1
|
van Ham WB, Meijboom EEM, Ligtermoet ML, Monshouwer-Kloots J, Riele ASJMT, Asselbergs FW, van Rooij E, Bourfiss M, van Veen TAB. An hiPSC-CM approach for electrophysiological phenotyping of a patient-specific case of short-coupled TdP. Stem Cell Res Ther 2024; 15:470. [PMID: 39695883 DOI: 10.1186/s13287-024-04074-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
INTRODUCTION A healthy young woman, age 26 without prior cardiac complications, experienced an out-of-hospital cardiac arrest caused by ventricular fibrillation (VF), which coincided with a fever. Comprehensive diagnostics including echo, CMR, exercise testing, and genetic sequencing, did not identify any potential cause. This led to the diagnosis of idiopathic VF and installment of an implantable cardioverter defibrillator, which six months later appropriately intervened another VF episode under conditions comparable to the first event. A second diagnostic opinion concluded short-coupled Torsade de Pointes (scTdP), and the patient was started on a verapamil treatment. METHODS From this patient, human induced pluripotent stem cell cardiomyocyte (hiPSC-CM) lines were generated to study cellular electrophysiology. Without a known genetic pathogenic variation, no isogenic control line could be produced, therefore a healthy age- and sex-matched control hiPSC-CM line was used. Cellular electrophysiology was studied in these cardiomyocytes using calcium- and voltage sensitive fluorescent dyes and measurements were carried out at 37 °C and 39 °C, to mimic the condition of hyperthermia in the patient. mRNA expression of electrophysiologically relevant genes were analyzed to identify a potential underlying mechanism. RESULTS Calcium transients measured in patient lines at a physiological temperature indicated the occurrence of early after transients (EATs). Strikingly, at 39 °C the incidence of EATs further increased. Membrane potential data from the patient also revealed shorter action potentials that, combined with the EATs, indicate the premature release of calcium during diastole, which could be responsible for the extrasystoles in the patient. Gene expression profiles were mainly downregulated in the patient but could not clearly aid in unraveling a mechanism behind the occurrence of EATs. Pharmacological screening was performed to evaluate the treatment regimen and to determine a mechanism of action of the EATs. While verapamil, dantrolene, and flecainide did not decrease the incidence of EATs, calcium handling parameters were affected indicating functionality of the drugs. CONCLUSION This patient-specific case of electrophysiological phenotyping resulted in a hypothesis of the possible mechanism behind the scTdP arrhythmias, but also accentuates the applicability of patient-specific hiPSC-CM disease modeling and phenotyping.
Collapse
Affiliation(s)
- Willem B van Ham
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Esmeralda E M Meijboom
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Merel L Ligtermoet
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jantine Monshouwer-Kloots
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Folkert W Asselbergs
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Cardiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mimount Bourfiss
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Toon A B van Veen
- Department of Medical Physiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
2
|
Lin PC, Wu MY, Wang CH, Tsai TY, Tu YC, Liu CY, Lee SJ, Tsai CH, Chung JY, Yiang GT. Prehospital Shock Index Multiplied by the Alert/Verbal/Painful/Unresponsive Score as a Predictor of Clinical Outcomes in Traumatic Injury. PREHOSP EMERG CARE 2024; 28:669-679. [PMID: 38820136 DOI: 10.1080/10903127.2024.2362921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/23/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024]
Abstract
OBJECTIVE Various prediction scores have been developed to predict mortality in trauma patients, such as the shock index (SI), modified SI (mSI), age-adjusted SI (aSI), and the shock index (SI) multiplied by the alert/verbal/painful/unresponsive (AVPU) score (SIAVPU). The SIAVPU is a novel scoring system but its prediction accuracy for trauma outcomes remains in need of further validation. Therefore, we investigated the accuracy of four scoring systems, including SI, mSI, aSI, and SIAVPU, in predicting mortality, admission to the intensive care unit (ICU), and prolonged hospital length of stay ≥ 30 days (LOS). METHODS This retrospective multicenter study used data from the Tzu Chi Hospital trauma database. The area under the receiver operating characteristic curve (AUROC) was determined for each outcome to assess their discrimination capabilities and comparing by Delong's test. Subgroup analyses were conducted to investigate the prediction accuracy of the SIAVPU in different patient populations. RESULTS In total, 5355 patients were included in the analysis. The median of SIAVPU were significantly higher among patients at those with major injury (1.47 vs 0.63), those admitted to the ICU (0.73 vs 0.62), those with prolonged hospital LOS≥ 30 days (0.83 vs 0.64), and those with mortality (1.08 vs 0.64). The AUROC of the SIAVPU was significantly higher than that of the SI, mSI, and aSI for 24-h mortality (AUROC: 0.845 vs 0.533, 0.540, and 0.678), 3-day mortality (AUROC: 0.803 vs 0.513, 0.524, and 0.688), 7-day mortality (AUROC: 0.755 vs 0.494, 0.505, and 0.648), in-hospital mortality (AUROC: 0.722 vs 0.510, 0.524, and 0.667), ICU admission (AUROC: 0.635 vs 0.547, 0.551, and 0.563). At the optimal cutoff value of 0.9, the SIAVPU had an accuracy of 82.2% for predicting 24-h mortality, 82.8% for predicting 3-day mortality, of 82.8% for predicting 7-day mortality, of 82.5% for predicting in-hospital mortality, of 73.9% for predicting Intensive Care Unit (ICU) admission, and of 81.7% for predicting prolonged hospital LOS ≥30 days. CONCLUSIONS Our results reveal that SIAVPU has better accuracy than the SI, mSI, and aSI for predicting 24-h, 3-day, 7-day, and in-hospital mortality; ICU admission; and prolonged hospital LOS ≥30 days among patients with traumatic injury.
Collapse
Affiliation(s)
- Po-Chen Lin
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei, Taiwan
| | - Chien-Hsing Wang
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Division of Plastic Surgery, Department of Surgery and Trauma Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Tou-Yuan Tsai
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Emergency Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yueh-Cheng Tu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chi-Yuan Liu
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Orthopedic Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Shu-Jui Lee
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chia-Hung Tsai
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Surgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Jui-Yuan Chung
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Emergency Medicine, Cathay General Hospital, Taipei, Taiwan
- School of Medicine, Fu Jen Catholic University, Taipei, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Giou-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
3
|
Abstract
Mortality in acute kidney injury (AKI) remains very high, yet the cause of death is often failure of extrarenal organs. We and others have demonstrated remote organ dysfunction after renal ischemia. The term "cardiorenal syndrome" was first applied to the "cross talk" between the organs by the National Heart, Lung, and Blood Institute of the National Institutes of Health, and the clinical importance is being increasingly appreciated. Nevertheless, more information is needed to effectively address the consequences of renal injury on the heart. Since AKI often occurs in patients with comorbidities, we investigated the effect of renal ischemia in the setting of existing cardiac failure. We hypothesized that the cardiac effects of renal ischemia would be significantly amplified in experimental cardiomyopathy. Male Sprague-Dawley rats with preexisting cardiac and renal injury due to low-dose doxorubicin were subjected to bilateral renal artery occlusion. Cardiac structure and function were examined 2 days after reperfusion. Loss of functional myocardial tissue with decreases in left ventricular pressure, increases in apoptotic cell death, inflammation, and collagen, and greater disruption in ultrastructure with mitochondrial fragmentation were seen in the doxorubicin/ischemia group compared with animals in the groups treated with doxorubicin alone or following ischemia alone. Systemic inflammation and cardiac abnormalities persisted for at least 21 wk. These results suggest that preexisting comorbidities can result in much more severe distant organ effects of acute renal injury. The results of this study are relevant to human AKI.NEW & NOTEWORTHY Acute kidney injury is common, expensive, and deadly, yet morbidity and mortality are often secondary to remote organ dysfunction. We hypothesized that the effects of renal ischemia would be amplified in the setting of comorbidities. Sustained systemic inflammation and loss of functional myocardium with significantly decreased systolic and diastolic function, apoptotic cell death, and increased collagen and inflammatory cells were found in the heart after renal ischemia in the doxorubicin cardiomyopathy model (vs. renal ischemia alone). Understanding the remote effects of renal ischemia has the potential to improve outcomes in acute kidney injury.
Collapse
Affiliation(s)
- Jesus H Dominguez
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Danhui Xie
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - K J Kelly
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.,Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana
| |
Collapse
|
4
|
Pagiatakis C, Di Mauro V. The Emerging Role of Epigenetics in Therapeutic Targeting of Cardiomyopathies. Int J Mol Sci 2021; 22:ijms22168721. [PMID: 34445422 PMCID: PMC8395924 DOI: 10.3390/ijms22168721] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiomyopathies (CMPs) are a heterogeneous group of myocardial diseases accountable for the majority of cases of heart failure (HF) and/or sudden cardiac death (SCD) worldwide. With the recent advances in genomics, the original classification of CMPs on the basis of morphological and functional criteria (dilated (DCM), hypertrophic (HCM), restrictive (RCM), and arrhythmogenic ventricular cardiomyopathy (AVC)) was further refined into genetic (inherited or familial) and acquired (non-inherited or secondary) forms. Despite substantial progress in the identification of novel CMP-associated genetic variations, as well as improved clinical recognition diagnoses, the functional consequences of these mutations and the exact details of the signaling pathways leading to hypertrophy, dilation, and/or contractile impairment remain elusive. To date, global research has mainly focused on the genetic factors underlying CMP pathogenesis. However, growing evidence shows that alterations in molecular mediators associated with the diagnosis of CMPs are not always correlated with genetic mutations, suggesting that additional mechanisms, such as epigenetics, may play a role in the onset or progression of CMPs. This review summarizes published findings of inherited CMPs with a specific focus on the potential role of epigenetic mechanisms in regulating these cardiac disorders.
Collapse
Affiliation(s)
- Christina Pagiatakis
- IRCCS-Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
- Correspondence: (C.P.); (V.D.M.)
| | - Vittoria Di Mauro
- IRCCS-Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
- Institute of Genetic and Biomedical Research (IRGB), Milan Unit, National Research Council, Via Fantoli 16/15, 20138 Milan, Italy
- Correspondence: (C.P.); (V.D.M.)
| |
Collapse
|
5
|
Huang L, Chen R, Liu L, Zhou Y, Chen Z. Lactoferrin ameliorates pathological cardiac hypertrophy related to mitochondrial quality control in aged mice. Food Funct 2021; 12:7514-7526. [PMID: 34223567 DOI: 10.1039/d0fo03346d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pathological myocardial hypertrophy, which lacks effective prevention and treatment strategies, makes the elderly susceptible to various cardiovascular diseases. Based on the beneficial attributes of lactoferrin in aging-related diseases, we aimed to investigate whether lactoferrin could exert protection against aging-related cardiac hypertrophy and further explore the underlying mechanisms. Here, we assessed the effects of lactoferrin on myocardial pathology, apoptotic proteins, mitochondrial morphology, kinetics, autophagy, and aging-related markers, including lipofuscin deposition, overloaded iron, and oxidative stress, which are known to destabilize the mitochondrial-lysosomal axis in aged mice. Upon the administration of lactoferrin, aged hearts showed amelioration of pathological cardiac hypertrophy, which was associated with decreased apoptosis, improved morphology, rearrangement of mitochondrial dynamics, increased lysosome-dependent autophagy, and inhibition of factors detrimental to the mitochondrial-lysosomal axis. In conclusion, lactoferrin ameliorated pathological cardiac hypertrophy, potentially by improving the mitochondrial quality related to mitochondrial dynamics and the mitochondrial-lysosomal axis, thus reducing mitochondria-dependent apoptosis, which is the pivotal factor for cardiac hypertrophy in aged mice.
Collapse
Affiliation(s)
- Lishan Huang
- School of Pharmacy, Fujian Medical University, Fuzhou, China.
| | | | | | | | | |
Collapse
|
6
|
Martinez HR, Beasley GS, Miller N, Goldberg JF, Jefferies JL. Clinical Insights Into Heritable Cardiomyopathies. Front Genet 2021; 12:663450. [PMID: 33995492 PMCID: PMC8113776 DOI: 10.3389/fgene.2021.663450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiomyopathies (CMs) encompass a heterogeneous group of structural and functional abnormalities of the myocardium. The phenotypic characteristics of these myocardial diseases range from silent to symptomatic heart failure, to sudden cardiac death due to malignant tachycardias. These diseases represent a leading cause of cardiovascular morbidity, cardiac transplantation, and death. Since the discovery of the first locus associated with hypertrophic cardiomyopathy 30 years ago, multiple loci and molecular mechanisms have been associated with these cardiomyopathy phenotypes. Conversely, the disparity between the ever-growing landscape of cardiovascular genetics and the lack of awareness in this field noticeably demonstrates the necessity to update training curricula and educational pathways. This review summarizes the current understanding of heritable CMs, including the most common pathogenic gene variants associated with the morpho-functional types of cardiomyopathies: dilated, hypertrophic, arrhythmogenic, non-compaction, and restrictive. Increased understanding of the genetic/phenotypic associations of these heritable diseases would facilitate risk stratification to leveraging appropriate surveillance and management, and it would additionally provide identification of family members at risk of avoidable cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Hugo R. Martinez
- The Heart Institute, Le Bonheur Children’s Hospital, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Gary S. Beasley
- The Heart Institute, Le Bonheur Children’s Hospital, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Noah Miller
- The Heart Institute, Le Bonheur Children’s Hospital, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Jason F. Goldberg
- The Heart Institute, Le Bonheur Children’s Hospital, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - John L. Jefferies
- The Cardiovascular Institute, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
7
|
Genetic Restrictive Cardiomyopathy: Causes and Consequences-An Integrative Approach. Int J Mol Sci 2021; 22:ijms22020558. [PMID: 33429969 PMCID: PMC7827163 DOI: 10.3390/ijms22020558] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
The sarcomere as the smallest contractile unit is prone to alterations in its functional, structural and associated proteins. Sarcomeric dysfunction leads to heart failure or cardiomyopathies like hypertrophic (HCM) or restrictive cardiomyopathy (RCM) etc. Genetic based RCM, a very rare but severe disease with a high mortality rate, might be induced by mutations in genes of non-sarcomeric, sarcomeric and sarcomere associated proteins. In this review, we discuss the functional effects in correlation to the phenotype and present an integrated model for the development of genetic RCM.
Collapse
|
8
|
Krajnik A, Brazzo JA, Vaidyanathan K, Das T, Redondo-Muñoz J, Bae Y. Phosphoinositide Signaling and Mechanotransduction in Cardiovascular Biology and Disease. Front Cell Dev Biol 2020; 8:595849. [PMID: 33381504 PMCID: PMC7767973 DOI: 10.3389/fcell.2020.595849] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022] Open
Abstract
Phosphoinositides, which are membrane-bound phospholipids, are critical signaling molecules located at the interface between the extracellular matrix, cell membrane, and cytoskeleton. Phosphoinositides are essential regulators of many biological and cellular processes, including but not limited to cell migration, proliferation, survival, and differentiation, as well as cytoskeletal rearrangements and actin dynamics. Over the years, a multitude of studies have uniquely implicated phosphoinositide signaling as being crucial in cardiovascular biology and a dominant force in the development of cardiovascular disease and its progression. Independently, the cellular transduction of mechanical forces or mechanotransduction in cardiovascular cells is widely accepted to be critical to their homeostasis and can drive aberrant cellular phenotypes and resultant cardiovascular disease. Given the versatility and diversity of phosphoinositide signaling in the cardiovascular system and the dominant regulation of cardiovascular cell functions by mechanotransduction, the molecular mechanistic overlap and extent to which these two major signaling modalities converge in cardiovascular cells remain unclear. In this review, we discuss and synthesize recent findings that rightfully connect phosphoinositide signaling to cellular mechanotransduction in the context of cardiovascular biology and disease, and we specifically focus on phosphatidylinositol-4,5-phosphate, phosphatidylinositol-4-phosphate 5-kinase, phosphatidylinositol-3,4,5-phosphate, and phosphatidylinositol 3-kinase. Throughout the review, we discuss how specific phosphoinositide subspecies have been shown to mediate biomechanically sensitive cytoskeletal remodeling in cardiovascular cells. Additionally, we discuss the direct interaction of phosphoinositides with mechanically sensitive membrane-bound ion channels in response to mechanical stimuli. Furthermore, we explore the role of phosphoinositide subspecies in association with critical downstream effectors of mechanical signaling in cardiovascular biology and disease.
Collapse
Affiliation(s)
- Amanda Krajnik
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Joseph A Brazzo
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Kalyanaraman Vaidyanathan
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Tuhin Das
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Javier Redondo-Muñoz
- Department of Molecular Biomedicine, Centro de Investigaciones Biológicas Margarita Salas, Madrid, Spain.,Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Yongho Bae
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| |
Collapse
|
9
|
Kitpipatkun P, Yairo A, Kato K, Matsuura K, Ma D, Goya S, Uemura A, Takahashi K, Tanaka R. Effects of Individual and Coexisting Diabetes and Cardiomyopathy on Diastolic Function in Rats ( Rattus norvegicus domestica). Comp Med 2020; 70:499-509. [PMID: 33138891 DOI: 10.30802/aalas-cm-20-000042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The goal of this study was to evaluate diastolic intraventricular pressure gradients (IVPG) and 2-dimensional tissue tracking (2DTT) patterns during diabetes and cardiomyopathy. Rats (n = 60) were induced to become diabetic (DM group, n = 15) by using streptozotocin, to become cardiomyopathic (CM group, n = 15) by using isoproterenol, and to become both diabetic and cardiomyopathic (DMCM group, n = 15); control rats (CT group, n = 15) were injected with saline. Two months after induction, all rats underwent conventional echocardiography, IVPG, and 2DTT and then were euthanized for microscopic examination of cardiac fibrosis. Compared with the controls, all 3 treated groups showed diastolic dysfunction and delayed cardiac relaxation. DMCM rats showed the most pronounced cardiac abnormalities. In addition, CM and DMCM groups had showed decreased middle IVPG, whereas DMCM rats had decreased midapical IVPG. Although the overall IVPG of the CM group was normal, the middle segment was significantly decreased. 2DTT results showed that the DMCM group had a delay in relaxation compared with other groups. IVPG and 2DTT can be used to overcome the limitation of conventional echocardiographic methods and reveal diastolic dysfunction. DM worsened diastolic function during cardiac disease.
Collapse
Affiliation(s)
- Pitipat Kitpipatkun
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Akira Yairo
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Konosuke Kato
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Katsuhiro Matsuura
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Danfu Ma
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Seijirow Goya
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Akiko Uemura
- Department of Clinical Veterinary Medicine, Division of Veterinary Research, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | - Ken Takahashi
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ryou Tanaka
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Tokyo University of Agriculture and Technology, Tokyo, Japan;,
| |
Collapse
|
10
|
Chang CY, Chien YJ, Lin PC, Chen CS, Wu MY. Nonthyroidal Illness Syndrome and Hypothyroidism in Ischemic Heart Disease Population: A Systematic Review and Meta-Analysis. J Clin Endocrinol Metab 2020; 105:5847674. [PMID: 32459357 DOI: 10.1210/clinem/dgaa310] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/21/2020] [Indexed: 02/05/2023]
Abstract
CONTEXT The association of non-thyroidal illness syndrome (NTIS) and hypothyroidism with the prognosis in ischemic heart disease (IHD) population is inconclusive. OBJECTIVE We aimed to evaluate the influence of NTIS and hypothyroidism on all-cause mortality and major adverse cardiac events (MACE) in IHD population. DATA SOURCES We searched PubMed, EMBASE, Scopus, Web of Science, and Cochrane Library from inception through February 17, 2020. STUDY SELECTION Original articles enrolling IHD patients, comparing all-cause mortality and MACE of NTIS and hypothyroidism with those of euthyroidism, and providing sufficient information for meta-analysis were considered eligible. DATA EXTRACTION Relevant information and numerical data were extracted for methodological assessment and meta-analysis. DATA SYNTHESIS Twenty-three studies were included. The IHD population with NTIS was associated with higher risk of all-cause mortality (hazard ratio [HR] = 2.61; 95% confidence interval [CI] = 1.89-3.59) and MACE (HR = 2.22; 95% CI = 1.71-2.89) than that without. In addition, the IHD population with hypothyroidism was also associated with higher risk of all-cause mortality (HR = 1.47; 95% CI = 1.10-1.97) and MACE (HR = 1.53; 95% CI = 1.19-1.97) than that without. In the subgroup analysis, the acute coronary syndrome (ACS) subpopulation with NTIS was associated with higher risk of all-cause mortality (HR = 3.30; 95% CI = 2.43-4.48) and MACE (HR = 2.19; 95% CI = 1.45-3.30). The ACS subpopulation with hypothyroidism was also associated with higher risk of all-cause mortality (HR = 1.67; 95% CI = 1.17-2.39). CONCLUSIONS The IHD population with concomitant NTIS or hypothyroidism was associated with higher risk of all-cause mortality and MACE. Future research is required to provide evidence of the causal relationship and to elucidate whether normalizing thyroid function parameters can improve prognosis.
Collapse
Affiliation(s)
- Chun-Yu Chang
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yung-Jiun Chien
- Department of Physical Medicine and Rehabilitation, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
| | - Po-Chen Lin
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chien-Sheng Chen
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei, Taiwan
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
11
|
van Wijngaarden AL, Hiemstra YL, Koopmann TT, Ruivenkamp CAL, Aten E, Schalij MJ, Bax JJ, Delgado V, Barge-Schaapveld DQCM, Ajmone Marsan N. Identification of known and unknown genes associated with mitral valve prolapse using an exome slice methodology. J Med Genet 2020; 57:843-850. [PMID: 32277046 DOI: 10.1136/jmedgenet-2019-106715] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/18/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE Although a familial distribution has been documented, the genetic aetiology of mitral valve prolapse (MVP) is largely unknown, with only four genes identified so far: FLNA, DCHS1, DZIP1 and PLD1. The aim of this study was to evaluate the genetic yield in known causative genes and to identify possible novel genes associated with MVP using a heart gene panel based on exome sequencing. METHODS Patients with MVP were referred for genetic counselling when a positive family history for MVP was reported and/or Barlow's disease was diagnosed. In total, 101 probands were included to identify potentially pathogenic variants in a set of 522 genes associated with cardiac development and/or diseases. RESULTS 97 (96%) probands were classified as Barlow's disease and 4 (4%) as fibroelastic deficiency. Only one patient (1%) had a likely pathogenic variant in the known causative genes (DCHS1). However, an interesting finding was that 10 probands (11%) had a variant that was classified as likely pathogenic in six different, mostly cardiomyopathy genes: DSP (1×), HCN4 (1×), MYH6 (1×), TMEM67 (1×), TRPS1 (1×) and TTN (5×). CONCLUSION Exome slice sequencing analysis performed in MVP probands reveals a low genetic yield in known causative genes but may expand the cardiac phenotype of other genes. This study suggests for the first time that also genes related to cardiomyopathy may be associated with MVP. This highlights the importance to screen these patients and their family for the presence of arrhythmias and of 'disproportionate' LV remodelling as compared with the severity of mitral regurgitation, unravelling a possible coexistent cardiomyopathy.
Collapse
Affiliation(s)
| | - Yasmine L Hiemstra
- Cardiology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Tamara T Koopmann
- Clinical Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Claudia A L Ruivenkamp
- Clinical Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Emmelien Aten
- Clinical Genetics, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Martin J Schalij
- Cardiology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Jeroen J Bax
- Cardiology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | - Victoria Delgado
- Cardiology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| | | | - Nina Ajmone Marsan
- Cardiology, Leiden University Medical Center, Leiden, Zuid-Holland, The Netherlands
| |
Collapse
|
12
|
Holmes JB, Doh CY, Mamidi R, Li J, Stelzer JE. Strategies for targeting the cardiac sarcomere: avenues for novel drug discovery. Expert Opin Drug Discov 2020; 15:457-469. [PMID: 32067508 PMCID: PMC7065952 DOI: 10.1080/17460441.2020.1722637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/24/2020] [Indexed: 01/10/2023]
Abstract
Introduction: Heart failure remains one of the largest clinical challenges in the United States. Researchers have continually searched for more effective heart failure treatments that target the cardiac sarcomere but have found few successes despite numerous expensive cardiovascular clinical trials. Among many reasons, the high failure rate of cardiovascular clinical trials may be partly due to incomplete characterization of a drug candidate's complex interaction with cardiac physiology.Areas covered: In this review, the authors address the issue of preclinical cardiovascular studies of sarcomere-targeting heart failure therapies. The authors consider inherent tradeoffs made between mechanistic transparency and physiological fidelity for several relevant preclinical techniques at the atomic, molecular, heart muscle fiber, whole heart, and whole-organism levels. Thus, the authors suggest a comprehensive, bottom-up approach to preclinical cardiovascular studies that fosters scientific rigor and hypothesis-driven drug discovery.Expert opinion: In the authors' opinion, the implementation of hypothesis-driven drug discovery practices, such as the bottom-up approach to preclinical cardiovascular studies, will be imperative for the successful development of novel heart failure treatments. However, additional changes to clinical definitions of heart failure and current drug discovery culture must accompany the bottom-up approach to maximize the effectiveness of hypothesis-driven drug discovery.
Collapse
Affiliation(s)
- Joshua B Holmes
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Chang Yoon Doh
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jiayang Li
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
13
|
Hydrogen Sulfide as a Potential Alternative for the Treatment of Myocardial Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4105382. [PMID: 32064023 PMCID: PMC6998763 DOI: 10.1155/2020/4105382] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
Abstract
Harmful, stressful conditions or events in the cardiovascular system result in cellular damage, inflammation, and fibrosis. Currently, there is no targeted therapy for myocardial fibrosis, which is highly associated with a large number of cardiovascular diseases and can lead to fatal heart failure. Hydrogen sulfide (H2S) is an endogenous gasotransmitter similar to nitric oxide and carbon monoxide. H2S is involved in the suppression of oxidative stress, inflammation, and cellular death in the cardiovascular system. The level of H2S in the body can be boosted by stimulating its synthesis or supplying it exogenously with a simple H2S donor with a rapid- or slow-releasing mode, an organosulfur compound, or a hybrid with known drugs (e.g., aspirin). Hypertension, myocardial infarction, and inflammation are exaggerated when H2S is reduced. In addition, the exogenous delivery of H2S mitigates myocardial fibrosis caused by various pathological conditions, such as a myocardial infarct, hypertension, diabetes, or excessive β-adrenergic stimulation, via its involvement in a variety of signaling pathways. Numerous experimental findings suggest that H2S may work as a potential alternative for the management of myocardial fibrosis. In this review, the antifibrosis role of H2S is briefly addressed in order to gain insight into the development of novel strategies for the treatment of myocardial fibrosis.
Collapse
|
14
|
YANG K, HU X. [Research progress on miR-21 in heart diseases]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2019; 48:214-218. [PMID: 31309761 PMCID: PMC8800808 DOI: 10.3785/j.issn.1008-9292.2019.04.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/14/2019] [Indexed: 06/10/2023]
Abstract
Pathological processes such as myocardial apoptosis, cardiac hypertrophy, myocardial fibrosis, and cardiac electrical remodeling are involved in the development and progression of most cardiac diseases. MicroRNA-21 (miR-21) has been found to play an important role in heart diseases as a novel type of endogenous regulators, which can inhibit cardiomyocyte apoptosis, improve hypertension and cardiac hypertrophy, promote myocardial fibrosis and atrial electrical remodeling. In this review, we summarize the research progress on the function of miR-21 in heart diseases and its mechanism, and discuss its potential application in diagnosis and treatment of heart diseases.
Collapse
Affiliation(s)
| | - Xiaosheng HU
- 胡晓晟(1970-), 女, 博士, 主任医师, 硕士生导师, 主要从事心脏起搏与心电生理学研究, E-mail:
,
https://orcid.org/0000-0002-4025-7068
| |
Collapse
|