there was only suggestive evidence indicating a role of Piezo1 and/or Piezo2 in cartilage. Here we addressed the question if and how chondrocyte expression of the mechanosensitive proteins Piezo1 or Piezo2 controls physiological endochondral ossification and pathological osteoarthritis (OA) development. Mice with chondrocyte-specific inactivation of Piezo1 (Piezo1Col2a1Cre), but not of Piezo2, developed a near absence of trabecular bone below the chondrogenic growth plate postnatally. Moreover, all Piezo1Col2a1Cre animals displayed multiple fractures of rib bones at 7 days of age, which were located close to the growth plates. While skeletal growth was only mildly affected in these mice, OA pathologies were markedly less pronounced compared to littermate controls at 60 weeks of age. Likewise, when OA was induced by anterior cruciate ligament transection, only the chondrocyte inactivation of Piezo1, not of Piezo2, resulted in attenuated articular cartilage degeneration. Importantly, osteophyte formation and maturation were also reduced in Piezo1Col2a1Cre mice. We further observed increased Piezo1 protein abundance in cartilaginous zones of human osteophytes. Finally, we identified Ptgs2 and Ccn2 as potentially relevant Piezo1 downstream genes in chondrocytes. Collectively, our data do not only demonstrate that Piezo1 is a critical regulator of physiological and pathological endochondral ossification processes, but also suggest that Piezo1 antagonists may be established as a novel approach to limit osteophyte formation in OA.
Collapse
Affiliation(s)
- Laura J Brylka
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Assil-Ramin Alimy
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Miriam E A Tschaffon-Müller
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Baden-Württemberg, 89081, Ulm, Germany
| | - Shan Jiang
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Tobias Malte Ballhause
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Anke Baranowsky
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Simon von Kroge
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Julian Delsmann
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Eva Pawlus
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Kian Eghbalian
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Klaus Püschel
- Department Legal Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Astrid Schoppa
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Baden-Württemberg, 89081, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Baden-Württemberg, 89081, Ulm, Germany
| | - David J Beech
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, LS2 9JT, Leeds, UK
| | - Frank Timo Beil
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Johannes Keller
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, University Medical Center Ulm, Baden-Württemberg, 89081, Ulm, Germany
| | - Timur A Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Tim Rolvien
- Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| | - Thorsten Schinke
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
4
|
Gao S, Song H. Integrated comparison of the mRNAome in cartilage, synovium, and macrophages in osteoarthritis. Z Rheumatol 2024; 83:62-70. [PMID: 35178608 DOI: 10.1007/s00393-022-01171-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2022] [Indexed: 11/09/2022]
Abstract
The precise molecular mechanisms associated with osteoarthritis (OA), the most common musculoskeletal disorder, are poorly understood. There are currently no effective treatments to prevent the initiation and progression of the disease. In recent years, the development of mRNAome has made it possible to identify new mechanisms and therapeutic targets. However, the differentially expressed genes screened by different microarrays are not completely the same. In order to avoid this shortcoming, we integrate the different genes from different tissues and data sets, and select the commonly expressed genes for further studies.
Collapse
Affiliation(s)
- Siming Gao
- Department of Rheumatology, Beijing Jishuitan Hospital, No. 31, Xin Jie Kou East Street, Xicheng District, 100035, Beijing, China
| | - Hui Song
- Department of Rheumatology, Beijing Jishuitan Hospital, No. 31, Xin Jie Kou East Street, Xicheng District, 100035, Beijing, China.
| |
Collapse
|
5
|
Paz-González R, Lourido L, Calamia V, Fernández-Puente P, Quaranta P, Picchi F, Blanco FJ, Ruiz-Romero C. An Atlas of the Knee Joint Proteins and Their Role in Osteoarthritis Defined by Literature Mining. Mol Cell Proteomics 2023; 22:100606. [PMID: 37356495 PMCID: PMC10393810 DOI: 10.1016/j.mcpro.2023.100606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 06/27/2023] Open
Abstract
Osteoarthritis (OA) is the most prevalent rheumatic pathology. However, OA is not simply a process of wear and tear affecting articular cartilage but rather a disease of the entire joint. One of the most common locations of OA is the knee. Knee tissues have been studied using molecular strategies, generating a large amount of complex data. As one of the goals of the Rheumatic and Autoimmune Diseases initiative of the Human Proteome Project, we applied a text-mining strategy to publicly available literature to collect relevant information and generate a systematically organized overview of the proteins most closely related to the different knee components. To this end, the PubPular literature-mining software was employed to identify protein-topic relationships and extract the most frequently cited proteins associated with the different knee joint components and OA. The text-mining approach searched over eight million articles in PubMed up to November 2022. Proteins associated with the six most representative knee components (articular cartilage, subchondral bone, synovial membrane, synovial fluid, meniscus, and cruciate ligament) were retrieved and ranked by their relevance to the tissue and OA. Gene ontology analyses showed the biological functions of these proteins. This study provided a systematic and prioritized description of knee-component proteins most frequently cited as associated with OA. The study also explored the relationship of these proteins to OA and identified the processes most relevant to proper knee function and OA pathophysiology.
Collapse
Affiliation(s)
- Rocío Paz-González
- Grupo de Investigación de Reumatología (GIR) - Unidad de Proteómica, Instituto de Investigación Biomédica de A Coruña (INIBIC), Sergas, Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, Spain
| | - Lucía Lourido
- Grupo de Investigación de Reumatología (GIR) - Unidad de Proteómica, Instituto de Investigación Biomédica de A Coruña (INIBIC), Sergas, Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, Spain
| | - Valentina Calamia
- Grupo de Investigación de Reumatología (GIR) - Unidad de Proteómica, Instituto de Investigación Biomédica de A Coruña (INIBIC), Sergas, Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, Spain
| | - Patricia Fernández-Puente
- Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Grupo de Investigación de Reumatología y Salud (GIR-S), Centro Interdisciplinar de Química e Bioloxía (CICA), Universidade da Coruña (UDC), A Coruña, Spain
| | - Patricia Quaranta
- Grupo de Investigación de Reumatología (GIR) - Unidad de Proteómica, Instituto de Investigación Biomédica de A Coruña (INIBIC), Sergas, Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, Spain
| | - Florencia Picchi
- Grupo de Investigación de Reumatología (GIR) - Unidad de Proteómica, Instituto de Investigación Biomédica de A Coruña (INIBIC), Sergas, Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, Spain
| | - Francisco J Blanco
- Grupo de Investigación de Reumatología (GIR) - Unidad de Proteómica, Instituto de Investigación Biomédica de A Coruña (INIBIC), Sergas, Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, Spain; Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Grupo de Investigación de Reumatología y Salud (GIR-S), Centro Interdisciplinar de Química e Bioloxía (CICA), Universidade da Coruña (UDC), A Coruña, Spain.
| | - Cristina Ruiz-Romero
- Grupo de Investigación de Reumatología (GIR) - Unidad de Proteómica, Instituto de Investigación Biomédica de A Coruña (INIBIC), Sergas, Complexo Hospitalario Universitario de A Coruña (CHUAC), A Coruña, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
6
|
Durrani Z, Kinnaird J, Cheng CW, Brühlmann F, Capewell P, Jackson A, Larcombe S, Olias P, Weir W, Shiels B. A parasite DNA binding protein with potential to influence disease susceptibility acts as an analogue of mammalian HMGA transcription factors. PLoS One 2023; 18:e0286526. [PMID: 37276213 DOI: 10.1371/journal.pone.0286526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/15/2023] [Indexed: 06/07/2023] Open
Abstract
Intracellular pathogens construct their environmental niche, and influence disease susceptibility, by deploying factors that manipulate infected host cell gene expression. Theileria annulata is an important tick-borne parasite of cattle that causes tropical theileriosis. Excellent candidates for modulating host cell gene expression are DNA binding proteins bearing AT-hook motifs encoded within the TashAT gene cluster of the parasite genome. In this study, TashAT2 was transfected into bovine BoMac cells to generate three expressing and three non-expressing (opposite orientation) cell lines. RNA-Seq was conducted and differentially expressed (DE) genes identified. The resulting dataset was compared with genes differentially expressed between infected cells and non-infected cells, and DE genes between infected cell lines from susceptible Holstein vs tolerant Sahiwal cattle. Over 800 bovine genes displayed differential expression associated with TashAT2, 209 of which were also modulated by parasite infection. Network analysis showed enrichment of DE genes in pathways associated with cellular adhesion, oncogenesis and developmental regulation by mammalian AT-hook bearing high mobility group A (HMGA) proteins. Overlap of TashAT2 DE genes with Sahiwal vs Holstein DE genes revealed that a significant number of shared genes were associated with disease susceptibility. Altered protein levels encoded by one of these genes (GULP1) was strongly linked to expression of TashAT2 in BoMac cells and was demonstrated to be higher in infected Holstein leucocytes compared to Sahiwal. We conclude that TashAT2 operates as an HMGA analogue to differentially mould the epigenome of the infected cell and influence disease susceptibility.
Collapse
Affiliation(s)
- Zeeshan Durrani
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jane Kinnaird
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Chew Weng Cheng
- Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Francis Brühlmann
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Paul Capewell
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Andrew Jackson
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Stephen Larcombe
- School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - Philipp Olias
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Institute of Veterinary Pathology, Justus Liebig University, Giessen, Germany
| | - William Weir
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Brian Shiels
- School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
7
|
Ding H, Mei X, Li L, Fang P, Guo T, Zhao J. RUNX1 Ameliorates Rheumatoid Arthritis Progression through Epigenetic Inhibition of LRRC15. Mol Cells 2023; 46:231-244. [PMID: 36625319 PMCID: PMC10086557 DOI: 10.14348/molcells.2023.2136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 01/11/2023] Open
Abstract
Leucine-rich repeat containing 15 (LRRC15) has been identified as a contributing factor for cartilage damage in osteoarthritis; however, its involvement in rheumatoid arthritis (RA) and the underlying mechanisms have not been well characterized. The purpose of this study was to explore the function of LRRC15 in RA-associated fibroblast-like synoviocytes (RA-FLS) and in mice with collagen-induced arthritis (CIA) and to dissect the epigenetic mechanisms involved. LRRC15 was overexpressed in the synovial tissues of patients with RA, and LRRC15 overexpression was associated with increased proliferative, migratory, invasive, and angiogenic capacities of RA-FLS and accelerated release of pro-inflammatory cytokines. LRRC15 knockdown significantly inhibited synovial proliferation and reduced bone invasion and destruction in CIA mice. Runt-related transcription factor 1 (RUNX1) transcriptionally represses LRRC15 by binding to core-binding factor subunit beta (CBF-β). Overexpression of RUNX1 significantly inhibited the invasive phenotype of RA-FLS and suppressed the expression of proinflammatory cytokines. Conversely, the effects of RUNX1 were significantly reversed after overexpression of LRRC15 or inhibition of RUNX1-CBF-β interactions. Therefore, we demonstrated that RUNX1-mediated transcriptional repression of LRRC15 inhibited the development of RA, which may have therapeutic effects for RA patients.
Collapse
Affiliation(s)
- Hao Ding
- Department of Orthopedics, Jinling Hospital, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 211166, China
| | - Xiaoliang Mei
- Department of Orthopedics, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Lintao Li
- Department of Orthopedics, Jinling Hospital, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 211166, China
| | - Peng Fang
- Department of Orthopedics, Jinling Hospital, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 211166, China
| | - Ting Guo
- Department of Orthopedics, Jinling Hospital, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 211166, China
| | - Jianning Zhao
- Department of Orthopedics, Jinling Hospital, Jinling Clinical Medical College of Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
8
|
Frerker N, Karlsen TA, Stensland M, Nyman TA, Rayner S, Brinchmann JE. Comparison between articular chondrocytes and mesenchymal stromal cells for the production of articular cartilage implants. Front Bioeng Biotechnol 2023; 11:1116513. [PMID: 36896010 PMCID: PMC9989206 DOI: 10.3389/fbioe.2023.1116513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
Focal lesions of articular cartilage give rise to pain and reduced joint function and may, if left untreated, lead to osteoarthritis. Implantation of in vitro generated, scaffold-free autologous cartilage discs may represent the best treatment option. Here we compare articular chondrocytes (ACs) and bone marrow-derived mesenchymal stromal cells (MSCs) for their ability to make scaffold-free cartilage discs. Articular chondrocytes produced more extracellular matrix per seeded cell than mesenchymal stromal cells. Quantitative proteomics analysis showed that articular chondrocyte discs contained more articular cartilage proteins, while mesenchymal stromal cell discs had more proteins associated with cartilage hypertrophy and bone formation. Sequencing analysis revealed more microRNAs associated with normal cartilage in articular chondrocyte discs, and large-scale target predictions, performed for the first time for in vitro chondrogenesis, suggested that differential expression of microRNAs in the two disc types were important mechanisms behind differential synthesis of proteins. We conclude that articular chondrocytes should be preferred over mesenchymal stromal cells for tissue engineering of articular cartilage.
Collapse
Affiliation(s)
- Nadine Frerker
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Tommy A Karlsen
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Maria Stensland
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Tuula A Nyman
- Department of Immunology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Simon Rayner
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.,Hybrid Technology Hub-Centre of Excellence, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Jan E Brinchmann
- Department of Immunology, Oslo University Hospital, Oslo, Norway.,Department of Molecular Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
9
|
Qin Y, Li J, Zhou Y, Yin C, Li Y, Chen M, Du Y, Li T, Yan J. Apolipoprotein D as a Potential Biomarker and Construction of a Transcriptional Regulatory-Immune Network Associated with Osteoarthritis by Weighted Gene Coexpression Network Analysis. Cartilage 2021; 13:1702S-1717S. [PMID: 34719950 PMCID: PMC8808834 DOI: 10.1177/19476035211053824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVE Synovial inflammation influences the progression of osteoarthritis (OA). Herein, we aimed to identify potential biomarkers and analyze transcriptional regulatory-immune mechanism of synovitis in OA using weighted gene coexpression network analysis (WGCNA). DESIGN A data set of OA synovium samples (GSE55235) was analyzed based on WGCNA. The most significant module with OA was identified and function annotation of the module was performed, following which the hub genes of the module were identified using Pearson correlation and a protein-protein interaction network was constructed. A transcriptional regulatory network of hub genes was constructed using the TRRUST database. The immune cell infiltration of OA samples was evaluated using the single-sample Gene Set Enrichment Analysis (ssGSEA) method. The hub genes coexpressed in multiple tissues were then screened out using data sets of synovium, cartilage, chondrocyte, subchondral bone, and synovial fluid samples. Finally, transcriptional factors and coexpressed hub genes were validated via experiments. RESULTS The turquoise module of GSE55235 was identified via WGCNA. Functional annotation analysis showed that "mineral absorption" and "FoxO signaling pathway" were mostly enriched in the module. JUN, EGR1, FOSB, and KLF4 acted as central nodes in protein-protein interaction network and transcription factors to connect several target genes. "Activated B cell," "activated CD4T cell," "eosinophil," "neutrophil," and "type 17 T helper cell" showed high immune infiltration, while FOSB, KLF6, and MYBL2 showed significant negative correlation with type 17 T helper cell. CONCLUSIONS Our results suggest that the expression level of apolipoprotein D (APOD) was correlated with OA. Furthermore, transcriptional regulatory-immune network was constructed, which may contribute to OA therapy.
Collapse
Affiliation(s)
- Yong Qin
- Department of Orthopedics Surgery, The
Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jia Li
- Department of Orthopedics Surgery, The
First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yonggang Zhou
- Department of Orthopedics Surgery, The
Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Chengliang Yin
- Medical Big Data Research Center,
Medical Innovation Research Division of Chinese PLA General Hospital, Beijing,
China,National Engineering Laboratory for
Medical Big Data Application Technology, Chinese PLA General Hospital, Beijing,
China,Faculty of Medicine, Macau University
of Science and Technology, Macau, China
| | - Yi Li
- Department of Orthopedics Surgery, The
First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ming Chen
- Department of Orthopedics Surgery, The
First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yinqiao Du
- Department of Orthopedics Surgery, The
First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Tiejian Li
- Department of Orthopedics Surgery, The
First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jinglong Yan
- Department of Orthopedics Surgery, The
Second Affiliated Hospital of Harbin Medical University, Harbin, China,Jinglong Yan, Department of Orthopedics
Surgery, The Second Affiliated Hospital of Harbin Medical University, No.246
Xuefu Road, Harbin 150086, China.
| |
Collapse
|
10
|
Subramanian G, Duclos B, Johnson PD, Williams T, Ross JT, Bowen SJ, Zhu Y, White JA, Hedke C, Huczek D, Collard W, Javens C, Vairagoundar R, Respondek T, Zachary T, Maddux T, Cox MR, Kamerling S, Gonzales AJ. In Pursuit of an Allosteric Human Tropomyosin Kinase A ( hTrkA) Inhibitor for Chronic Pain. ACS Med Chem Lett 2021; 12:1847-1852. [PMID: 34795875 DOI: 10.1021/acsmedchemlett.1c00483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Human β-nerve growth factor (β-NGF) and its associated receptor, human tropomyosin receptor kinase A (hTrkA), have been demonstrated to be key factors in the perception of pain. However, efficacious small molecule therapies targeting the intracellularly located hTrkA kinase have not been explored thoroughly for pain management. Herein, we report the pharmacological properties of a selective hTrkA allosteric inhibitor, 1. 1 was shown to be active against the full length hTrkA, showing preferential binding for the inactive kinase, and was confirmed through the X-ray of hTrkA···1 bound complex. 1 was also found to inhibit β-NGF induced neurite outgrowth in rat PC12 cells. Daily oral administration of 1 improved the joint compression threshold of rats injected intra-articularly with monoiodoacetate over a 14-day period. The efficacy of 1 in a relevant chronic pain model of osteoarthritis coupled with in vitro confirmation of target mediation makes allosteric hTrkA inhibitors potential candidates for modulating pain.
Collapse
Affiliation(s)
- Govindan Subramanian
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Brian Duclos
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Paul D. Johnson
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Tracey Williams
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Jason T. Ross
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Scott J. Bowen
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Yaqi Zhu
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Julie A. White
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Carolyn Hedke
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Dennis Huczek
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Wendy Collard
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Christopher Javens
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Rajendran Vairagoundar
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Tomasz Respondek
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Theresa Zachary
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Todd Maddux
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Mark R. Cox
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Steven Kamerling
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| | - Andrea J. Gonzales
- Veterinary Medicine Research & Development, Zoetis, 333 Portage Street, Building 300, Kalamazoo, Michigan 49007, United States
| |
Collapse
|
11
|
Singh P, Wang M, Mukherjee P, Lessard SG, Pannellini T, Carballo CB, Rodeo SA, Goldring MB, Otero M. Transcriptomic and epigenomic analyses uncovered Lrrc15 as a contributing factor to cartilage damage in osteoarthritis. Sci Rep 2021; 11:21107. [PMID: 34702854 PMCID: PMC8548547 DOI: 10.1038/s41598-021-00269-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/05/2021] [Indexed: 01/03/2023] Open
Abstract
In osteoarthritis (OA), articular chondrocytes display phenotypic and functional changes associated with epigenomic alterations. These changes contribute to the disease progression, which is characterized by dysregulated reparative processes and abnormal extracellular matrix remodeling leading to cartilage degradation. Recent studies using a murine model of posttraumatic OA highlighted the contribution of changes in DNA hydroxymethylation (5hmC) to OA progression. Here, we integrated transcriptomic and epigenomic analyses in cartilage after induction of OA to show that the structural progression of OA is accompanied by early transcriptomic and pronounced DNA methylation (5mC) changes in chondrocytes. These changes accumulate over time and are associated with recapitulation of developmental processes, including cartilage development, chondrocyte hypertrophy, and ossification. Our integrative analyses also uncovered that Lrrc15 is differentially methylated and expressed in OA cartilage, and that it may contribute to the functional and phenotypic alterations of chondrocytes, likely coordinating stress responses and dysregulated extracellular matrix remodeling.
Collapse
Affiliation(s)
- Purva Singh
- Hospital for Special Surgery, HSS Research Institute, New York, NY, 10021, USA
| | - Mengying Wang
- Hospital for Special Surgery, HSS Research Institute, New York, NY, 10021, USA.,School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | | | - Samantha G Lessard
- Hospital for Special Surgery, HSS Research Institute, New York, NY, 10021, USA
| | - Tania Pannellini
- Hospital for Special Surgery, HSS Research Institute, New York, NY, 10021, USA
| | - Camila B Carballo
- Hospital for Special Surgery, HSS Research Institute, New York, NY, 10021, USA
| | - Scott A Rodeo
- Hospital for Special Surgery, HSS Research Institute, New York, NY, 10021, USA.,Weill Cornell Medicine, New York, NY, 10021, USA
| | - Mary B Goldring
- Hospital for Special Surgery, HSS Research Institute, New York, NY, 10021, USA.,Weill Cornell Medicine, New York, NY, 10021, USA
| | - Miguel Otero
- Hospital for Special Surgery, HSS Research Institute, New York, NY, 10021, USA. .,Weill Cornell Medicine, New York, NY, 10021, USA. .,Hospital for Special Surgery, Orthopedic Soft Tissue Research Program, HSS Research Institute, Room 603, 535 East 70th Street, New York, NY, 10021, USA.
| |
Collapse
|
12
|
Li X, Liao Z, Deng Z, Chen N, Zhao L. Combining bulk and single-cell RNA-sequencing data to reveal gene expression pattern of chondrocytes in the osteoarthritic knee. Bioengineered 2021; 12:997-1007. [PMID: 33749514 PMCID: PMC8806218 DOI: 10.1080/21655979.2021.1903207] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) occurs mostly in the knees, hips, finger interphalangeal joints, and spinal facet joints, and is characterized by cartilage degeneration. The existing bulk RNA sequencing (bulk RNA-seq) and single-cell sequencing (scRNA-seq) data for chondrocytes in the osteoarthritic knee joint provide the expression profiles of entire cell populations and individual cells, respectively. Here, we aimed to analyze these two types of sequencing data in order to obtain a more comprehensive understanding of OA. We compared the analysis results of bulk RNA-seq and scRNA-seq from the dataset GSE114007 and the dataset GSE104782, respectively, and identified the differentially expressed genes (DEGs). Then, we tried to find the key The transcription factor is a more fomal term (TFs) and long non-coding RNA (lncRNA) regulation. We highlighted 271 genes that were simultaneously suggested by these two types of data and provided their possible expression pattern in OA. Among the 271 genes, we identified 14 TFs, and TWIST2, MYBL2, RELA, JUN, KLF4, and PTTG1 could be the key TFs for the 271 genes. We also found that 8 lncRNAs among the 271 genes and the lncRNA regulation between CYTOR and NRP1 could contribute to the pain and vascularization of cartilage in the osteoarthritic knee. In short, our research combined the analysis results of bulk RNA-seq and scRNA-seq data for OA chondrocytes, which will contribute to further elucidation of the molecular mechanisms of OA pathogenesis. ![]()
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zheting Liao
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhonghao Deng
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Nachun Chen
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Liang Zhao
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Key Laboratory of Bone and Cartilage Regeneration Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Orthopaedics, Shunde Hospital, Southern Medical University, Foshan, China
| |
Collapse
|
13
|
Targeting miR-18a sensitizes chondrocytes to anticytokine therapy to prevent osteoarthritis progression. Cell Death Dis 2020; 11:947. [PMID: 33144571 PMCID: PMC7609664 DOI: 10.1038/s41419-020-03155-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023]
Abstract
Inflammation participates in the development of OA and targeting inflammatory signaling pathways is a potential strategy for OA treatment. IL-1β is one of the most important inflammatory factors to trigger the activation of NF-κB signaling and accelerate OA progression, whereas OA patients could hardly benefit from inhibiting IL-1β in clinic, suggesting the importance to further explore the details of OA inflammation. We here showed that expression of miR-18a in chondrocytes was specifically induced in response to IL-1β in vitro as well as in rat model of OA during which NF-κB signaling was involved, and that nuclear-translocated p65 directly upregulated miR-18a expression at transcriptional level. Further, increased miR-18a mediated hypertrophy of chondrocytes, resulting in OA degeneration, by targeting TGFβ1, SMAD2, and SMAD3 and subsequently leading to repression of TGF-β signaling. And the level of serum miR-18a was positively correlated to severity of OA. Interestingly, other than IL-1β, pro-inflammation cytokines involving TNFα could also remarkably upregulate miR-18a via activating NF-κB signaling and subsequently induce chondrocytes hypertrophy, suggesting a pivotal central role of miR-18a in inflammatory OA progression. Thus, our study revealed a novel convergence of NF-κB and TGF-β signaling mediated by miR-18a, and a novel mechanism underlying inflammation-regulated OA dependent of NF-κB/miR-18a/TGF-β axis. Notably, in vivo assay showed that targeting miR-18a sensitized OA chondrocytes to IL-1β inhibitor as targeting IL-1β and miR-18a simultaneously had much stronger inhibitory effects on OA progression than suppressing IL-1β alone. Therefore, the diagnostic and therapeutic potentials of miR-18a for OA were also revealed.
Collapse
|
14
|
Sun H, Wen X, Li H, Wu P, Gu M, Zhao X, Zhang Z, Hu S, Mao G, Ma R, Liao W, Zhang Z. Single-cell RNA-seq analysis identifies meniscus progenitors and reveals the progression of meniscus degeneration. Ann Rheum Dis 2019; 79:408-417. [PMID: 31871141 PMCID: PMC7034356 DOI: 10.1136/annrheumdis-2019-215926] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/21/2019] [Accepted: 12/07/2019] [Indexed: 12/26/2022]
Abstract
Objectives The heterogeneity of meniscus cells and the mechanism of meniscus degeneration is not well understood. Here, single-cell RNA sequencing (scRNA-seq) was used to identify various meniscus cell subsets and investigate the mechanism of meniscus degeneration. Methods scRNA-seq was used to identify cell subsets and their gene signatures in healthy human and degenerated meniscus cells to determine their differentiation relationships and characterise the diversity within specific cell types. Colony-forming, multi-differentiation assays and a mice meniscus injury model were used to identify meniscus progenitor cells. We investigated the role of degenerated meniscus progenitor (DegP) cell clusters during meniscus degeneration using computational analysis and experimental verification. Results We identified seven clusters in healthy human meniscus, including five empirically defined populations and two novel populations. Pseudotime analysis showed endothelial cells and fibrochondrocyte progenitors (FCP) existed at the pseudospace trajectory start. Melanoma cell adhesion molecule ((MCAM)/CD146) was highly expressed in two clusters. CD146+ meniscus cells differentiated into osteoblasts and adipocytes and formed colonies. We identified changes in the proportions of degenerated meniscus cell clusters and found a cluster specific to degenerative meniscus with progenitor cell characteristics. The reconstruction of four progenitor cell clusters indicated that FCP differentiation into DegP was an aberrant process. Interleukin 1β stimulation in healthy human meniscus cells increased CD318+ cells, while TGFβ1 attenuated the increase in CD318+ cells in degenerated meniscus cells. Conclusions The identification of meniscus progenitor cells provided new insights into cell-based meniscus tissue engineering, demonstrating a novel mechanism of meniscus degeneration, which contributes to the development of a novel therapeutic strategy.
Collapse
Affiliation(s)
- Hao Sun
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Guangzhou, China.,Department of Joint Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Xingzhao Wen
- Department of Joint Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Hongyi Li
- Department of Joint Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Peihui Wu
- Department of Joint Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Minghui Gu
- Department of Joint Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Xiaoyi Zhao
- Department of Joint Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Ziji Zhang
- Department of Joint Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Shu Hu
- Department of Joint Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Guping Mao
- Department of Joint Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Ruofan Ma
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Weiming Liao
- Department of Joint Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| | - Zhiqi Zhang
- Department of Joint Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, China
| |
Collapse
|
15
|
Identification of Key Genes and Pathways Associated with Sex Differences in Osteoarthritis Based on Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3482751. [PMID: 31886203 PMCID: PMC6925789 DOI: 10.1155/2019/3482751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 12/14/2022]
Abstract
Sex differences have been suggested to play critical roles in the pathophysiology of osteoarthritis (OA), resulting in sex-specific prevalence and incidence. However, their roles in the development of OA remain largely unknown. The aim of this study was to screen out key genes and pathways mediating biological differences between OA females after menopause and OA males. First, the gene expression data of GSE36700 and GSE55457 were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) between sexes were identified using R software, respectively. The overlapping DEGs were obtained. Then, protein-protein interactive (PPI) network was constructed to further analyze interactions between the overlapping DEGs. Finally, enrichment analyses were separately performed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes tools. In our results, a total of 278 overlapping DEGs were identified between OA females after menopause and OA males, including 219 upregulated and 59 downregulated genes. In the PPI network, seven hub genes were identified, including EGF, ERBB2, CDC42, PIK3R2, LCK, CBL, and STAT1. Functional enrichment analysis revealed that these genes were mainly enriched in PI3K-Akt signaling pathway, osteoclast differentiation, and focal adhesion. In conclusion, the results in the current study suggest that pathways of PI3K-Akt, osteoclast differentiation, and focal adhesion may play important roles in the development of OA females after menopause. EGFR, ERBB2, CDC42, and STAT1 may be key genes related to OA progression in postmenopausal women and may be promising therapeutic targets for OA.
Collapse
|
16
|
Cai L, Brophy RH, Tycksen ED, Duan X, Nunley RM, Rai MF. Distinct expression pattern of periostin splice variants in chondrocytes and ligament progenitor cells. FASEB J 2019; 33:8386-8405. [PMID: 30991832 DOI: 10.1096/fj.201802281r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Periostin (POSTN), a secretory matricellular matrix protein, plays a multitude of biologic functions. Various splice variants of POSTN have been described; however, their expression pattern and functional implications are not completely understood. This study was undertaken to decipher the differential expression pattern of POSTN and its splice variants in various tissues and cell types. We show that POSTN was more highly expressed in anterior cruciate ligament (ACL) remnants compared with articular cartilage at the cellular and tissue level. Isoforms 1 and 8 were highly expressed only in articular chondrocytes, suggesting their splice-specific regulation in chondrocytes. To discern the role of total POSTN and full-length human POSTN isoform 1 (hPOSTN-001), we stably transfected human chondrosarcoma 1 (hCh-1) cell line with hPOSTN-001 using a pcDNA3.1-hPOSTN-001 construct. RNA-sequencing analysis of hCh-1 cells identified differentially expressed genes with a known role in chondrocyte function and osteoarthritis. Similar expression of a subset of candidate genes was revealed in ACL progenitor cells and chondrocytes as well as in ACL progenitor cells in which POSTN activity was altered by overexpression and by small interfering RNA gene knockdown. Cells expressing total POSTN, not isoform 1, exhibited increased cell adhesion potential. These findings suggest an important role for POSTN in the knee.-Cai, L., Brophy, R. H., Tycksen, E. D., Duan, X., Nunley, R. M., Rai, M. F. Distinct expression pattern of periostin splice variants in chondrocytes and ligament progenitor cells.
Collapse
Affiliation(s)
- Lei Cai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Robert H Brophy
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Eric D Tycksen
- Genome Technology Access Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xin Duan
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Ryan M Nunley
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|