1
|
Coll E, Cigarran S, Portolés J, Cases A. Gut Dysbiosis and Its Role in the Anemia of Chronic Kidney Disease. Toxins (Basel) 2024; 16:495. [PMID: 39591250 PMCID: PMC11598790 DOI: 10.3390/toxins16110495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
The gut dysbiosis present in chronic kidney disease (CKD) has been associated with anemia. Factors such as the accumulation of gut-derived uremic toxins, increased gut barrier permeability-induced inflammation, and a reduced intestinal production of short-chain fatty acids (SCFAs), all associated with changes in the intestinal microbiota composition in CKD, may lead to the development or worsening of anemia in renal patients. Understanding and addressing these mechanisms related to gut dysbiosis in CKD patients can help to delay the development of anemia and improve its control in this population. One approach is to avoid or reduce the use of drugs linked to gut dysbiosis in CKD, such as phosphate binders, oral iron supplementation, antibiotics, and others, unless they are indispensable. Another approach involves introducing dietary changes that promote a healthier microbiota and/or using prebiotics, probiotics, or symbiotics to improve gut dysbiosis in this setting. These measures can increase the presence of SCFA-producing saccharolytic bacteria and reduce proteolytic bacteria, thereby lowering the production of gut-derived uremic toxins and inflammation. By ameliorating CKD-related gut dysbiosis, these strategies can also improve the control of renal anemia and enhance the response to erythropoiesis-stimulating agents (ESAs) in ESA-resistant patients. In this review, we have explored the relationship between gut dysbiosis in CKD and renal anemia and propose feasible solutions, both those already known and potential future treatments.
Collapse
Affiliation(s)
- Elisabet Coll
- Servei de Nefrologia, Fundacio Puigvert, 08025 Barcelona, Spain
- Anemia Working Group of the Spanish Society of Nephrology, 39008 Santander, Spain; (J.P.); (A.C.)
| | | | - Jose Portolés
- Anemia Working Group of the Spanish Society of Nephrology, 39008 Santander, Spain; (J.P.); (A.C.)
- Ressearch Net RICORS 2030 Instituto de Salud Carlos III ISCIII, 28029 Madrid, Spain
- Nephrology Department, Hospital Universitario Puerta de Hierro Majadahonda, 28222 Madrid, Spain
- Medicine Department, Facultad de Medicina, Research Institute Puerta de Hierro Segovia de Arana (IDIPHISA), Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Aleix Cases
- Anemia Working Group of the Spanish Society of Nephrology, 39008 Santander, Spain; (J.P.); (A.C.)
- Nephrology Unit, Hospital Clinic, 08036 Barcelona, Spain
| |
Collapse
|
2
|
Vanholder R, Snauwaert E, Verbeke F, Glorieux G. Future of Uremic Toxin Management. Toxins (Basel) 2024; 16:463. [PMID: 39591217 PMCID: PMC11598275 DOI: 10.3390/toxins16110463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024] Open
Abstract
During the progression of chronic kidney disease (CKD), the retention of uremic toxins plays a key role in the development of uremic syndrome. Knowledge about the nature and biological impact of uremic toxins has grown exponentially over the past decades. However, the science on reducing the concentration and effects of uremic toxins has not advanced in parallel. Additionally, the focus has remained for too long on dialysis strategies, which only benefit the small fraction of people with CKD who suffer from advanced kidney disease, whereas uremic toxicity effects are only partially prevented. This article reviews recent research on alternative methods to counteract uremic toxicity, emphasizing options that are also beneficial in the earlier stages of CKD, with a focus on both established methods and approaches which are still under investigation or at the experimental stage. We will consequently discuss the preservation of kidney function, the prevention of cardiovascular damage, gastro-intestinal interventions, including diet and biotics, and pharmacologic interventions. In the final part, we also review alternative options for extracorporeal uremic toxin removal. The future will reveal which of these options are valid for further development and evidence-based assessment, hopefully leading to a more sustainable treatment model for CKD than the current one.
Collapse
Affiliation(s)
- Raymond Vanholder
- Nephrology Section, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Gent, Belgium; (F.V.); (G.G.)
| | - Evelien Snauwaert
- Pediatric Nephrology Section, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Ghent, Belgium;
- European Reference Network for Rare Kidney Diseases (ERKNet)
| | - Francis Verbeke
- Nephrology Section, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Gent, Belgium; (F.V.); (G.G.)
| | - Griet Glorieux
- Nephrology Section, Department of Internal Medicine and Pediatrics, Ghent University Hospital, 9000 Gent, Belgium; (F.V.); (G.G.)
| |
Collapse
|
3
|
Fonseca L, Ribeiro M, Schultz J, Borges NA, Cardozo L, Leal VO, Ribeiro-Alves M, Paiva BR, Leite PEC, Sanz CL, Kussi F, Nakao LS, Rosado A, Stenvinkel P, Mafra D. Effects of Propolis Supplementation on Gut Microbiota and Uremic Toxin Profiles of Patients Undergoing Hemodialysis. Toxins (Basel) 2024; 16:416. [PMID: 39453192 PMCID: PMC11511383 DOI: 10.3390/toxins16100416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Propolis possesses many bioactive compounds that could modulate the gut microbiota and reduce the production of uremic toxins in patients with chronic kidney disease (CKD) undergoing hemodialysis (HD). This clinical trial aimed to evaluate the effects of propolis on the gut microbiota profile and uremic toxin plasma levels in HD patients. These are secondary analyses from a previous double-blind, randomized clinical study, with 42 patients divided into two groups: the placebo and propolis group received 400 mg of green propolis extract/day for eight weeks. Indole-3 acetic acid (IAA), indoxyl sulfate (IS), and p-cresyl sulfate (p-CS) plasma levels were evaluated by reversed-phase liquid chromatography, and cytokines were investigated using the multiplex assay (Bio-Plex Magpix®). The fecal microbiota composition was analyzed in a subgroup of patients (n = 6) using a commercial kit for fecal DNA extraction. The V4 region of the 16S rRNA gene was then amplified by the polymerase chain reaction (PCR) using short-read sequencing on the Illumina NovaSeq PE250 platform in a subgroup. Forty-one patients completed the study, 20 in the placebo group and 21 in the propolis group. There was a positive correlation between IAA and TNF-α (r = 0.53, p = 0.01), IL-2 (r = 0.66, p = 0.002), and between pCS and IL-7 (r = 0.46, p = 0.04) at the baseline. No significant changes were observed in the values of uremic toxins after the intervention. Despite not being significant, microbial evenness and observed richness increased following the propolis intervention. Counts of the Fusobacteria species showed a positive correlation with IS, while counts of Firmicutes, Lentisphaerae, and Proteobacteria phyla were negatively correlated with IS. Two months of propolis supplementation did not reduce the plasma levels of uremic toxins (IAA, IS, and p-CS) or change the fecal microbiota.
Collapse
Affiliation(s)
- Larissa Fonseca
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niteroi 24033-900, Brazil; (L.F.); (D.M.)
| | - Marcia Ribeiro
- Graduate Program in Biological Sciences-Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 20550-170, Brazil;
| | - Júnia Schultz
- Bioscience Program, Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955, Saudi Arabia; (J.S.); (A.R.)
| | - Natália A. Borges
- Institute of Nutrition, Rio de Janeiro State University (UERJ), Rio de Janeiro 20550-170, Brazil;
| | - Ludmila Cardozo
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niteroi 24033-900, Brazil; (L.C.); (B.R.P.)
| | - Viviane O. Leal
- Nutrition Division, Pedro Ernesto University Hospital (UERJ), Rio de Janeiro 20550-170, Brazil;
| | - Marcelo Ribeiro-Alves
- HIV/AIDS Clinical Research Center, National Institute of Infectology (INI/Fiocruz), Rio de Janeiro 20550-170, Brazil;
| | - Bruna R. Paiva
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niteroi 24033-900, Brazil; (L.C.); (B.R.P.)
| | - Paulo E. C. Leite
- Graduate Program in Science and Biotechnology, Fluminense Federal University (UFF), Niteroi 24033-900, Brazil;
| | - Carmen L. Sanz
- Department of Basic Pathology, Federal University of Paraná, Curitiba 81530-000, Brazil; (C.L.S.); (F.K.); (L.S.N.)
| | - Fernanda Kussi
- Department of Basic Pathology, Federal University of Paraná, Curitiba 81530-000, Brazil; (C.L.S.); (F.K.); (L.S.N.)
| | - Lia S. Nakao
- Department of Basic Pathology, Federal University of Paraná, Curitiba 81530-000, Brazil; (C.L.S.); (F.K.); (L.S.N.)
| | - Alexandre Rosado
- Bioscience Program, Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Makkah 23955, Saudi Arabia; (J.S.); (A.R.)
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Technology and Intervention, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Denise Mafra
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niteroi 24033-900, Brazil; (L.F.); (D.M.)
- Graduate Program in Biological Sciences-Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 20550-170, Brazil;
| |
Collapse
|
4
|
Almeida PP, Brito ML, Thomasi B, Mafra D, Fouque D, Knauf C, Tavares-Gomes AL, Stockler-Pinto MB. Is the enteric nervous system a lost piece of the gut-kidney axis puzzle linked to chronic kidney disease? Life Sci 2024; 351:122793. [PMID: 38848938 DOI: 10.1016/j.lfs.2024.122793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
The enteric nervous system (ENS) regulates numerous functional and immunological attributes of the gastrointestinal tract. Alterations in ENS cell function have been linked to intestinal outcomes in various metabolic, intestinal, and neurological disorders. Chronic kidney disease (CKD) is associated with a challenging intestinal environment due to gut dysbiosis, which further affects patient quality of life. Although the gut-related repercussions of CKD have been thoroughly investigated, the involvement of the ENS in this puzzle remains unclear. ENS cell dysfunction, such as glial reactivity and alterations in cholinergic signaling in the small intestine and colon, in CKD are associated with a wide range of intestinal pathways and responses in affected patients. This review discusses how the ENS is affected in CKD and how it is involved in gut-related outcomes, including intestinal permeability, inflammation, oxidative stress, and dysmotility.
Collapse
Affiliation(s)
| | - Michele Lima Brito
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Beatriz Thomasi
- Department of Physiology, Neuroscience Program, Michigan State University (MSU), East Lansing, MI, USA
| | - Denise Mafra
- Graduate Program in Biological Sciences - Physiology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Denis Fouque
- Department of Nephrology, Centre Hopitalier Lyon Sud, INSERM 1060, CENS, Université de Lyon, France
| | - Claude Knauf
- INSERM U1220 Institut de Recherche en Santé Digestive, CHU Purpan, Université Toulouse III Paul Sabatier Toulouse, Toulouse, France
| | - Ana Lúcia Tavares-Gomes
- Neurosciences Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Milena Barcza Stockler-Pinto
- Pathology Post Graduate Program, Fluminense Federal University (UFF), Niterói, RJ, Brazil; INSERM U1220 Institut de Recherche en Santé Digestive, CHU Purpan, Université Toulouse III Paul Sabatier Toulouse, Toulouse, France
| |
Collapse
|
5
|
Nikoloudaki O, Celano G, Polo A, Cappello C, Granehäll L, Costantini A, Vacca M, Speckmann B, Di Cagno R, Francavilla R, De Angelis M, Gobbetti M. Novel probiotic preparation with in vivo gluten-degrading activity and potential modulatory effects on the gut microbiota. Microbiol Spectr 2024; 12:e0352423. [PMID: 38860826 PMCID: PMC11218521 DOI: 10.1128/spectrum.03524-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/18/2024] [Indexed: 06/12/2024] Open
Abstract
Gluten possesses unique properties that render it only partially digestible. Consequently, it exerts detrimental effects on a part of the worldwide population who are afflicted with celiac disease (1%) or related disorders (5%), particularly due to the potential for cross-contamination even when adhering to a gluten-free diet (GFD). Finding solutions to break down gluten during digestion has a high nutritional and social impact. Here, a randomized double-blind placebo-controlled in vivo challenge investigated the gluten-degrading activity of a novel probiotic preparation comprising lactobacilli and their cytoplasmic extracts, Bacillus sp., and bacterial protease. In our clinical trial, we collected feces from 70 healthy volunteers at specific time intervals. Probiotic/placebo administration lasted 32 days, followed by 10 days of wash-out. After preliminary GFD to eliminate residual gluten from feces, increasing amounts of gluten (50 mg-10 g) were administered, each one for 4 consecutive days. Compared to placebo, the feces of volunteers fed with probiotics showed much lower amounts of residual gluten, mainly with increased intakes. Probiotics also regulate the intestinal microbial communities, improving the abundance of genera pivotal to maintaining homeostasis. Quantitative PCR confirmed that all probiotics persisted during the intervention, some also during wash-out. Probiotics promoted a fecal metabolome with potential immunomodulating activity, mainly related to derivatives of branched-chain amino acids and short-chain fatty acids. IMPORTANCE The untapped potential of gluten-degrading bacteria and their application in addressing the recognized limitations of gluten-related disorder management and the ongoing risk of cross-contamination even when people follow a gluten-free diet (GFD) emphasizes the significance of the work. Because gluten, a common protein found in many cereals, must be strictly avoided to stop autoimmune reactions and related health problems, celiac disease and gluten sensitivity present difficult hurdles. However, because of the hidden presence of gluten in many food products and the constant danger of cross-contamination during food preparation and processing, total avoidance is frequently challenging. Our study presents a novel probiotic preparation suitable for people suffering from gluten-related disorders during GFD and for healthy individuals because it enhances gluten digestion and promotes gut microbiota functionality.
Collapse
Affiliation(s)
- Olga Nikoloudaki
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Giuseppe Celano
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Andrea Polo
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Claudia Cappello
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Lena Granehäll
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Alice Costantini
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Mirco Vacca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | | | - Raffaella Di Cagno
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| | - Ruggiero Francavilla
- Interdisciplinary Department of Medicine-Pediatric Section, University of Bari Aldo Moro, Ospedale Pediatrico Giovanni XXIII, Bari, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Marco Gobbetti
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Bolzano, Italy
| |
Collapse
|
6
|
Schoonakker MP, van Peet PG, van den Burg EL, Numans ME, Ducarmon QR, Pijl H, Wiese M. Impact of dietary carbohydrate, fat or protein restriction on the human gut microbiome: a systematic review. Nutr Res Rev 2024:1-18. [PMID: 38602133 DOI: 10.1017/s0954422424000131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Restriction of dietary carbohydrates, fat and/or protein is often used to reduce body weight and/or treat (metabolic) diseases. Since diet is a key modulator of the human gut microbiome, which plays an important role in health and disease, this review aims to provide an overview of current knowledge of the effects of macronutrient-restricted diets on gut microbial composition and metabolites. A structured search strategy was performed in several databases. After screening for inclusion and exclusion criteria, thirty-six articles could be included. Data are included in the results only when supported by at least three independent studies to enhance the reliability of our conclusions. Low-carbohydrate (<30 energy%) diets tended to induce a decrease in the relative abundance of several health-promoting bacteria, including Bifidobacterium, as well as a reduction in short-chain fatty acid (SCFA) levels in faeces. In contrast, low-fat diets (<30 energy%) increased alpha diversity, faecal SCFA levels and abundance of some beneficial bacteria, including Faecalibacterium prausnitzii. There were insufficient data to draw conclusions concerning the effects of low-protein (<10 energy%) diets on gut microbiota. Although the data of included studies unveil possible benefits of low-fat and potential drawbacks of low-carbohydrate diets for human gut microbiota, the diversity in study designs made it difficult to draw firm conclusions. Using a more uniform methodology in design, sample processing and sharing raw sequence data could foster our understanding of the effects of macronutrient restriction on gut microbiota composition and metabolic dynamics relevant to health. This systematic review was registered at https://www.crd.york.ac.uk/prospero as CRD42020156929.
Collapse
Affiliation(s)
- Marjolein P Schoonakker
- Department of Public Health and Primary Care, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| | - Petra G van Peet
- Department of Public Health and Primary Care, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| | - Elske L van den Burg
- Department of Public Health and Primary Care, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| | - Mattijs E Numans
- Department of Public Health and Primary Care, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| | - Quinten R Ducarmon
- Department of Medical Microbiology, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| | - Hanno Pijl
- Department of Public Health and Primary Care, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
- Department of Internal Medicine, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| | - Maria Wiese
- Department of Medical Microbiology, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
- Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| |
Collapse
|
7
|
Kondo M, Torisu T, Nagasue T, Shibata H, Umeno J, Kawasaki K, Fujioka S, Matsuno Y, Moriyama T, Kitazono T. Duodenal microbiome in chronic kidney disease. Clin Exp Nephrol 2024; 28:263-272. [PMID: 38095826 DOI: 10.1007/s10157-023-02434-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/06/2023] [Indexed: 03/22/2024]
Abstract
BACKGROUND The intestinal microbiome is involved in the pathogenesis of chronic kidney disease (CKD). Despite its importance, the microbiome of the small intestinal mucosa has been little studied due to sampling difficulties, and previous studies have mainly focused on fecal sources for microbiome studies. We aimed to characterize the small intestinal microbiome of CKD patients by studying the microbiome collected from duodenal and fecal samples of CKD patients and healthy controls. METHODS Overall, 28 stage 5 CKD patients and 21 healthy participants were enrolled. Mucosal samples were collected from the deep duodenum during esophagogastroduodenoscopy and fecal samples were also collected. The 16S ribosomal RNA gene sequencing using Qiime2 was used to investigate and compare the microbial structure and metagenomic function of the duodenal and fecal microbiomes. RESULTS The duodenal flora of CKD patients had decreased alpha diversity compared with the control group. On the basis of taxonomic composition, Veillonella and Prevotella were significantly reduced in the duodenal flora of CKD patients. The tyrosine and tryptophan metabolic pathways were enhanced in the urea toxin-related metabolic pathways based on the Kyoto Encyclopedia of Genes and Genomes database. CONCLUSION The small intestinal microbiome in CKD patients is significantly altered, indicating that increased intestinal permeability and production of uremic toxin may occur in the upper small intestine of CKD patients.
Collapse
Affiliation(s)
- Masahiro Kondo
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maida-Shi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Takehiro Torisu
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maida-Shi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan.
| | - Tomohiro Nagasue
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maida-Shi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Hiroki Shibata
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Junji Umeno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maida-Shi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Keisuke Kawasaki
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maida-Shi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Shin Fujioka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maida-Shi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yuichi Matsuno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maida-Shi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Tomohiko Moriyama
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maida-Shi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
- International Medical Department, Kyushu University Hospital, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Maida-Shi 3-1-1, Higashi-Ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
8
|
Biruete A, Chen NX, Metzger CE, Srinivasan S, O'Neill K, Fallen PB, Fonseca A, Wilson HE, de Loor H, Evenepoel P, Swanson KS, Allen MR, Moe SM. The Dietary Fiber Inulin Slows Progression of Chronic Kidney Disease-Mineral Bone Disorder (CKD-MBD) in a Rat Model of CKD. JBMR Plus 2023; 7:e10837. [PMID: 38130753 PMCID: PMC10731114 DOI: 10.1002/jbm4.10837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 12/23/2023] Open
Abstract
Chronic kidney disease (CKD)-mineral bone disorder (CKD-MBD) leads to fractures and cardiovascular disease. Observational studies suggest beneficial effects of dietary fiber on both bone and cardiovascular outcomes, but the effect of fiber on CKD-MBD is unknown. To determine the effect of fiber on CKD-MBD, we fed the Cy/+ rat with progressive CKD a casein-based diet of 0.7% phosphate with 10% inulin (fermentable fiber) or cellulose (non-fermentable fiber) from 22 weeks to either 30 or 32 weeks of age (~30% and ~15% of normal kidney function; CKD 4 and 5). We assessed CKD-MBD end points of biochemistry, bone quantity and quality, cardiovascular health, and cecal microbiota and serum gut-derived uremic toxins. Results were analyzed by two-way analysis of variance (ANOVA) to evaluate the main effects of CKD stage and inulin, and their interaction. The results showed that in CKD animals, inulin did not alter kidney function but reduced the increase from stage 4 to 5 in serum levels of phosphate and parathyroid hormone, but not fibroblast growth factor-23 (FGF23). Bone turnover and cortical bone parameters were similarly improved but mechanical properties were not altered. Inulin slowed progression of aorta and cardiac calcification, left ventricular mass index, and fibrosis. To understand the mechanism, we assessed intestinal microbiota and found changes in alpha and beta diversity and significant changes in several taxa with inulin, together with a reduction in circulating gut derived uremic toxins such as indoxyl sulfate and short-chain fatty acids. In conclusion, the addition of the fermentable fiber inulin to the diet of CKD rats led to a slowed progression of CKD-MBD without affecting kidney function, likely mediated by changes in the gut microbiota composition and lowered gut-derived uremic toxins. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Annabel Biruete
- Department of Nutrition SciencePurdue UniversityWest LafayetteINUSA
- Department of Medicine, Division of NephrologyIndiana University School of MedicineIndianapolisINUSA
| | - Neal X. Chen
- Department of Medicine, Division of NephrologyIndiana University School of MedicineIndianapolisINUSA
| | - Corinne E. Metzger
- Department of Anatomy, Cell Biology, and PhysiologyIndiana University School of MedicineIndianapolisINUSA
| | - Shruthi Srinivasan
- Department of Medicine, Division of NephrologyIndiana University School of MedicineIndianapolisINUSA
| | - Kalisha O'Neill
- Department of Medicine, Division of NephrologyIndiana University School of MedicineIndianapolisINUSA
| | - Paul B. Fallen
- Department of Anatomy, Cell Biology, and PhysiologyIndiana University School of MedicineIndianapolisINUSA
| | - Austin Fonseca
- Department of Medicine, Division of NephrologyIndiana University School of MedicineIndianapolisINUSA
| | - Hannah E. Wilson
- Department of Medicine, Division of NephrologyIndiana University School of MedicineIndianapolisINUSA
| | - Henriette de Loor
- KU Leuven Department of Microbiology and ImmunologyNephrology and Renal Transplantation Research Group, KU LeuvenLeuvenBelgium
| | - Pieter Evenepoel
- KU Leuven Department of Microbiology and ImmunologyNephrology and Renal Transplantation Research Group, KU LeuvenLeuvenBelgium
- Department of Nephrology and Renal TransplantationUniversity Hospitals LeuvenLeuvenBelgium
| | - Kelly S. Swanson
- Department of Animal SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Matthew R. Allen
- Department of Medicine, Division of NephrologyIndiana University School of MedicineIndianapolisINUSA
- Department of Anatomy, Cell Biology, and PhysiologyIndiana University School of MedicineIndianapolisINUSA
| | - Sharon M. Moe
- Department of Medicine, Division of NephrologyIndiana University School of MedicineIndianapolisINUSA
- Department of Anatomy, Cell Biology, and PhysiologyIndiana University School of MedicineIndianapolisINUSA
| |
Collapse
|
9
|
Zhu S, Zhao Y, Liu L, Xu Y, Zhu J, Li W, Liu Y, Xia M. High Plant Protein Diet Ameliorated Hepatic Lipid Accumulation Through the Modulation of Gut Microbiota. Mol Nutr Food Res 2023; 67:e2300515. [PMID: 37876152 DOI: 10.1002/mnfr.202300515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/19/2023] [Indexed: 10/26/2023]
Abstract
SCOPE Substituting plant protein for animal protein has emerged as a promising strategy for managing atherogenic lipids. However, the impact of long-term intake of a high plant protein diet (HPD) on hepatic lipid disorder remains unclear. METHODS AND RESULTS Eight-week-old apolipoprotein E deficient (apoE-/- ) mice are fed with either a normal protein diet (NCD) or HPD for 12 weeks. HPD intervention results in decreased body weight accompanied by increased energy expenditure, with no significant effect on glycemic control. Long-term intake of HPD improves the serum and hepatic lipid and cholesterol accumulation by suppressing hepatic squalene epoxidase (SQLE) expression, a key enzyme in cholesterol biosynthesis. Integrated analysis of 16S rDNA sequencing and metabolomics profiling reveals that HPD intervention increases the abundance of the Lachnospiraece family and serum levels of 12,13-DiHOME. Furthermore, in vivo studies demonstrate that 12,13-DiHOME significantly inhibits lipid accumulation, as well as SQLE expression induced by oleic acid in HepG2 cells. CONCLUSION Diet rich in plant protein diet alleviates hyperlipidemia via increased microbial production of 12,13-DiHOME.
Collapse
Affiliation(s)
- Shanshan Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, P.R. China
| | - Yawen Zhao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, P.R. China
| | - Ludi Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, P.R. China
- Department of Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, P.R. China
| | - Yingxi Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, P.R. China
- Department of Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, P.R. China
| | - Jiangyuan Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, P.R. China
| | - Wenkang Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, P.R. China
| | - Yan Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, P.R. China
| | - Min Xia
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, P.R. China
| |
Collapse
|
10
|
André C, Bodeau S, Kamel S, Bennis Y, Caillard P. The AKI-to-CKD Transition: The Role of Uremic Toxins. Int J Mol Sci 2023; 24:16152. [PMID: 38003343 PMCID: PMC10671582 DOI: 10.3390/ijms242216152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
After acute kidney injury (AKI), renal function continues to deteriorate in some patients. In a pro-inflammatory and profibrotic environment, the proximal tubules are subject to maladaptive repair. In the AKI-to-CKD transition, impaired recovery from AKI reduces tubular and glomerular filtration and leads to chronic kidney disease (CKD). Reduced kidney secretion capacity is characterized by the plasma accumulation of biologically active molecules, referred to as uremic toxins (UTs). These toxins have a role in the development of neurological, cardiovascular, bone, and renal complications of CKD. However, UTs might also cause CKD as well as be the consequence. Recent studies have shown that these molecules accumulate early in AKI and contribute to the establishment of this pro-inflammatory and profibrotic environment in the kidney. The objective of the present work was to review the mechanisms of UT toxicity that potentially contribute to the AKI-to-CKD transition in each renal compartment.
Collapse
Affiliation(s)
- Camille André
- Department of Clinical Pharmacology, Amiens Medical Center, 80000 Amiens, France; (S.B.); (Y.B.)
- GRAP Laboratory, INSERM UMR 1247, University of Picardy Jules Verne, 80000 Amiens, France
| | - Sandra Bodeau
- Department of Clinical Pharmacology, Amiens Medical Center, 80000 Amiens, France; (S.B.); (Y.B.)
- MP3CV Laboratory, UR UPJV 7517, University of Picardy Jules Verne, 80000 Amiens, France; (S.K.); (P.C.)
| | - Saïd Kamel
- MP3CV Laboratory, UR UPJV 7517, University of Picardy Jules Verne, 80000 Amiens, France; (S.K.); (P.C.)
- Department of Clinical Biochemistry, Amiens Medical Center, 80000 Amiens, France
| | - Youssef Bennis
- Department of Clinical Pharmacology, Amiens Medical Center, 80000 Amiens, France; (S.B.); (Y.B.)
- MP3CV Laboratory, UR UPJV 7517, University of Picardy Jules Verne, 80000 Amiens, France; (S.K.); (P.C.)
| | - Pauline Caillard
- MP3CV Laboratory, UR UPJV 7517, University of Picardy Jules Verne, 80000 Amiens, France; (S.K.); (P.C.)
- Department of Nephrology, Dialysis and Transplantation, Amiens Medical Center, 80000 Amiens, France
| |
Collapse
|
11
|
Hui Y, Zhao J, Yu Z, Wang Y, Qin Y, Zhang Y, Xing Y, Han M, Wang A, Guo S, Yuan J, Zhao Y, Ning X, Sun S. The Role of Tryptophan Metabolism in the Occurrence and Progression of Acute and Chronic Kidney Diseases. Mol Nutr Food Res 2023; 67:e2300218. [PMID: 37691068 DOI: 10.1002/mnfr.202300218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/10/2023] [Indexed: 09/12/2023]
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are common kidney diseases in clinics with high morbidity and mortality, but their pathogenesis is intricate. Tryptophan (Trp) is a fundamental amino acid for humans, and its metabolism produces various bioactive substances involved in the pathophysiology of AKI and CKD. Metabolomic studies manifest that Trp metabolites like kynurenine (KYN), 5-hydroxyindoleacetic acid (5-HIAA), and indoxyl sulfate (IS) increase in AKI or CKD and act as biomarkers that facilitate the early identification of diseases. Meanwhile, KYN and IS act as ligands to exacerbate kidney damage by activating aryl hydrocarbon receptor (AhR) signal transduction. The reduction of renal function can cause the accumulation of Trp metabolites which in turn accelerate the progression of AKI or CKD. Besides, gut dysbiosis induces the expansion of Enterobacteriaceae family to produce excessive IS, which cannot be excreted due to the deterioration of renal function. The application of Trp metabolism as a target in AKI and CKD will also be elaborated. Thus, this study aims to elucidate Trp metabolism in the development of AKI and CKD, and explores the relative treatment strategies by targeting Trp from the perspective of metabolomics to provide a reference for their diagnosis and prevention.
Collapse
Affiliation(s)
- Yueqing Hui
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jin Zhao
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Zixian Yu
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yuwei Wang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Yunlong Qin
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Nephrology, 980th Hospital of PLA Joint Logistical Support Force (Bethune International Peace Hospital), Shijiazhuang, Hebei, 050082, China
| | - Yumeng Zhang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Yan Xing
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Mei Han
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Anjing Wang
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
- Department of Postgraduate Student, Xi'an Medical University, Xi'an, Shaanxi, 710021, China
| | - Shuxian Guo
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jinguo Yuan
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yueru Zhao
- School of Clinical Medicine, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiaoxuan Ning
- Department of Geriatric, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
12
|
Guo Z, Yi D, Hu B, Zhu L, Zhang J, Yang Y, Liu C, Shi Y, Gu Z, Xin Y, Liu H, Zhang L. Supplementation with yak (Bos grunniens) bone collagen hydrolysate altered the structure of gut microbiota and elevated short-chain fatty acid production in mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
13
|
Faerber V, Kuhn KS, Garneata L, Kalantar-Zadeh K, Kalim S, Raj DS, Westphal M. The Microbiome and Protein Carbamylation: Potential Targets for Protein-Restricted Diets Supplemented with Ketoanalogues in Predialysis Chronic Kidney Disease. Nutrients 2023; 15:3503. [PMID: 37630693 PMCID: PMC10459041 DOI: 10.3390/nu15163503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
In chronic kidney disease (CKD), metabolic derangements resulting from the interplay between decreasing renal excretory capacity and impaired gut function contribute to accelerating disease progression and enhancing the risk of complications. To protect residual kidney function and improve quality of life in conservatively managed predialysis CKD patients, current guidelines recommend protein-restricted diets supplemented with essential amino acids (EAAs) and their ketoanalogues (KAs). In clinical studies, such an approach improved nitrogen balance and other secondary metabolic disturbances, translating to clinical benefits, mainly the delayed initiation of dialysis. There is also increasing evidence that a protein-restricted diet supplemented with KAs slows down disease progression. In the present review article, recent insights into the role of KA/EAA-supplemented protein-restricted diets in delaying CKD progression are summarized, and possible mechanistic underpinnings, such as protein carbamylation and gut dysbiosis, are elucidated. Emerging evidence suggests that lowering urea levels may reduce protein carbamylation, which might contribute to decreased morbidity and mortality. Protein restriction, alone or in combination with KA/EAA supplementation, modulates gut dysbiosis and decreases the generation of gut-derived uremic toxins associated, e.g., with cardiovascular disease, inflammation, protein energy wasting, and disease progression. Future studies are warranted to assess the effects on the gut microbiome, the generation of uremic toxins, as well as markers of carbamylation.
Collapse
Affiliation(s)
- Valentin Faerber
- Department of Medical Scientific Affairs, Pharma and Nutrition, Fresenius Kabi Deutschland GmbH, 61352 Bad Homburg, Germany; (K.S.K.); (M.W.)
| | - Katharina S. Kuhn
- Department of Medical Scientific Affairs, Pharma and Nutrition, Fresenius Kabi Deutschland GmbH, 61352 Bad Homburg, Germany; (K.S.K.); (M.W.)
| | - Liliana Garneata
- “Dr. Carol Davila” Teaching Hospital of Nephrology, 4 Calea Grivitei, Sector 1, 010731 Bucharest, Romania;
| | - Kamyar Kalantar-Zadeh
- Division of Nephrology Hypertension and Kidney Transplantation, Department of Medicine, University of California Irvine (UCI), Orange, CA 90286, USA;
| | - Sahir Kalim
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Dominic S. Raj
- Division of Kidney Diseases and Hypertension, George Washington University School of Medicine, Washington, DC 20037, USA;
| | - Martin Westphal
- Department of Medical Scientific Affairs, Pharma and Nutrition, Fresenius Kabi Deutschland GmbH, 61352 Bad Homburg, Germany; (K.S.K.); (M.W.)
| |
Collapse
|
14
|
Golchin A, Ranjbarvan P, Parviz S, Shokati A, Naderi R, Rasmi Y, Kiani S, Moradi F, Heidari F, Saltanatpour Z, Alizadeh A. The role of probiotics in tissue engineering and regenerative medicine. Regen Med 2023; 18:635-657. [PMID: 37492007 DOI: 10.2217/rme-2022-0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
Tissue engineering and regenerative medicine (TERM) as an emerging field is a multidisciplinary science and combines basic sciences such as biomaterials science, biology, genetics and medical sciences to achieve functional TERM-based products to regenerate or replace damaged or diseased tissues or organs. Probiotics are useful microorganisms which have multiple effective functions on human health. They have some immunomodulatory and biocompatibility effects and improve wound healing. In this article, we describe the latest findings on probiotics and their pro-healing properties on various body systems that are useable in regenerative medicine. Therefore, this review presents a new perspective on the therapeutic potential of probiotics for TERM.
Collapse
Affiliation(s)
- Ali Golchin
- Cellular & Molecular Research Center, Cellular & Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
- Department of Clinical Biochemistry & Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Parviz Ranjbarvan
- Cellular & Molecular Research Center, Cellular & Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
- Department of Clinical Biochemistry & Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Shima Parviz
- Department of Tissue Engineering & Applied cell sciences, School of Advanced Technologies in Medicine, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Amene Shokati
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Roya Naderi
- Neurophysiology Research center & Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Yousef Rasmi
- Cellular & Molecular Research Center & Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, 57157993313, Iran
| | - Samaneh Kiani
- Department of Tissue Engineering & Regenerative Medicine, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Sari, 48157-33971, Iran
| | - Faezeh Moradi
- Department of Tissue engineering, Medical Sciences Faculty, Tarbiat Modares University, Tehran, 14117-13116, Iran
| | - Fahimeh Heidari
- Department of Molecular Medicine, School of Advanced Medical Sciences & Technologies, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, 71348-14336, Iran
| | - Zohreh Saltanatpour
- Pediatric Cell & Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
- Stem Cell & Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, 1417755469, Iran
| | - Akram Alizadeh
- Nervous System Stem Cells Research Center & Department of Tissue Engineering & Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, 35147-99422, Iran
| |
Collapse
|
15
|
Fatani AMN, Suh JH, Auger J, Alabasi KM, Wang Y, Segal MS, Dahl WJ. Pea hull fiber supplementation does not modulate uremic metabolites in adults receiving hemodialysis: a randomized, double-blind, controlled trial. Front Nutr 2023; 10:1179295. [PMID: 37457968 PMCID: PMC10349378 DOI: 10.3389/fnut.2023.1179295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Background Fiber is a potential therapeutic to suppress microbiota-generated uremic molecules. This study aimed to determine if fiber supplementation decreased serum levels of uremic molecules through the modulation of gut microbiota in adults undergoing hemodialysis. Methods A randomized, double-blinded, controlled crossover study was conducted. Following a 1-week baseline, participants consumed muffins with added pea hull fiber (PHF) (15 g/d) and control muffins daily, each for 4 weeks, separated by a 4-week washout. Blood and stool samples were collected per period. Serum p-cresyl sulfate (PCS), indoxyl sulfate (IS), phenylacetylglutamine (PAG), and trimethylamine N-oxide (TMAO) were quantified by LC-MS/MS, and fecal microbiota profiled by 16S rRNA gene amplicon sequencing and specific taxa of interest by qPCR. QIIME 2 sample-classifier was used to discover unique microbiota profiles due to the consumption of PHF. Results Intake of PHF contributed an additional 9 g/d of dietary fiber to the subjects' diet due to compliance. No significant changes from baseline were observed in serum PCS, IS, PAG, or TMAO, or for the relative quantification of Akkermansia muciniphila, Faecalibacterium prausnitzii, Bifidobacterium, or Roseburia, taxa considered health-enhancing. Dietary protein intake and IS (r = -0.5, p = 0.05) and slow transit stool form and PCS (r = 0.7, p < 0.01) were significantly correlated at baseline. PHF and control periods were not differentiated; however, using machine learning, taxa most distinguishing the microbiota composition during the PHF periods compared to usual diet alone were enriched Gemmiger, Collinsella, and depleted Lactobacillus, Ruminococcus, Coprococcus, and Mogibacteriaceae. Conclusion PHF supplementation did not mitigate serum levels of targeted microbial-generated uremic molecules. Given the high cellulose content, which may be resistant to fermentation, PHF may not exert sufficient effects on microbiota composition to modulate its activity at the dose consumed.
Collapse
Affiliation(s)
- Asmaa M. N. Fatani
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States
- Food and Nutrition Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Joon Hyuk Suh
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States
| | - Jérémie Auger
- Rosell Institute for Microbiome and Probiotics, Lallemand Health Solutions, Montréal, QC, Canada
| | - Karima M. Alabasi
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States
- Foods and Nutrition Department, School of Health Science and Wellness, Northwest Missouri State University, Maryville, MO, United States
| | - Yu Wang
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States
| | - Mark S. Segal
- Department of Nephrology, Hypertension and Renal Transplantation, College of Medicine, University of Florida, Gainesville, FL, United States
- North Florida South Georgia VHS, Gainesville, FL, United States
| | - Wendy J. Dahl
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States
| |
Collapse
|
16
|
Vacca M, Celano G, Calabrese FM, Rocchetti MT, Iacobellis I, Serale N, Calasso M, Gesualdo L, De Angelis M. In vivo evaluation of an innovative synbiotics on stage IIIb-IV chronic kidney disease patients. Front Nutr 2023; 10:1215836. [PMID: 37396126 PMCID: PMC10311028 DOI: 10.3389/fnut.2023.1215836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Background Microbiota unbalance has been proven to affect chronic kidney disease (CKD) patients and, noteworthy, microbiota composition and activity are implicated in CKD worsening. The progression of kidney failure implies an exceeding accumulation of waste compounds deriving from the nitrogenous metabolism in the intestinal milieu. Therefore, in the presence of an altered intestinal permeability, gut-derived uremic toxins, i.e., indoxyl sulfate (IS) and p-cresyl sulfate (PCS), can accumulate in the blood. Methods In a scenario facing the nutritional management as adjuvant therapy, the present study assessed the effectiveness of an innovative synbiotics for its ability to modulate the patient gut microbiota and metabolome by setting a randomized, single-blind, placebo-controlled, pilot trial accounting for IIIb-IV stage CKD patients and healthy controls. Metataxonomic fecal microbiota and fecal volatilome were analyzed at the run-in, after 2 months of treatment, and after 1 month of wash out. Results Significant changes in microbiota profile, as well as an increase of the saccharolytic metabolism, in feces were found for those CKD patients that were allocated in the synbiotics arm. Conclusions Noteworthy, the here analyzed data emphasized a selective efficacy of the present synbiotics on a stage IIIb-IV CKD patients. Nonetheless, a further validation of this trial accounting for an increased patient number should be considered. Clinical trial registration https://clinicaltrials.gov/, identifier NCT03815786.
Collapse
Affiliation(s)
- Mirco Vacca
- Department of Soil Plant and Food Sciences, University of Bari, Bari, Italy
| | - Giuseppe Celano
- Department of Soil Plant and Food Sciences, University of Bari, Bari, Italy
| | | | | | - Ilaria Iacobellis
- Department of Soil Plant and Food Sciences, University of Bari, Bari, Italy
| | - Nadia Serale
- Department of Soil Plant and Food Sciences, University of Bari, Bari, Italy
| | - Maria Calasso
- Department of Soil Plant and Food Sciences, University of Bari, Bari, Italy
| | - Loreto Gesualdo
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy
| | - Maria De Angelis
- Department of Soil Plant and Food Sciences, University of Bari, Bari, Italy
| |
Collapse
|
17
|
Chang G, Shih HM, Pan CF, Wu CJ, Lin CJ. Effect of Low Protein Diet Supplemented with Ketoanalogs on Endothelial Function and Protein-Bound Uremic Toxins in Patients with Chronic Kidney Disease. Biomedicines 2023; 11:biomedicines11051312. [PMID: 37238983 DOI: 10.3390/biomedicines11051312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Studies have demonstrated that a low-protein diet supplemented with ketoanalogs (KAs) could significantly retard progression of renal function in patients with chronic kidney disease (CKD) stages 3-5. However, its effects on endothelial function and serum levels of protein-bound uremic toxins remain elusive. Therefore, this study explored whether a low-protein diet (LPD) supplemented with KAs affects kidney function, endothelial function, and serum uremic toxin levels in a CKD-based cohort. In this retrospective cohort, we enrolled 22 stable CKD stage 3b-4 patients on LPD (0.6-0.8 g/day). Patients were categorized into control (LPD only) and study groups (LPD + KAs 6 tab/day). Serum biochemistry, total/free indoxyl sulfate (TIS/FIS), total/free p-cresyl sulfate (TPCS/FPCS), and flow-mediated dilation (FMD) were measured before and after 6 months of KA supplementation. Before the trial, there were no significant differences in kidney function, FMD, or uremic toxin levels between the control and study groups. When compared with the control group, the paired t-test showed a significant decrease in TIS and FIS (all p < 0.05) and a significant increase in FMD, eGFR, and bicarbonate (all p < 0.05). In multivariate regression analysis, an increase in FMD (p < 0.001) and a decrease in FPCS (p = 0.012) and TIS (p < 0.001) remained persistent findings when adjusted for age, systolic blood pressure (SBP), sodium, albumin, and diastolic blood pressure (DBP). LPD supplemented with KAs significantly preserves kidney function and provides additional benefits on endothelial function and protein-bound uremic toxins in patients with CKD.
Collapse
Affiliation(s)
- George Chang
- Division of Nephrology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan
| | - Hong-Mou Shih
- Division of Nephrology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100001, Taiwan
| | - Chi-Feng Pan
- Division of Nephrology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan
| | - Chih-Jen Wu
- Division of Nephrology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei 220001, Taiwan
| | - Cheng-Jui Lin
- Division of Nephrology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei 220001, Taiwan
- Department of Medicine, Mackay Junior College of Medicine, Nursing and Management, Taipei 100001, Taiwan
| |
Collapse
|
18
|
Kunasegaran T, Balasubramaniam VRMT, Arasoo VJT, Palanisamy UD, Ramadas A. Diet Gut Microbiota Axis in Pregnancy: A Systematic Review of Recent Evidence. Curr Nutr Rep 2023; 12:203-214. [PMID: 36810808 PMCID: PMC9974723 DOI: 10.1007/s13668-023-00453-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 02/23/2023]
Abstract
PURPOSE OF REVIEW Although gut microbiota have been associated with the etiology of some diseases, the influence of foods on gut microbiota, especially among pregnant women, remains unclear. Hence, a systematic review was performed to investigate the association between diet and gut microbiota and their influence on metabolic health in pregnant women. RECENT FINDINGS We performed the systematic review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 protocol to investigate the association between diet and gut microbiota and their influence on metabolic role in pregnant women. Five databases were searched for relevant peer-reviewed articles published in English since 2011. Two-staged screening of 659 retrieved records resulted in the inclusion of 10 studies. The collated findings suggested associations between nutrient intakes and four key microbes: Collinsella, Lachnospira, Sutterella, Faecalibacterium, and the Firmicutes/Bacteroidetes ratio in pregnant women. Dietary intakes in pregnancy were found to modify the gut microbiota and positively influence the cell metabolism in pregnant women. This review, however, emphasizes the importance of conducting well-designed prospective cohorts to investigate the role of changes in dietary intakes within the pregnancy and the influence of such changes on gut microbiota.
Collapse
Affiliation(s)
- Thubasni Kunasegaran
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | | | | | - Uma Devi Palanisamy
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Amutha Ramadas
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| |
Collapse
|
19
|
Mervant L, Tremblay-Franco M, Olier M, Jamin E, Martin JF, Trouilh L, Buisson C, Naud N, Maslo C, Héliès-Toussaint C, Fouché E, Kesse-Guyot E, Hercberg S, Galan P, Deschasaux-Tanguy M, Touvier M, Pierre F, Debrauwer L, Guéraud F. Urinary Metabolome Analysis Reveals Potential Microbiota Alteration and Electrophilic Burden Induced by High Red Meat Diet: Results from the French NutriNet-Santé Cohort and an In Vivo Intervention Study in Rats. Mol Nutr Food Res 2023; 67:e2200432. [PMID: 36647294 DOI: 10.1002/mnfr.202200432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/22/2022] [Indexed: 01/18/2023]
Abstract
SCOPE High red and processed meat consumption is associated with several adverse outcomes such as colorectal cancer and overall global mortality. However, the underlying mechanisms remain debated and need to be elucidated. METHODS AND RESULTS Urinary untargeted Liquid Chromatography-Mass Spectrometry (LC-MS) metabolomics data from 240 subjects from the French cohort NutriNet-Santé are analyzed. Individuals are matched and divided into three groups according to their consumption of red and processed meat: high red and processed meat consumers, non-red and processed meat consumers, and at random group. Results are supported by a preclinical experiment where rats are fed either a high red meat or a control diet. Microbiota derived metabolites, in particular indoxyl sulfate and cinnamoylglycine, are found impacted by the high red meat diet in both studies, suggesting a modification of microbiota by the high red/processed meat diet. Rat microbiota sequencing analysis strengthens this observation. Although not evidenced in the human study, rat mercapturic acid profile concomitantly reveals an increased lipid peroxidation induced by high red meat diet. CONCLUSION Novel microbiota metabolites are identified as red meat consumption potential biomarkers, suggesting a deleterious effect, which could partly explain the adverse effects associated with high red and processed meat consumption.
Collapse
Affiliation(s)
- Loïc Mervant
- Toxalim, Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, 31027, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, 31077, France.,French Network for Nutrition and Cancer Research (NACRe Network), Jouy-en-Josas, 78352, France
| | - Marie Tremblay-Franco
- Toxalim, Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, 31027, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, 31077, France
| | - Maïwenn Olier
- Toxalim, Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, 31027, France
| | - Emilien Jamin
- Toxalim, Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, 31027, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, 31077, France
| | - Jean-Francois Martin
- Toxalim, Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, 31027, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, 31077, France
| | - Lidwine Trouilh
- Plateforme Genome et Transcriptome (GeT-Biopuces), Toulouse Biotechnology Institute (TBI), Université ide Toulouse, CNRS, INRAE, INSA, 135 avenue de Rangueil, Toulouse, F-31077, France
| | - Charline Buisson
- Toxalim, Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, 31027, France.,French Network for Nutrition and Cancer Research (NACRe Network), Jouy-en-Josas, 78352, France
| | - Nathalie Naud
- Toxalim, Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, 31027, France.,French Network for Nutrition and Cancer Research (NACRe Network), Jouy-en-Josas, 78352, France
| | - Claire Maslo
- Toxalim, Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, 31027, France
| | - Cécile Héliès-Toussaint
- Toxalim, Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, 31027, France.,French Network for Nutrition and Cancer Research (NACRe Network), Jouy-en-Josas, 78352, France
| | - Edwin Fouché
- Toxalim, Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, 31027, France.,French Network for Nutrition and Cancer Research (NACRe Network), Jouy-en-Josas, 78352, France
| | - Emmanuelle Kesse-Guyot
- French Network for Nutrition and Cancer Research (NACRe Network), Jouy-en-Josas, 78352, France.,Sorbonne Paris Nord University, INSERM U1153, INRAe U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), 74 rue Marcel Cachin, Bobigny, 93017, France
| | - Serge Hercberg
- French Network for Nutrition and Cancer Research (NACRe Network), Jouy-en-Josas, 78352, France.,Sorbonne Paris Nord University, INSERM U1153, INRAe U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), 74 rue Marcel Cachin, Bobigny, 93017, France
| | - Pilar Galan
- Sorbonne Paris Nord University, INSERM U1153, INRAe U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), 74 rue Marcel Cachin, Bobigny, 93017, France
| | - Mélanie Deschasaux-Tanguy
- French Network for Nutrition and Cancer Research (NACRe Network), Jouy-en-Josas, 78352, France.,Sorbonne Paris Nord University, INSERM U1153, INRAe U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), 74 rue Marcel Cachin, Bobigny, 93017, France
| | - Mathilde Touvier
- French Network for Nutrition and Cancer Research (NACRe Network), Jouy-en-Josas, 78352, France.,Sorbonne Paris Nord University, INSERM U1153, INRAe U1125, CNAM, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), 74 rue Marcel Cachin, Bobigny, 93017, France
| | - Fabrice Pierre
- Toxalim, Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, 31027, France.,French Network for Nutrition and Cancer Research (NACRe Network), Jouy-en-Josas, 78352, France
| | - Laurent Debrauwer
- Toxalim, Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, 31027, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, 31077, France
| | - Francoise Guéraud
- Toxalim, Toulouse University, INRAE, ENVT, INP-Purpan, UPS, Toulouse, 31027, France.,French Network for Nutrition and Cancer Research (NACRe Network), Jouy-en-Josas, 78352, France
| |
Collapse
|
20
|
Biruete A, Chen NX, Metzger CE, Srinivasan S, O’Neill K, Fallen PB, Fonseca A, Wilson HE, de Loor H, Evenepoel P, Swanson KS, Allen MR, Moe SM. The Dietary Fermentable Fiber Inulin Alters the Intestinal Microbiome and Improves Chronic Kidney Disease Mineral-Bone Disorder in a Rat Model of CKD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.29.526093. [PMID: 36778372 PMCID: PMC9915522 DOI: 10.1101/2023.01.29.526093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background Dietary fiber is important for a healthy diet, but intake is low in CKD patients and the impact this has on the manifestations of CKD-Mineral Bone Disorder (MBD) is unknown. Methods The Cy/+ rat with progressive CKD was fed a casein-based diet of 0.7% phosphate with 10% inulin (fermentable fiber) or cellulose (non-fermentable fiber) from 22 weeks to either 30 or 32 weeks of age (~30 and ~15 % of normal kidney function). We assessed CKD-MBD, cecal microbiota, and serum gut-derived uremic toxins. Two-way ANOVA was used to evaluate the effect of age and inulin diet, and their interaction. Results In CKD animals, dietary inulin led to changes in microbiota alpha and beta diversity at 30 and 32 weeks, with higher relative abundance of several taxa, including Bifidobacterium and Bacteroides , and lower Lactobacillus . Inulin reduced serum levels of gut-derived uremic toxins, phosphate, and parathyroid hormone, but not fibroblast growth factor-23. Dietary inulin decreased aorta and cardiac calcification and reduced left ventricular mass index and cardiac fibrosis. Bone turnover and cortical bone parameters were improved with inulin; however, bone mechanical properties were not altered. Conclusions The addition of the fermentable fiber inulin to the diet of CKD rats led to changes in the gut microbiota composition, lowered gut-derived uremic toxins, and improved most parameters of CKD-MBD. Future studies should assess this fiber as an additive therapy to other pharmacologic and diet interventions in CKD. Significance Statement Dietary fiber has well established beneficial health effects. However, the impact of fermentable dietary fiber on the intestinal microbiome and CKD-MBD is poorly understood. We used an animal model of progressive CKD and demonstrated that the addition of 10% of the fermentable fiber inulin to the diet altered the intestinal microbiota and lowered circulating gut-derived uremic toxins, phosphorus, and parathyroid hormone. These changes were associated with improved cortical bone parameters, lower vascular calcification, and reduced cardiac hypertrophy, fibrosis and calcification. Taken together, dietary fermentable fiber may be a novel additive intervention to traditional therapies of CKD-MBD.
Collapse
|
21
|
Caggiano G, Stasi A, Franzin R, Fiorentino M, Cimmarusti MT, Deleonardis A, Palieri R, Pontrelli P, Gesualdo L. Fecal Microbiota Transplantation in Reducing Uremic Toxins Accumulation in Kidney Disease: Current Understanding and Future Perspectives. Toxins (Basel) 2023; 15:toxins15020115. [PMID: 36828429 PMCID: PMC9965504 DOI: 10.3390/toxins15020115] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
During the past decades, the gut microbiome emerged as a key player in kidney disease. Dysbiosis-related uremic toxins together with pro-inflammatory mediators are the main factors in a deteriorating kidney function. The toxicity of uremic compounds has been well-documented in a plethora of pathophysiological mechanisms in kidney disease, such as cardiovascular injury (CVI), metabolic dysfunction, and inflammation. Accumulating data on the detrimental effect of uremic solutes in kidney disease supported the development of many strategies to restore eubiosis. Fecal microbiota transplantation (FMT) spread as an encouraging treatment for different dysbiosis-associated disorders. In this scenario, flourishing studies indicate that fecal transplantation could represent a novel treatment to reduce the uremic toxins accumulation. Here, we present the state-of-the-art concerning the application of FMT on kidney disease to restore eubiosis and reverse the retention of uremic toxins.
Collapse
|
22
|
Guan X, Sun Z. The Role of Intestinal Flora and Its Metabolites in Heart Failure. Infect Drug Resist 2023; 16:51-64. [PMID: 36636378 PMCID: PMC9830706 DOI: 10.2147/idr.s390582] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/25/2022] [Indexed: 01/05/2023] Open
Abstract
Intestinal flora is a complex collection of microbial communities that participate in the physiological and pathological activities of the human body through various pathways. In recent years, numerous studies have reported that intestinal flora are involved in the occurrence and development of heart failure (HF) and its metabolic products could play an important role in this progression, suggesting a great value in the clinical treatment of this condition. This study reported the interaction between intestinal flora and HF, and with intestinal flora metabolites, such as short-chain fatty acids, trimethylamine N-oxide and bile acids and urotoxins, considered as the starting point, the mechanism of the roles in HF was summarized. Additionally, the current research status and the development prospects of applying flora and metabolites to the clinical therapeutic decision of HF were discussed.
Collapse
Affiliation(s)
- Xueqing Guan
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Zhijun Sun
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China,Correspondence: Zhijun Sun, Department of Cardiology, Shengjing Hospital, No. 39 of Huaxiang Road, Tiexi District, Shenyang, 110021, People’s Republic of China, Tel +86 18940251218, Fax +86 18940251218, Email
| |
Collapse
|
23
|
Liabeuf S, Drueke T, Massy Z. Rôle des toxines urémiques dans la genèse des complications de la maladie rénale chronique. BULLETIN DE L'ACADÉMIE NATIONALE DE MÉDECINE 2023. [DOI: 10.1016/j.banm.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
24
|
|
25
|
Ul-Haq A, Seo H, Jo S, Park H, Kim S, Lee Y, Lee S, Jeong JH, Song H. Characterization of Fecal Microbiomes of Osteoporotic Patients in Korea. Pol J Microbiol 2022; 71:601-613. [PMID: 36537058 PMCID: PMC9944973 DOI: 10.33073/pjm-2022-045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/11/2022] [Indexed: 12/24/2022] Open
Abstract
An imbalanced gut microbiome has been linked to a higher risk of many bone-related diseases. The objective of this study was to discover biomarkers of osteoporosis (OP). So, we collected 76 stool samples (60 human controls and 16 OP patients), extracted DNA, and performed 16S ribosomal ribonucleic acid (rRNA) gene-based amplicon sequencing. Among the taxa with an average taxonomic composition greater than 1%, only the Lachnospira genus showed a significant difference between the two groups. The Linear Discriminant Effect Size analysis and qPCR experiments indicated the Lachnospira genus as a potential biomarker of OP. Moreover, a total of 11 metabolic pathways varied between the two groups. Our study concludes that the genus Lachnospira is potentially crucial for diagnosing and treating osteoporosis. The findings of this study might help researchers better understand OP from a microbiome perspective. This research might develop more effective diagnostic and treatment methods for OP in the future.
Collapse
Affiliation(s)
- Asad Ul-Haq
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Chungnam, Republic of Korea,Division of Rheumatology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Seoul, Republic of Korea
| | - Hoonhee Seo
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea,Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Sujin Jo
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea
| | - Hyuna Park
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea
| | - Sukyung Kim
- Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Youngkyoung Lee
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea
| | - Saebim Lee
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea,Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Chungnam, Republic of Korea
| | - Je Hoon Jeong
- Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Bucheon, Gyeongi-do, Republic of Korea, H.-Y. Song, Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea; Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Chungnam, Republic of Korea; J.-H. Jeong, Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Bucheon, Gyeongi-do, Republic of Korea;
| | - Ho‑Yeon Song
- Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea,Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Chungnam, Republic of Korea, H.-Y. Song, Department of Microbiology and Immunology, School of Medicine, Soonchunhyang University, Cheonan-si, Chungnam, Republic of Korea; Probiotics Microbiome Convergence Center, Soonchunhyang University, Asan, Chungnam, Republic of Korea; J.-H. Jeong, Department of Neurosurgery, Soonchunhyang University Bucheon Hospital, Bucheon, Gyeongi-do, Republic of Korea;
| |
Collapse
|
26
|
Simonini M, Vezzoli G. New Landmarks to Slow the Progression of Chronic Kidney Disease. J Clin Med 2022; 12:2. [PMID: 36614804 PMCID: PMC9821050 DOI: 10.3390/jcm12010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Chronic kidney disease (CKD) is a serious condition whose incidence is steadily rising, particularly in the Western world, due to the increasing prevalence of diabetes, hypertension, and obesity, which are nowadays the major causes of CKD in the Western population, as well as the aging of the population [...].
Collapse
Affiliation(s)
- Marco Simonini
- Nephrology and Dialysis Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giuseppe Vezzoli
- Department of Nephrology and Dialysis, Vita Salute San Raffaele University, 20132 Milan, Italy
| |
Collapse
|
27
|
Assessment of ELISA-based method for the routine examination of serum indoxyl sulfate in patients with chronic kidney disease. Heliyon 2022; 8:e12220. [PMID: 36590542 PMCID: PMC9801083 DOI: 10.1016/j.heliyon.2022.e12220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/03/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Indoxyl sulfate (IS), a protein-bound uremic toxin, is associated with kidney function and chronic kidney disease (CKD)-related complications. Currently, serum IS levels are primarily quantified using mass spectrometry-based methods, which are not feasible for routine clinical examinations. Methods The efficiencies of three commercial ELISA kits in determination of serum IS were validated by comparing with ultra-performance liquid chromatography (UPLC)-MS/MS-based method using Bland-Altman analysis. The associations between kidney parameters and serum IS levels determined by ELISA kit from Leadgene and UPLC-MS/MS were evaluated by Spearman correlation coefficient in a CKD validation cohort. Results ELISA kit from Leadgene showed clinical agreement with UPLC-MS/MS in the determination of serum IS levels (p = 0.084). In patients with CKD, Spearman's correlation analysis revealed a perfect correlation between the IS levels determined using the Leadgene ELISA kit and UPLC-MS/MS (r = 0.964, p < 0.0001). IS levels determined using the Leadgene ELISA kit were associated with the estimated glomerular filtration rate (r = -0.772, p < 0.0001) and serum creatinine concentration (r = 0.824, p < 0.0001) in patients with CKD, and on dialysis (r = 0.557, p = 0.006). Conclusions The Leadgene ELISA kit exhibits comparable efficacy to UPLC-MS/MS in quantifying serum IS levels, supporting that ELISA would be a personalized method for monitoring the dynamic changes in serum IS levels in dialysis patients to prevent the progression of CKD.
Collapse
|
28
|
Lakshmanan AP, Mingione A, Pivari F, Dogliotti E, Brasacchio C, Murugesan S, Cusi D, Lazzaroni M, Soldati L, Terranegra A. Modulation of gut microbiota: The effects of a fruits and vegetables supplement. Front Nutr 2022; 9:930883. [PMID: 36211488 PMCID: PMC9537686 DOI: 10.3389/fnut.2022.930883] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/16/2022] [Indexed: 12/03/2022] Open
Abstract
The consumption of an optimal amount of fruits and vegetables is known to improve physical fitness and physiological body functions. Healthy eating habits, including intake of fruits and vegetables, can modify gut microbiota. This study aimed to demonstrate the effectiveness of a formulated fruit and vegetable supplement (FVS) in modulating the antioxidant capacity and the gut microbiota composition. We enrolled 30 healthy volunteer subjects, matched for age, gender, BMI, and smoking habits, and randomized them into the FVS and the placebo (PLA) groups. Among the serum vitamins, the folic acid level was significantly higher (p = 0.001) in the FVS group than in the PLA group, whereas the vitamin B2 level was significantly higher in the PLA group than in the FVS group (p = 0.028). The antioxidant capacity, measured by using the oxygen radical absorbance capacity (ORAC) method, was also slightly higher in the FVS group than in the PLA group but did not reach statistical significance. The dietary intake, assessed by 24-h recalls, did not show any significant changes after the supplementation in both the groups. The gut microbiome composition, measured by 16S rDNA sequencing, showed no difference in both alpha and beta diversities, whereas the LEfse analysis revealed a microbial shift after the treatment, with a decreased abundance of the genus Ruminococcus from the Lachnospiraceae family (p = 0.009), and the unclassified genus from the family Erysipelotrichaceae (UC36, p = 0.003) in the FVS group compared with the PLA group (confirmed by SIAMCAT analysis, AUC = 74.1%). With a minor effect, the genus Faecalibacterium and unclassified genus and family from the order Lactobacillales (UC31) were also increased in the FVS group compared with the PLA group (p = 0.0474, p = 0.0352, respectively). SCFA measurement by gas chromatography–mass spectrometry showed an increased level of 2-methylbutyrate in the FVS group compared with the PLA group (p = 0.0385). Finally, the Spearman correlation analysis showed that in the FVS group, the genus Faecalibacterium positively correlated with 2-methyl butyrate (p = 0.040). In the PLA group, none of the significant bacteria correlated with either SCFA or serum biomarkers. The network analysis confirmed the positive correlation between genus Faecalibacterium and 2-methyl butyrate. We can conclude that the FVS in healthy individuals modified the gut microbiota composition and metabolites, and it can potentially contribute to reduce the pro-inflammatory response along with the antioxidant capacity.
Collapse
Affiliation(s)
| | - Alessandra Mingione
- Department of Biomedical and Clinical Sciences L. Sacco, University of Milan, Milan, Italy
| | - Francesca Pivari
- Department of Health Sciences, University of Milan, Milan, Italy
| | | | | | - Selvasankar Murugesan
- Microbiome and Host-Microbes Interactions Lab, Research Department, Sidra Medicine, Doha, Qatar
| | - Daniele Cusi
- Institute of Biomedical Technologies, Italian National Research Council, Milan, Italy
- Bio4Dreams Scientific Unit, Bio4Dreams-Business Nursery for Life Sciences, Bio4Dreams S.p.A., Milan, Italy
| | - Monica Lazzaroni
- Laboratory of Clinical Pathology, Foundation IRCCS Neurological Institute C. Besta, Milan, Italy
| | - Laura Soldati
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Annalisa Terranegra
- Precision Nutrition, Research Department, Sidra Medicine, Doha, Qatar
- *Correspondence: Annalisa Terranegra,
| |
Collapse
|
29
|
Madella AM, Van Bergenhenegouwen J, Garssen J, Masereeuw R, Overbeek SA. Microbial-Derived Tryptophan Catabolites, Kidney Disease and Gut Inflammation. Toxins (Basel) 2022; 14:toxins14090645. [PMID: 36136583 PMCID: PMC9505404 DOI: 10.3390/toxins14090645] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Uremic metabolites, molecules either produced by the host or from the microbiota population existing in the gastrointestinal tract that gets excreted by the kidneys into urine, have significant effects on both health and disease. Tryptophan-derived catabolites are an important group of bacteria-produced metabolites with an extensive contribution to intestinal health and, eventually, chronic kidney disease (CKD) progression. The end-metabolite, indoxyl sulfate, is a key contributor to the exacerbation of CKD via the induction of an inflammatory state and oxidative stress affecting various organ systems. Contrastingly, other tryptophan catabolites positively contribute to maintaining intestinal homeostasis and preventing intestinal inflammation—activities signaled through nuclear receptors in particular—the aryl hydrocarbon receptor (AhR) and the pregnane X receptor (PXR). This review discusses the origins of these catabolites, their effect on organ systems, and how these can be manipulated therapeutically in the future as a strategy to treat CKD progression and gut inflammation management. Furthermore, the use of biotics (prebiotics, probiotics, synbiotics) as a means to increase the presence of beneficial short-chain fatty acids (SCFAs) to achieve intestinal homeostasis is discussed.
Collapse
Affiliation(s)
- Avra Melina Madella
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Correspondence: (A.M.M.); or (S.A.O.); Tel.: +31-30-209-5000 (S.A.O.)
| | - Jeroen Van Bergenhenegouwen
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Danone Nutricia Research, Uppsalalaan 12, Utrecht Science Park, 3584 CT Utrecht, The Netherlands
| | - Johan Garssen
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Danone Nutricia Research, Uppsalalaan 12, Utrecht Science Park, 3584 CT Utrecht, The Netherlands
| | - Rosalinde Masereeuw
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Saskia Adriana Overbeek
- Department of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
- Danone Nutricia Research, Uppsalalaan 12, Utrecht Science Park, 3584 CT Utrecht, The Netherlands
- Correspondence: (A.M.M.); or (S.A.O.); Tel.: +31-30-209-5000 (S.A.O.)
| |
Collapse
|
30
|
Martín Giménez VM, Rukavina Mikusic NL, Lee HJ, García Menéndez S, Choi MR, Manucha W. Physiopathological mechanisms involved in the development of hypertension associated with gut dysbiosis and the effect of nutritional/pharmacological interventions. Biochem Pharmacol 2022; 204:115213. [PMID: 35985404 DOI: 10.1016/j.bcp.2022.115213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022]
Abstract
The gut microbiota dysbiosis represents a triggering factor for cardiovascular diseases, including hypertension. In addition to the harmful impact caused by hypertension on different target organs, gut dysbiosis is capable of causing direct damage to critical organs such as the brain, heart, blood vessels, and kidneys. In this sense, it should be noted that pharmacological and nutritional interventions may influence gut microbiota composition, either inducing or preventing the development of hypertension. Some of the most important nutritional interventions at this level are represented by pro-, pre-, post- and/or syn-biotics, as well as polysaccharides, polyunsaturated fatty acids ω-3, polyphenols and fiber contained in different foods. Meanwhile, certain natural and synthetic active pharmaceutical ingredients, including antibiotics, antihypertensive and immunosuppressive drugs, vegetable extracts and vitamins, may also have a key role in the modulation of both gut microbiota and cardiovascular health. Additionally, gut microbiota may influence drugs and food-derived bioactive compounds metabolism, positively or negatively affecting their biological behavior facing established hypertension. The understanding of the complex interactions between gut microbiome and drug/food response results of great importance to developing improved pharmacological therapies for hypertension prevention and treatment. The purpose of this review is to critically outline the most relevant and recent findings on cardiovascular, renal and brain physiopathological mechanisms involved in the development of hypertension associated with changes in gut microbiota, besides the nutritional and pharmacological interventions potentially valuable for the prevention and treatment of this prevalent pathology. Finally, harmful food/drug interventions on gut microbiota are also described.
Collapse
Affiliation(s)
- Virna Margarita Martín Giménez
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, Sede San Juan, Argentina
| | - Natalia Lucía Rukavina Mikusic
- Universidad de Buenos Aires. CONICET. Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina; Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Cátedra de Anatomía e Histología, Buenos Aires, Argentina
| | - Hyun Jin Lee
- Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Cátedra de Anatomía e Histología, Buenos Aires, Argentina
| | - Sebastián García Menéndez
- Laboratorio de Farmacología Experimental Básica y Traslacional. Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Argentina
| | - Marcelo Roberto Choi
- Universidad de Buenos Aires. CONICET. Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), Buenos Aires, Argentina; Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Ciencias Biológicas. Cátedra de Anatomía e Histología, Buenos Aires, Argentina
| | - Walter Manucha
- Laboratorio de Farmacología Experimental Básica y Traslacional. Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Argentina.
| |
Collapse
|
31
|
Koppe L, Soulage CO. The impact of dietary nutrient intake on gut microbiota in the progression and complications of chronic kidney disease. Kidney Int 2022; 102:728-739. [PMID: 35870642 DOI: 10.1016/j.kint.2022.06.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 06/02/2022] [Accepted: 06/10/2022] [Indexed: 11/29/2022]
Abstract
Chronic kidney disease (CKD) has been associated with changes in the function and composition of the gut microbiota. The ecosystem of the human gut consists of trillions of microorganisms forming an authentic metabolically active organ that is fueled by nutrients to produce bioactive compounds. These microbiota-derived metabolites may be protective for kidney function (e.g. short-chain fatty acids from fermentation of dietary fibers) or deleterious (e.g. gut-derived uremic toxins such as trimethylamine N-oxide, p-cresyl sulfate, and indoxyl sulfate from fermentation of amino acids). Although diet is the cornerstone of the management of the patient with CKD, it remains a relatively underused component of the clinician's armamentarium. In this review, we describe the latest advances in understanding diet-microbiota crosstalk in a uremic context, and how this communication might contribute to CKD progression and complications. We then discuss how this knowledge could be harnessed for personalized nutrition strategies to prevent patients with CKD progressing to end-stage kidney disease and its detrimental consequences.
Collapse
Affiliation(s)
- Laetitia Koppe
- Department of Nephrology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, F-69495 Pierre-Bénite, France; Univ. Lyon, CarMeN lab, INSA-Lyon, INSERM U1060, INRA, Université Claude Bernard Lyon 1, F-69621 Villeurbanne, France.
| | - Christophe O Soulage
- Univ. Lyon, CarMeN lab, INSA-Lyon, INSERM U1060, INRA, Université Claude Bernard Lyon 1, F-69621 Villeurbanne, France
| |
Collapse
|
32
|
Microbiome-metabolomics insights into the feces of high-fat diet mice to reveal the anti-obesity effects of yak (Bos grunniens) bone collagen hydrolysates. Food Res Int 2022; 156:111024. [DOI: 10.1016/j.foodres.2022.111024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/22/2022] [Accepted: 02/14/2022] [Indexed: 12/14/2022]
|
33
|
Short-Chain Fatty Acids in Chronic Kidney Disease: Focus on Inflammation and Oxidative Stress Regulation. Int J Mol Sci 2022; 23:ijms23105354. [PMID: 35628164 PMCID: PMC9140893 DOI: 10.3390/ijms23105354] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic Kidney Disease (CKD) is a debilitating disease associated with several secondary complications that increase comorbidity and mortality. In patients with CKD, there is a significant qualitative and quantitative alteration in the gut microbiota, which, consequently, also leads to reduced production of beneficial bacterial metabolites, such as short-chain fatty acids. Evidence supports the beneficial effects of short-chain fatty acids in modulating inflammation and oxidative stress, which are implicated in CKD pathogenesis and progression. Therefore, this review will provide an overview of the current knowledge, based on pre-clinical and clinical evidence, on the effect of SCFAs on CKD-associated inflammation and oxidative stress.
Collapse
|
34
|
Ferrari B, Da Silva AC, Liu KH, Saidakova EV, Korolevskaya LB, Shmagel KV, Shive C, Pacheco Sanchez G, Retuerto M, Sharma AA, Ghneim K, Noel-Romas L, Rodriguez B, Ghannoum MA, Hunt PP, Deeks SG, Burgener AD, Jones DP, Dobre MA, Marconi VC, Sekaly RP, Younes SA. Gut-derived bacterial toxins impair memory CD4+ T cell mitochondrial function in HIV-1 infection. J Clin Invest 2022; 132:e149571. [PMID: 35316209 PMCID: PMC9057623 DOI: 10.1172/jci149571] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 03/16/2022] [Indexed: 11/17/2022] Open
Abstract
People living with HIV (PLWH) who are immune nonresponders (INRs) are at greater risk of comorbidity and mortality than are immune responders (IRs) who restore their CD4+ T cell count after antiretroviral therapy (ART). INRs have low CD4+ T cell counts (<350 c/μL), heightened systemic inflammation, and increased CD4+ T cell cycling (Ki67+). Here, we report the findings that memory CD4+ T cells and plasma samples of INRs from several cohorts are enriched in gut-derived bacterial solutes p-cresol sulfate (PCS) and indoxyl sulfate (IS) that both negatively correlated with CD4+ T cell counts. In vitro PCS or IS blocked CD4+ T cell proliferation, induced apoptosis, and diminished the expression of mitochondrial proteins. Electron microscopy imaging revealed perturbations of mitochondrial networks similar to those found in INRs following incubation of healthy memory CD4+ T cells with PCS. Using bacterial 16S rDNA, INR stool samples were found enriched in proteolytic bacterial genera that metabolize tyrosine and phenylalanine to produce PCS. We propose that toxic solutes from the gut bacterial flora may impair CD4+ T cell recovery during ART and may contribute to CD4+ T cell lymphopenia characteristic of INRs.
Collapse
Affiliation(s)
- Brian Ferrari
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Center for AIDS Research, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Amanda Cabral Da Silva
- Department of Pathology, Pathology Advanced Translational Research (PATRU), School of Medicine and
| | - Ken H. Liu
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Evgeniya V. Saidakova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center Ural Branch Russian Academy of Sciences, Perm, Russia
- Department of Microbiology and Immunology, Perm State University, Perm, Russia
| | - Larisa B. Korolevskaya
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center Ural Branch Russian Academy of Sciences, Perm, Russia
| | - Konstantin V. Shmagel
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center Ural Branch Russian Academy of Sciences, Perm, Russia
| | - Carey Shive
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Center for AIDS Research, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Cleveland VA Medical Center, Cleveland, Ohio, USA
| | - Gabriela Pacheco Sanchez
- Department of Pathology, Pathology Advanced Translational Research (PATRU), School of Medicine and
| | - Mauricio Retuerto
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center Ural Branch Russian Academy of Sciences, Perm, Russia
| | | | - Khader Ghneim
- Department of Microbiology and Immunology, Perm State University, Perm, Russia
| | - Laura Noel-Romas
- Integrated Microbiome Core, Department of Dermatology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, USA
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA
| | - Benigno Rodriguez
- Department of Medicine, Division of Infectious Diseases and HIV Medicine, Center for AIDS Research, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Mahmoud A. Ghannoum
- Integrated Microbiome Core, Department of Dermatology, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, Ohio, USA
| | - Peter P. Hunt
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Steven G. Deeks
- Department of Medicine, UCSF, San Francisco, California, USA
| | - Adam D. Burgener
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Obstetrics & Gynecology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dean P. Jones
- Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Mirela A. Dobre
- Department of Medicine (Nephrology), Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Vincent C. Marconi
- Division of Infectious Diseases, Department of Global Health, and Department of Global Health, Rollins School of Public Health, Atlanta, Georgia, USA
| | - Rafick-Pierre Sekaly
- Department of Pathology, Pathology Advanced Translational Research (PATRU), School of Medicine and
| | - Souheil-Antoine Younes
- Department of Pathology, Pathology Advanced Translational Research (PATRU), School of Medicine and
| |
Collapse
|
35
|
Kimble R, Gouinguenet P, Ashor A, Stewart C, Deighton K, Matu J, Griffiths A, Malcomson FC, Joel A, Houghton D, Stevenson E, Minihane AM, Siervo M, Shannon OM, Mathers JC. Effects of a mediterranean diet on the gut microbiota and microbial metabolites: A systematic review of randomized controlled trials and observational studies. Crit Rev Food Sci Nutr 2022; 63:8698-8719. [PMID: 35361035 DOI: 10.1080/10408398.2022.2057416] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Consumption of the Mediterranean dietary pattern (MedDiet) is associated with reduced risk of numerous non-communicable diseases. Modulation of the composition and metabolism of the gut microbiota represents a potential mechanism through which the MedDiet elicits these effects. We conducted a systematic literature search (Prospero registration: CRD42020168977) using PubMed, The Cochrane Library, MEDLINE, SPORTDiscuss, Scopus and CINAHL databases for randomized controlled trials (RCTs) and observational studies exploring the impact of a MedDiet on gut microbiota composition (i.e., relative abundance of bacteria or diversity metrics) and metabolites (e.g., short chain fatty acids). Seventeen RCTs and 17 observational studies were eligible for inclusion in this review. Risk of bias across the studies was mixed but mainly identified as low and unclear. Overall, RCTs and observational studies provided no clear evidence of a consistent effect of a MedDiet on composition or metabolism of the gut microbiota. These findings may be related to the diverse methods across studies (e.g., MedDiet classification and analytical techniques), cohort characteristics, and variable quality of studies. Further, well-designed studies are warranted to advance understanding of the potential effects of the MedDiet using more detailed examination of microbiota and microbial metabolites with reference to emerging characteristics of a healthy gut microbiome.
Collapse
Affiliation(s)
- Rachel Kimble
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Phebee Gouinguenet
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Nutrition & Food Sciences, University of Bordeaux, Bordeaux, France
| | - Ammar Ashor
- Department of Pharmacology, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | - Christopher Stewart
- Clinical and Translational Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Jamie Matu
- School of Clinical Applied Sciences, Leeds Beckett University, Leeds, UK
| | - Alex Griffiths
- Institute for Sport, Physical Activity & Leisure, Leeds Beckett University, Leeds, UK
| | - Fiona C Malcomson
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Abraham Joel
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - David Houghton
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Emma Stevenson
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Anne Marie Minihane
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia (UEA), Norwich, UK
| | - Mario Siervo
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | - Oliver M Shannon
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - John C Mathers
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
36
|
The Microbiome and Uremic Solutes. Toxins (Basel) 2022; 14:toxins14040245. [PMID: 35448854 PMCID: PMC9033124 DOI: 10.3390/toxins14040245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
Uremic retention solutes, especially the protein-bound compounds, are toxic metabolites, difficult to eliminate with progressive renal functional decline. They are of particular interest because these uremic solutes are responsible for the pathogenesis of cardiovascular and chronic kidney diseases. Evidence suggests that the relation between uremic toxins, the microbiome, and its host is altered in patients with chronic kidney disease, with the colon’s motility, epithelial integrity, and absorptive properties also playing an important role. Studies found an alteration of the microbiota composition with differences in species proportion, diversity, and function. Since uremic toxins precursors are generated by the microbiota, multiple therapeutic options are currently being explored to address dysbiosis. While an oral adsorbent can decrease the transport of bacterial metabolites from the intestinal lumen to the blood, dietary measures, supplements (prebiotics, probiotics, and synbiotics), and antibiotics aim to target directly the gut microbiota composition. Innovative approaches, such as the modulation of bacterial enzymes, open new perspectives to decrease the plasma level of uremic toxins.
Collapse
|
37
|
Serum concentrations of free indoxyl and p-cresyl sulfate are associated with mineral metabolism variables and cardiovascular risk in hemodialysis patients. J Nephrol 2022; 35:1457-1465. [PMID: 35175580 DOI: 10.1007/s40620-022-01271-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/01/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Indoxyl sulfate (IS) and p-cresyl sulfate (PCS) are uremic toxins associated with cardiovascular outcome in CKD patients. The present work is an analysis of the association of serum free, total IS and PCS with cardiovascular events and calcium-phosphate metabolism variables in hemodialysis patients. METHODS Serum levels of total and free IS and PCS were measured in 139 hemodialysis patients. Their relationship with calcium-phosphate metabolism variables were tested in an observational cohort study. In addition, their association with cardiovascular events was investigated during a 4-year follow-up. RESULTS Patients in the highest tertile (T3) of serum free IS showed lower serum 1,25(OH)2D compared to patients in the middle (T2) and lowest tertile (T1); in addition to this, T3 patients showed lower serum irisin than T1 patients and lower serum PTH than all the other subjects (T1 + T2) combined. Serum PTH was also measured during the two years after the baseline measurement and was higher in patients in the T1 than in those in the T3 of serum free IS. Cox regression analysis showed that cardiovascular risk was lower in T1 patients than in those in the T3 of serum free PCS, both using a univariate (OR 2.55, 95% CI 1.2-5.43; p = 0.015) or multivariate model (OR 2.48, 95% CI 1.12-5.51; p = 0.003). CONCLUSIONS Serum free IS may be associated with PTH and 1,25(OH)2D secretion, whereas free PCS may predict cardiovascular risk in hemodialysis patients.
Collapse
|
38
|
Wehedy E, Shatat IF, Al Khodor S. The Human Microbiome in Chronic Kidney Disease: A Double-Edged Sword. Front Med (Lausanne) 2022; 8:790783. [PMID: 35111779 PMCID: PMC8801809 DOI: 10.3389/fmed.2021.790783] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/20/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease (CKD) is an increasing global health burden. Current treatments for CKD include therapeutics to target factors that contribute to CKD progression, including renin–angiotensin–aldosterone system inhibitors, and drugs to control blood pressure and proteinuria control. Recently, associations between chronic disease processes and the human microbiota and its metabolites have been demonstrated. Dysbiosis—a change in the microbial diversity—has been observed in patients with CKD. The relationship between CKD and dysbiosis is bidirectional; gut-derived metabolites and toxins affect the progression of CKD, and the uremic milieu affects the microbiota. The accumulation of microbial metabolites and toxins is linked to the loss of kidney functions and increased mortality risk, yet renoprotective metabolites such as short-chain fatty acids and bile acids help restore kidney functions and increase the survival rate in CKD patients. Specific dietary interventions to alter the gut microbiome could improve clinical outcomes in patients with CKD. Low-protein and high-fiber diets increase the abundance of bacteria that produce short-chain fatty acids and anti-inflammatory bacteria. Fluctuations in the urinary microbiome are linked to increased susceptibility to infection and antibiotic resistance. In this review, we describe the potential role of the gut, urinary and blood microbiome in CKD pathophysiology and assess the feasibility of modulating the gut microbiota as a therapeutic tool for treating CKD.
Collapse
Affiliation(s)
- Eman Wehedy
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Research Department, Sidra Medicine, Doha, Qatar
| | | | - Souhaila Al Khodor
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Research Department, Sidra Medicine, Doha, Qatar
- *Correspondence: Souhaila Al Khodor
| |
Collapse
|
39
|
Gut Microbiome and Organ Fibrosis. Nutrients 2022; 14:nu14020352. [PMID: 35057530 PMCID: PMC8781069 DOI: 10.3390/nu14020352] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 02/07/2023] Open
Abstract
Fibrosis is a pathological process associated with most chronic inflammatory diseases. It is defined by an excessive deposition of extracellular matrix proteins and can affect nearly every tissue and organ system in the body. Fibroproliferative diseases, such as intestinal fibrosis, liver cirrhosis, progressive kidney disease and cardiovascular disease, often lead to severe organ damage and are a leading cause of morbidity and mortality worldwide, for which there are currently no effective therapies available. In the past decade, a growing body of evidence has highlighted the gut microbiome as a major player in the regulation of the innate and adaptive immune system, with severe implications in the pathogenesis of multiple immune-mediated disorders. Gut microbiota dysbiosis has been associated with the development and progression of fibrotic processes in various organs and is predicted to be a potential therapeutic target for fibrosis management. In this review we summarize the state of the art concerning the crosstalk between intestinal microbiota and organ fibrosis, address the relevance of diet in different fibrotic diseases and discuss gut microbiome-targeted therapeutic approaches that are current being explored.
Collapse
|
40
|
Benitez T, VanDerWoude E, Han Y, Byun J, Konje VC, Gillespie BW, Saran R, Mathew AV. OUP accepted manuscript. Clin Kidney J 2022; 15:1952-1965. [PMID: 36158159 PMCID: PMC9494510 DOI: 10.1093/ckj/sfac138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Indexed: 11/18/2022] Open
Abstract
Introduction Inflammation and oxidative stress contribute to the disproportionate burden of cardiovascular disease (CVD) in chronic kidney disease (CKD). Disordered catabolism of tryptophan via the kynurenine and indole pathways is linked to CVD in both CKD and dialysis patients. However, the association between specific kynurenine and indole metabolites with subclinical CVD and time to new cardiovascular (CV) events in CKD has not been studied. Methods We measured kynurenine and indole pathway metabolites using targeted mass spectrometry in a cohort of 325 patients with moderate to severe CKD and a median follow-up of 2 years. Multiple linear regression and Cox regression analyses were used to assess the relationship between these tryptophan metabolites and subclinical CVD, including calcium scores, carotid intima-media thickness and time to new cardiovascular (CV) events. Results Elevated quinolinic and anthranilic acids were independently associated with reduced time to new CVD [hazard ratio (HR) 1.28, P = .01 and HR 1.02, P = .02, respectively). Low tryptophan levels were associated with reduced time to new CV events when adjusting for demographics and CVD history (HR 0.30, P = .03). Low tryptophan levels were also associated with aortic calcification in a fully adjusted linear regression model (β = −1983, P = .006). Similarly, high levels of several kynurenine pathway metabolites predicted increased coronary, aortic and composite calcification scores. Conclusions We demonstrate the association of kynurenine pathway metabolites, and not indole derivatives, with subclinical and new CV events in an advanced CKD cohort. Our findings support a possible role for altered tryptophan immune metabolism in the pathogenesis of CKD-associated atherosclerosis.
Collapse
Affiliation(s)
- Trista Benitez
- University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Yun Han
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Jaeman Byun
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Vetalise Cheofor Konje
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | | | - Rajiv Saran
- Department of Internal Medicine, Division of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Anna V Mathew
- Correspondence to: Anna V. Mathew. E-mail: ; Twitter handles: @annavmathew, @themathewlab
| |
Collapse
|
41
|
New Strategies for the Reduction of Uremic Toxins: How Much More We Know. Toxins (Basel) 2021; 13:toxins13120837. [PMID: 34941675 PMCID: PMC8706305 DOI: 10.3390/toxins13120837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/18/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
The importance of uremic toxin (UTx) removal in chronic kidney disease (CKD) is an emerging topic in the literature, widely recognized over time as a strategy to slow-down the disease progression towards end-stage renal disease and, consequentely, the occurence of deleterious effects on cardiovascular (CV) system [...].
Collapse
|
42
|
Zoelzer F, Burger AL, Dierkes PW. Unraveling differences in fecal microbiota stability in mammals: from high variable carnivores and consistently stable herbivores. Anim Microbiome 2021; 3:77. [PMID: 34736528 PMCID: PMC8567652 DOI: 10.1186/s42523-021-00141-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/18/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Through the rapid development in DNA sequencing methods and tools, microbiome studies on a various number of species were performed during the last decade. This advance makes it possible to analyze hundreds of samples from different species at the same time in order to obtain a general overview of the microbiota. However, there is still uncertainty on the variability of the microbiota of different animal orders and on whether certain bacteria within a species are subject to greater fluctuations than others. This is largely due to the fact that the analysis in most extensive comparative studies is based on only a few samples per species or per study site. In our study, we aim to close this knowledge gap by analyzing multiple individual samples per species including two carnivore suborders Canoidea and Feloidea as well as the orders of herbivore Perissodactyla and Artiodactyla held in different zoos. To assess microbial diversity, 621 fecal samples from 31 species were characterized by sequencing the V3-V4 region of the 16S rRNA gene using Illumina MiSeq. RESULTS We found significant differences in the consistency of microbiota composition and in fecal microbial diversity between carnivore and herbivore species. Whereas the microbiota of Carnivora is highly variable and inconsistent within and between species, Perissodactyla and Ruminantia show fewer differences across species boundaries. Furthermore, low-abundance bacterial families show higher fluctuations in the fecal microbiota than high-abundance ones. CONCLUSIONS Our data suggest that microbial diversity is significantly higher in herbivores than in carnivores, whereas the microbiota in carnivores, unlike in herbivores, varies widely even within species. This high variability has methodological implications and underlines the need to analyze a minimum amount of about 10 samples per species. In our study, we found considerable differences in the occurrence of different bacterial families when looking at just three and six samples. However, from a sample number of 10 onwards, these within-species fluctuations balanced out in most cases and led to constant and more reliable results.
Collapse
Affiliation(s)
- Franziska Zoelzer
- Bioscience Education and Zoo Biology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
| | - Anna Lena Burger
- Bioscience Education and Zoo Biology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| | - Paul Wilhelm Dierkes
- Bioscience Education and Zoo Biology, Goethe University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany
| |
Collapse
|
43
|
Carroccio A, Celano G, Cottone C, Di Sclafani G, Vannini L, D'Alcamo A, Vacca M, Calabrese FM, Mansueto P, Soresi M, Francavilla R, De Angelis M. WHOLE-meal ancient wheat-based diet: Effect on metabolic parameters and microbiota. Dig Liver Dis 2021; 53:1412-1421. [PMID: 34024731 DOI: 10.1016/j.dld.2021.04.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/05/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Ancient wheat varieties are considered to be healthier than modern ones, but the data are not univocal. We investigated changes in hematochemical parameters and evaluated microbiota data before and after a set period on a diet containing a whole-meal ancient wheat mix. PATIENTS AND METHODS 29 cloistered nuns were recruited. The study comprised two consecutive 30-day periods; during the first one (T1), the nuns received wheat-based foods produced with refined "modern" flour ("Simeto"); during the second one (T2) received wheat-based foods produced with an unrefined flour mix composed of "ancient" cultivars. At entry to the study (T0) and at the end of T1 and T2 hematochemical parameters and fecal microbiota and metabolome were evaluated. RESULTS At the end of T2, there was a significant reduction in serum iron, ferritin, creatinine, sodium, potassium, magnesium, total cholesterol, LDL- and HDL-cholesterol and folic acid. Furthermore, increased the abundance of cultivable enterococci, lactic acid bacteria and total anaerobes. The ability of the gut microbiome to metabolize carbohydrates increased after the period of diet containing ancient grain products. Several volatile organic compounds increased after the one month on the diet enriched with ancient grain products. CONCLUSIONS Our data showed the beneficial effects deriving from a diet including ancient whole-meal/unrefined wheat flours.
Collapse
Affiliation(s)
- Antonio Carroccio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Via del Vespro, 141, Palermo 90100, Italy.
| | - Giuseppe Celano
- Department of Soil, Plant and Food Sciences, University "Aldo Moro" of Bari, Via G. Amendola, 165/A, Bari 70126, Italy
| | | | | | - Lucia Vannini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum University of Bologna, Viale G. Fanin, 42, Bologna 40127, Italy
| | - Alberto D'Alcamo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Via del Vespro, 141, Palermo 90100, Italy
| | - Mirco Vacca
- Department of Soil, Plant and Food Sciences, University "Aldo Moro" of Bari, Via G. Amendola, 165/A, Bari 70126, Italy
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Sciences, University "Aldo Moro" of Bari, Via G. Amendola, 165/A, Bari 70126, Italy
| | - Pasquale Mansueto
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Via del Vespro, 141, Palermo 90100, Italy
| | - Maurizio Soresi
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Via del Vespro, 141, Palermo 90100, Italy
| | - Ruggiero Francavilla
- Department of Biomedical Science and Human Oncology, University "Aldo Moro" of Bari, Piazza Giulio Cesare, 11, Bari 70124, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University "Aldo Moro" of Bari, Via G. Amendola, 165/A, Bari 70126, Italy
| |
Collapse
|
44
|
A low aromatic amino-acid diet improves renal function and prevent kidney fibrosis in mice with chronic kidney disease. Sci Rep 2021; 11:19184. [PMID: 34584168 PMCID: PMC8479128 DOI: 10.1038/s41598-021-98718-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/06/2021] [Indexed: 01/18/2023] Open
Abstract
Despite decades of use of low protein diets (LPD) in the management of chronic kidney disease (CKD), their mechanisms of action are unclear. A reduced production of uremic toxins could contribute to the benefits of LPDs. Aromatic amino-acids (AA) are precursors of major uremic toxins such as p-cresyl sulfate (PCS) and indoxyl sulfate (IS). We hypothesize that a low aromatic amino acid diet (LA-AAD, namely a low intake of tyrosine, tryptophan and phenylalanine) while being normoproteic, could be as effective as a LPD, through the decreased production of uremic toxins. Kidney failure was chemically induced in mice with a diet containing 0.25% (w/w) of adenine. Mice received three different diets for six weeks: normoproteic diet (NPD: 14.7% proteins, aromatic AAs 0.019%), LPD (5% proteins, aromatic AAs 0.007%) and LA-AAD (14% proteins, aromatic AAs 0.007%). Both LPD and LA-AAD significantly reduced proteinuria, kidney fibrosis and inflammation. While LPD only slightly decreased plasma free PCS and free IS compared to NPD; free fractions of both compounds were significantly decreased by LA-AAD. These results suggest that a LA-AAD confers similar benefits of a LPD in delaying the progression of CKD through a reduction in some key uremic toxins production (such as PCS and IS), with a lower risk of malnutrition.
Collapse
|
45
|
Pinart M, Nimptsch K, Forslund SK, Schlicht K, Gueimonde M, Brigidi P, Turroni S, Ahrens W, Hebestreit A, Wolters M, Dötsch A, Nöthlings U, Oluwagbemigun K, Cuadrat RRC, Schulze MB, Standl M, Schloter M, De Angelis M, Iozzo P, Guzzardi MA, Vlaemynck G, Penders J, Jonkers DMAE, Stemmer M, Chiesa G, Cavalieri D, De Filippo C, Ercolini D, De Filippis F, Ribet D, Achamrah N, Tavolacci MP, Déchelotte P, Bouwman J, Laudes M, Pischon T. Identification and Characterization of Human Observational Studies in Nutritional Epidemiology on Gut Microbiomics for Joint Data Analysis. Nutrients 2021; 13:nu13093292. [PMID: 34579168 PMCID: PMC8466729 DOI: 10.3390/nu13093292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 01/16/2023] Open
Abstract
In any research field, data access and data integration are major challenges that even large, well-established consortia face. Although data sharing initiatives are increasing, joint data analyses on nutrition and microbiomics in health and disease are still scarce. We aimed to identify observational studies with data on nutrition and gut microbiome composition from the Intestinal Microbiomics (INTIMIC) Knowledge Platform following the findable, accessible, interoperable, and reusable (FAIR) principles. An adapted template from the European Nutritional Phenotype Assessment and Data Sharing Initiative (ENPADASI) consortium was used to collect microbiome-specific information and other related factors. In total, 23 studies (17 longitudinal and 6 cross-sectional) were identified from Italy (7), Germany (6), Netherlands (3), Spain (2), Belgium (1), and France (1) or multiple countries (3). Of these, 21 studies collected information on both dietary intake (24 h dietary recall, food frequency questionnaire (FFQ), or Food Records) and gut microbiome. All studies collected stool samples. The most often used sequencing platform was Illumina MiSeq, and the preferred hypervariable regions of the 16S rRNA gene were V3–V4 or V4. The combination of datasets will allow for sufficiently powered investigations to increase the knowledge and understanding of the relationship between food and gut microbiome in health and disease.
Collapse
Affiliation(s)
- Mariona Pinart
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (M.P.); (T.P.)
| | - Katharina Nimptsch
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (M.P.); (T.P.)
- Correspondence: ; Tel.: +49-30-9046-4573
| | - Sofia K. Forslund
- Experimental and Clinical Research Center, A Cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Lindenberger Weg 80, 13125 Berlin, Germany;
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117 Berlin, Germany
- Host-Microbiome Factors in Cardiovascular Disease Lab, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany
- Berlin Institute of Health (BIH), 10178 Berlin, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Kristina Schlicht
- Institute of Diabetes and Clinical Metabolic Research, University of Kiel, 24105 Kiel, Germany; (K.S.); (M.L.)
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, IPLA-CSIC, 33300 Villaviciosa, Spain;
- Diet, Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Patrizia Brigidi
- Department of Medical and Surgical Sciences, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy;
| | - Silvia Turroni
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy;
| | - Wolfgang Ahrens
- Leibniz Institute for Prevention Research and Epidemiology-BIPS, 28359 Bremen, Germany; (W.A.); (A.H.); (M.W.)
- Institute of Statistics, Bremen University, 28359 Bremen, Germany
| | - Antje Hebestreit
- Leibniz Institute for Prevention Research and Epidemiology-BIPS, 28359 Bremen, Germany; (W.A.); (A.H.); (M.W.)
| | - Maike Wolters
- Leibniz Institute for Prevention Research and Epidemiology-BIPS, 28359 Bremen, Germany; (W.A.); (A.H.); (M.W.)
| | - Andreas Dötsch
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut (MRI)-Federal Research Institute of Nutrition and Food, 76131 Karlsruhe, Germany;
| | - Ute Nöthlings
- Nutritional Epidemiology Unit, Institute of Nutrition and Food Sciences, University of Bonn, 53115 Bonn, Germany; (U.N.); (K.O.)
| | - Kolade Oluwagbemigun
- Nutritional Epidemiology Unit, Institute of Nutrition and Food Sciences, University of Bonn, 53115 Bonn, Germany; (U.N.); (K.O.)
| | - Rafael R. C. Cuadrat
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany; (R.R.C.C.); (M.B.S.)
| | - Matthias B. Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany; (R.R.C.C.); (M.B.S.)
- Institute of Nutritional Science, University of Potsdam, 14558 Potsdam, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Marie Standl
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany;
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany;
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy;
| | - Patricia Iozzo
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (P.I.); (M.A.G.)
| | - Maria Angela Guzzardi
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (P.I.); (M.A.G.)
| | - Geertrui Vlaemynck
- Department Technology and Food, Flanders Research Institute for Agriculture, Fisheries and Food, 9090 Melle, Belgium;
| | - John Penders
- Department of Medical Microbiology, School of Nutrition and Translational Research in Metabolism (NUTRIM) and Care and Public Health Research Institute (CAPHRI), Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands;
| | - Daisy M. A. E. Jonkers
- Department of Internal Medicine, Division Gastroenterology-Hepatology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands;
| | - Maya Stemmer
- Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva P.O. Box 653, Israel;
| | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Duccio Cavalieri
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019 Florence, Italy;
| | - Carlotta De Filippo
- Institute of Agricultural Biology and Biotechnology National Research Council, Via Moruzzi 1, 56124 Pisa, Italy;
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (D.E.); (F.D.F.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80134 Naples, Italy
| | - Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (D.E.); (F.D.F.)
- Task Force on Microbiome Studies, University of Naples Federico II, 80134 Naples, Italy
| | - David Ribet
- INSERM UMR 1073 “Nutrition, Inflammation and Gut-Brain Axis Dysfunctions”, UNIROUEN, Normandie University, 76000 Rouen, France; (D.R.); (N.A.); (M.-P.T.); (P.D.)
| | - Najate Achamrah
- INSERM UMR 1073 “Nutrition, Inflammation and Gut-Brain Axis Dysfunctions”, UNIROUEN, Normandie University, 76000 Rouen, France; (D.R.); (N.A.); (M.-P.T.); (P.D.)
- Department of Nutrition, CHU Rouen, 76000 Rouen, France
| | - Marie-Pierre Tavolacci
- INSERM UMR 1073 “Nutrition, Inflammation and Gut-Brain Axis Dysfunctions”, UNIROUEN, Normandie University, 76000 Rouen, France; (D.R.); (N.A.); (M.-P.T.); (P.D.)
- INSERM CIC-CRB 1404, CHU Rouen, 76000 Rouen, France
| | - Pierre Déchelotte
- INSERM UMR 1073 “Nutrition, Inflammation and Gut-Brain Axis Dysfunctions”, UNIROUEN, Normandie University, 76000 Rouen, France; (D.R.); (N.A.); (M.-P.T.); (P.D.)
- Department of Nutrition, CHU Rouen, 76000 Rouen, France
| | - Jildau Bouwman
- Microbiology and Systems Biology Group, TNO, Utrechtseweg 48, 3704 HE Zeist, The Netherlands;
| | - Matthias Laudes
- Institute of Diabetes and Clinical Metabolic Research, University of Kiel, 24105 Kiel, Germany; (K.S.); (M.L.)
| | - Tobias Pischon
- Molecular Epidemiology Research Group, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany; (M.P.); (T.P.)
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117 Berlin, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Berlin, 10785 Berlin, Germany
- Biobank Technology Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin, Germany
- Biobank Core Facility, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, 10178 Berlin, Germany
| |
Collapse
|
46
|
Ducloux D, Legendre M, Bamoulid J, Saas P, Courivaud C, Crepin T. End-Stage Renal Disease-Related Accelerated Immune Senescence: Is Rejuvenation of the Immune System a Therapeutic Goal? Front Med (Lausanne) 2021; 8:720402. [PMID: 34540869 PMCID: PMC8446427 DOI: 10.3389/fmed.2021.720402] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/17/2021] [Indexed: 02/05/2023] Open
Abstract
End-stage renal disease (ESRD) patients exhibit clinical features of premature ageing, including frailty, cardiovascular disease, and muscle wasting. Accelerated ageing also concerns the immune system. Patients with ESRD have both immune senescence and chronic inflammation that are resumed in the so-called inflammaging syndrome. Immune senescence is particularly characterised by premature loss of thymic function that is associated with hyporesponsiveness to vaccines, susceptibility to infections, and death. ESRD-related chronic inflammation has multiple causes and participates to accelerated cardiovascular disease. Although, both characterisation of immune senescence and its consequences are relatively well-known, mechanisms are more uncertain. However, prevention of immune senescence/inflammation or/and rejuvenation of the immune system are major goal to ameliorate clinical outcomes of ESRD patients.
Collapse
Affiliation(s)
- Didier Ducloux
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,University Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| | - Mathieu Legendre
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,University Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France
| | - Jamal Bamoulid
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,University Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| | - Philippe Saas
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,University Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,EFS Bourgogne Franche-Comté, Plateforme de Biomonitoring, CIC 1431/UMR1098, Besançon, France
| | - Cécile Courivaud
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,University Bourgogne Franche-Comté, Faculté de Médecine et de Pharmacie, LabEx LipSTIC, Besançon, France.,Structure Fédérative de Recherche, SFR FED4234, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| | - Thomas Crepin
- Inserm, UMR1098, Federation Hospitalo-Universitaire INCREASE, Besançon, France.,CHU Besançon, Department of Nephrology, Dialysis, and Renal Transplantation, Besançon, France
| |
Collapse
|
47
|
Wu R, Ruan XL, Ruan DD, Zhang JH, Wang HL, Zeng QZ, Lu T, Gan YM, Luo JW, Wu JB. Differences in gut microbiota structure in patients with stages 4-5 chronic kidney disease. Am J Transl Res 2021; 13:10056-10074. [PMID: 34650681 PMCID: PMC8507064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The gut microbiota can affect human metabolism, immunity, and other biologic pathways through the complex gut-kidney axis (GKA), and in turn participate in the occurrence and development of kidney disease. In this study, 39 patients with stage 4-5 chronic kidney disease (CKD) and 40 healthy individuals were recruited and 16S rDNA sequencing was performed to analyze the V3-V4 conserved regions of their microbiota. A total of 795 operational taxonomic units (OTUs) shared between groups or specific to each group were obtained, among which 255 OTUs with significant differences between the two groups were identified (P<0.05). Adonis differential analysis showed that the diversity of gut microbiota was highly correlated with CKD stages 4-5. Additionally, 61 genera with differences in the two groups were identified (P<0.05) and 111 species with significant differences in the phyla, classes, orders, families, and genera between the two groups were identified (P<0.05). The differential bacterial genera with the greatest contribution were, in descending order: c_Bacteroidia, o_Bacteroidales, p_Bacteroidetes, c_Clostridia, o_Clostridiales, etc. Those with the greatest contribution in stages 4-5 CKD were, in descending order: p_Proteobacteria, f_Enterobacteriaceae, o_Enterobacteriales, c_Gammaproteobacteria, c_Bacilli, etc. The results suggest that the diversity of the microbiota may affect the occurrence, development, and outcome of the terminal stages of CKD.
Collapse
Affiliation(s)
- Rong Wu
- Shengli Clinical Medical College, Fujian Medical UniversityFuzhou 350001, Fujian, China
- Department of Nephrology, Fuqing City Hospital Affiliated to Fujian Medical UniversityFuzhou 350001, Fujian, China
| | - Xing-Lin Ruan
- Department of Neurology, Fujian Medical University Union HospitalFuzhou 350001, Fujian, China
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical UniversityFuzhou 350005, Fujian, China
| | - Dan-Dan Ruan
- Shengli Clinical Medical College, Fujian Medical UniversityFuzhou 350001, Fujian, China
- Department of Nephrology, Fujian Provincial HospitalFuzhou 350001, Fujian, China
| | - Jian-Hui Zhang
- Shengli Clinical Medical College, Fujian Medical UniversityFuzhou 350001, Fujian, China
- Department of Nephrology, Fujian Provincial HospitalFuzhou 350001, Fujian, China
| | - Han-Lu Wang
- Shengli Clinical Medical College, Fujian Medical UniversityFuzhou 350001, Fujian, China
- Department of Nephrology, Fujian Provincial HospitalFuzhou 350001, Fujian, China
| | - Quan-Zuan Zeng
- Shengli Clinical Medical College, Fujian Medical UniversityFuzhou 350001, Fujian, China
- Department of Nephrology, Fujian Provincial HospitalFuzhou 350001, Fujian, China
| | - Tao Lu
- Shengli Clinical Medical College, Fujian Medical UniversityFuzhou 350001, Fujian, China
- Department of Nephrology, Fujian Provincial HospitalFuzhou 350001, Fujian, China
| | - Yu-Mian Gan
- Shengli Clinical Medical College, Fujian Medical UniversityFuzhou 350001, Fujian, China
- Department of Nephrology, Fujian Provincial HospitalFuzhou 350001, Fujian, China
| | - Jie-Wei Luo
- Shengli Clinical Medical College, Fujian Medical UniversityFuzhou 350001, Fujian, China
- Department of Nephrology, Fujian Provincial HospitalFuzhou 350001, Fujian, China
| | - Jia-Bin Wu
- Shengli Clinical Medical College, Fujian Medical UniversityFuzhou 350001, Fujian, China
- Department of Nephrology, Fujian Provincial HospitalFuzhou 350001, Fujian, China
| |
Collapse
|
48
|
Benoit N, Dubois MJ, Pilon G, Varin TV, Marette A, Bazinet L. Effects of Herring Milt Hydrolysates and Fractions in a Diet-Induced Obesity Model. Foods 2021; 10:foods10092046. [PMID: 34574156 PMCID: PMC8470019 DOI: 10.3390/foods10092046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Over the past years, promising results from studies have shown that herring milt hydrolysates (HMH) can counter immune-metabolic disorders associated with obesity. However, more studies must corroborate these results. Thus, three commercial hydrolysates (HMH1, HMH2, and HMH3) as well as the fractions of two of them (HMH4 and HMH5) obtained by electrodialysis with ultrafiltration membranes (EDUF) were evaluated in vivo at higher doses compared to a previous study. To achieve this, seven groups of mice were fed for 8 weeks with either a control Chow diet or an obesogenic diet rich in fat and sucrose (HFHS) and supplemented by daily gavage with water or 312.5 mg/kg of one of the five HMH products. In summary, HMH supplements had no impact on weight gain. In the insulin tolerance test (ITT), HMH2 and its HMH5 fraction significantly reduced the blood sugar variation (p < 0.05). However, during the glucose tolerance (OGTT), HMH2 supplement increased the hyperinsulinemia variation (p < 0.05) induced by the HFHS diet. HMH1, HMH2, and HMH5 supplements generated potentially beneficial changes for health in the gut microbiota. These results reveal that HMH do not counteract obesity effects but may decrease certain physiological effects induced by obesity.
Collapse
Affiliation(s)
- Noémie Benoit
- Laboratory of Food Processing and Electromembrane Process (LTAPEM), Department of Food Sciences, Université Laval, Québec, QC G1V 0A6, Canada;
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V0A6, Canada; (M.-J.D.); (G.P.); (T.V.V.); (A.M.)
| | - Marie-Julie Dubois
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V0A6, Canada; (M.-J.D.); (G.P.); (T.V.V.); (A.M.)
- Department of Medicine, Québec Heart and Lung Institute, Université Laval, Québec, QC G1V 4G5, Canada
| | - Geneviève Pilon
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V0A6, Canada; (M.-J.D.); (G.P.); (T.V.V.); (A.M.)
- Department of Medicine, Québec Heart and Lung Institute, Université Laval, Québec, QC G1V 4G5, Canada
| | - Thibault V. Varin
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V0A6, Canada; (M.-J.D.); (G.P.); (T.V.V.); (A.M.)
- Department of Medicine, Québec Heart and Lung Institute, Université Laval, Québec, QC G1V 4G5, Canada
| | - André Marette
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V0A6, Canada; (M.-J.D.); (G.P.); (T.V.V.); (A.M.)
- Department of Medicine, Québec Heart and Lung Institute, Université Laval, Québec, QC G1V 4G5, Canada
| | - Laurent Bazinet
- Laboratory of Food Processing and Electromembrane Process (LTAPEM), Department of Food Sciences, Université Laval, Québec, QC G1V 0A6, Canada;
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Québec, QC G1V0A6, Canada; (M.-J.D.); (G.P.); (T.V.V.); (A.M.)
- Correspondence: ; Tel.: +1-(418)-656-2131 (ext. 407445); Fax: +1-(418)-656-3353
| |
Collapse
|
49
|
Zhao J, Ning X, Liu B, Dong R, Bai M, Sun S. Specific alterations in gut microbiota in patients with chronic kidney disease: an updated systematic review. Ren Fail 2021; 43:102-112. [PMID: 33406960 PMCID: PMC7808321 DOI: 10.1080/0886022x.2020.1864404] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Emerging evidence demonstrates that gut dysbiosis is implicated in the pathogenesis of chronic kidney disease (CKD) with underlying mechanisms involving mucosal and/or systematic immunity or metabolic disorders. However, the profile of gut microbiota in patients with CKD has not been completely explored. METHODS Databases from their date of inception to 31 March 2020 were systematically searched for case-control or cross-sectional studies comparing the gut microbial profiles in adult patients with CKD or end-stage renal disease (ESRD) with those in healthy controls. Quantitative analysis of alterations in gut microbial profiles was conducted. RESULTS Twenty-five studies with a total of 1436 CKD patients and 918 healthy controls were included. The present study supports the increased abundance of, phylum Proteobacteria and Fusobacteria, genus Escherichia_Shigella, Desulfovibrio, and Streptococcus, while lower abundance of genus Roseburia, Faecalibacterium, Pyramidobacter, Prevotellaceae_UCG-001, and Prevotella_9 in patients with CKD; and increased abundance of phylum Proteobacteria, and genus Streptococcus and Fusobacterium, while lower abundance of Prevotella, Coprococcus, Megamonas, and Faecalibacterium in patients with ESRD. Moreover, higher concentrations of trimethylamine-N-oxide and p-cresyl sulfate and lower concentrations of short-chain fatty acids were observed. Gut permeability in patients with CKD was not determined due to the heterogeneity of selected parameters. CONCLUSIONS Specific alterations of gut microbial parameters in patients with CKD were identified. However, a full picture of the gut microbiota could not be drawn from the data due to the differences in methodology, and qualitative and incomplete reporting of different studies.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiaoxuan Ning
- Department of Geriatrics, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Baojian Liu
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ruijuan Dong
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ming Bai
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Shiren Sun
- Department of Nephrology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
50
|
Chen TH, Liu CW, Ho YH, Huang CK, Hung CS, Smith BH, Lin JC. Gut Microbiota Composition and Its Metabolites in Different Stages of Chronic Kidney Disease. J Clin Med 2021; 10:jcm10173881. [PMID: 34501329 PMCID: PMC8432073 DOI: 10.3390/jcm10173881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
A growing body of study have documented the association of gut dysbiosis or fecal metabolites with chronic kidney disease (CKD). However, it is not clear whether the phenomenon simply reflects the microenvironment changes correlated with the CKD severity or contributes to the progression of CKD. In this study, we identified the gut microbiota and metabolite in feces samples correlated with CKD severity using the Nanopore long-read sequencing platform and UPLC-coupled MS/MS approach. A cross-sectional cohort study was performed from 1 June 2020 to 31 December 2020. One hundred and fifty-six clinical participants, including 60 healthy enrollees and 96 Stage 1–5 CKD patients, were enrolled in this study. The ROC curve generated with the relative abundance of Klebsiella pneumonia or S-Adenosylhomocysteine showed a gradual increase with the CKD severity. Our results further revealed the positive correlation of increased K. pneumonia and S-Adenosylhomocysteine in gut environment, which may be of etiological importance to the deterioration of a CKD patient. In that sense, the microbiota or metabolite changes constitute potential candidates for evaluating the progression of CKD.
Collapse
Affiliation(s)
- Tso-Hsiao Chen
- Division of Nephrology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chao-Wei Liu
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (C.-W.L.); (C.-S.H.)
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Yi-Hsien Ho
- Department of Laboratory Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (Y.-H.H.); (C.-K.H.)
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Chun-Kai Huang
- Department of Laboratory Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (Y.-H.H.); (C.-K.H.)
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Ching-Sheng Hung
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (C.-W.L.); (C.-S.H.)
- Department of Laboratory Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (Y.-H.H.); (C.-K.H.)
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Barry H. Smith
- Applied Medical Research Inc., Nashville, TN 37219, USA;
| | - Jung-Chun Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; (C.-W.L.); (C.-S.H.)
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Correspondence: ; Tel.: +886-2-2736-1661 (ext. 3330)
| |
Collapse
|