1
|
Alshareefy Y, Cummins S, Mazzoleni A, Sharma V, Guggilapu S, Leong AWY, Wireko AA. A review of functional pancreatic neuroendocrine tumors: Exploring the molecular pathogenesis, diagnosis and treatment. Medicine (Baltimore) 2023; 102:e36094. [PMID: 37986400 PMCID: PMC10659674 DOI: 10.1097/md.0000000000036094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023] Open
Abstract
Pancreatic neuroendocrine tumors (PanNETs) are a rare subtype of pancreatic cancer and can be divided into functional (30-40%) and nonfunctional subtypes. The different subtypes of functional PanNETs (F-PanNETs) have a variety of classical presentations that raise suspicion for an underlying PanNET. It is estimated that 90% of PanNETs are sporadic, and the PI3K-Akt-mTOR and ATRX/DAXX signaling pathways have been recognized as key genetic pathways implicated in the pathogenesis. The other 10% of PanNETs may occur in the context of familial cancer syndromes such as MEN1. Chromogranin A is the most useful biomarker currently; however, several studies have shown limitations with its use, especially its prognostic value. Synaptophysin is a novel biomarker which has shown promising preliminary results however its use clinically has yet to be established. Blood tests assessing hormone levels, cross-sectional imaging, and endoscopic ultrasound remain at the core of establishing a diagnosis of F-PanNET. The treatment options for F-PanNETs include surgical methods such as enucleation, systemic therapies like chemotherapy and novel targeted therapies such as everolimus. The prognosis for F-PanNETs is more favorable than for nonfunctional PanNETs, however metastatic disease is associated with poor survival outcomes. Researchers should also focus their efforts on identifying novel pathways implicated in the pathogenesis of F-PanNETs in order to develop new targeted therapies that may reduce the need for surgical intervention and on the establishment of novel biomarkers that may reduce the need for invasive testing and allow for earlier detection of F-PanNETs.
Collapse
Affiliation(s)
- Yasir Alshareefy
- School of Medicine, Trinity College Dublin, The University of Dublin, Ireland
| | - Sinead Cummins
- School of Medicine, Trinity College Dublin, The University of Dublin, Ireland
| | - Adele Mazzoleni
- Barts and the London School of Medicine and Dentistry, London, United Kingdom
| | - Vidushi Sharma
- School of Medicine, Trinity College Dublin, The University of Dublin, Ireland
| | | | | | | |
Collapse
|
2
|
Yasir M, Park J, Chun W. EWS/FLI1 Characterization, Activation, Repression, Target Genes and Therapeutic Opportunities in Ewing Sarcoma. Int J Mol Sci 2023; 24:15173. [PMID: 37894854 PMCID: PMC10607184 DOI: 10.3390/ijms242015173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Despite their clonal origins, tumors eventually develop into complex communities made up of phenotypically different cell subpopulations, according to mounting evidence. Tumor cell-intrinsic programming and signals from geographically and temporally changing microenvironments both contribute to this variability. Furthermore, the mutational load is typically lacking in childhood malignancies of adult cancers, and they still exhibit high cellular heterogeneity levels largely mediated by epigenetic mechanisms. Ewing sarcomas represent highly aggressive malignancies affecting both bone and soft tissue, primarily afflicting adolescents. Unfortunately, the outlook for patients facing relapsed or metastatic disease is grim. These tumors are primarily fueled by a distinctive fusion event involving an FET protein and an ETS family transcription factor, with the most prevalent fusion being EWS/FLI1. Despite originating from a common driver mutation, Ewing sarcoma cells display significant variations in transcriptional activity, both within and among tumors. Recent research has pinpointed distinct fusion protein activities as a principal source of this heterogeneity, resulting in markedly diverse cellular phenotypes. In this review, we aim to characterize the role of the EWS/FLI fusion protein in Ewing sarcoma by exploring its general mechanism of activation and elucidating its implications for tumor heterogeneity. Additionally, we delve into potential therapeutic opportunities to target this aberrant fusion protein in the context of Ewing sarcoma treatment.
Collapse
Affiliation(s)
| | | | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.)
| |
Collapse
|
3
|
Yao X, Zeng Y. Tumour associated endothelial cells: origin, characteristics and role in metastasis and anti-angiogenic resistance. Front Physiol 2023; 14:1199225. [PMID: 37389120 PMCID: PMC10301839 DOI: 10.3389/fphys.2023.1199225] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/23/2023] [Indexed: 07/01/2023] Open
Abstract
Tumour progression and metastasis remain the leading causes of cancer-related death worldwide. Tumour angiogenesis is essential for tumour progression. The vasculature surrounding tumours is not only a transport channel for nutrients, oxygen, and metabolites, but also a pathway for metastasis. There is a close interaction between tumour cells and endothelial cells in the tumour microenvironment. Recent studies have shown that tumour-associated endothelial cells have different characteristics from normal vascular endothelial cells, play an important role in tumour progression and metastasis, and are expected to be a key target for cancer therapy. This article reviews the tissue and cellular origin of tumour-associated endothelial cells and analyses the characteristics of tumour-associated endothelial cells. Finally, it summarises the role of tumour-associated endothelial cells in tumour progression and metastasis and the prospects for their use in clinical anti-angiogenic therapy.
Collapse
Affiliation(s)
- Xinghong Yao
- Radiation Oncology Key Laboratory of Sichuan Province, Department of Radiotherapy, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Ye Zeng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Bourdeleau P, Couvelard A, Ronot M, Lebtahi R, Hentic O, Ruszniewski P, Cros J, de Mestier L. Spatial and temporal heterogeneity of digestive neuroendocrine neoplasms. Ther Adv Med Oncol 2023; 15:17588359231179310. [PMID: 37323185 PMCID: PMC10262621 DOI: 10.1177/17588359231179310] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023] Open
Abstract
Neuroendocrine neoplasms (NENs) are initially monoclonal neoplasms that progressively become polyclonal, with very different genotypic and phenotypic characteristics leading to biological differences, including the Ki-67 proliferation index, morphology, or sensitivity to treatments. Whereas inter-patient heterogeneity has been well described, intra-tumor heterogeneity has been little studied. However, NENs present a high degree of heterogeneity, both spatially within the same location or between different lesions, and through time. This can be explained by the emergence of tumor subclones with different behaviors. These subpopulations can be distinguished by the Ki-67 index, but also by the expression of hormonal markers or by differences in the intensity of uptake on metabolic imaging, such as 68Ga-somatostatin receptor and Fluorine-18 fluorodeoxyglucose positron emission tomography. As these features are directly related to prognosis, it seems mandatory to move toward a standardized, improved selection of the tumor areas to be studied to be as predictive as possible. The temporal evolution of NENs frequently leads to changes in tumor grade over time, with impact on prognosis and therapeutic decision-making. However, there is no recommendation regarding systematic biopsy of NEN recurrence or progression, and which lesion to sample. This review aims to summarize the current state of knowledge, the main hypotheses, and the main implications regarding intra-tumor spatial and temporal heterogeneity in digestive NENs.
Collapse
Affiliation(s)
- Pauline Bourdeleau
- Department of Pancreatology and Digestive Oncology, Beaujon Hospital (APHP.Nord), Université Paris-Cité, Clichy, France
| | - Anne Couvelard
- Department of Pathology, Beaujon/Bichat Hospitals (APHP.Nord), Université Paris-Cité, Clichy/Paris, France
- Centre de Recherche sur l’Inflammation, INSERM UMR1149, FHU MOSAIC, Paris, France
| | - Maxime Ronot
- Department of Radiology, Beaujon Hospital (APHP.Nord), Université Paris-Cité, Clichy, France, and Centre de Recherche sur l’Inflammation, INSERM UMR1149, FHU MOSAIC, Paris, France
| | - Rachida Lebtahi
- Department of Nuclear Medicine, Beaujon Hospital (APHP.Nord), Université Paris-Cité, Clichy, France Centre de Recherche sur l’Inflammation, INSERM UMR1149, FHU MOSAIC, Paris, France
| | - Olivia Hentic
- Department of Pancreatology and Digestive Oncology, Beaujon Hospital (APHP.Nord), Université Paris-Cité, Clichy, France
| | - Philippe Ruszniewski
- Department of Pancreatology and Digestive Oncology, Beaujon Hospital (APHP.Nord), Université Paris-Cité, Clichy, France
- Centre de Recherche sur l’Inflammation, INSERM UMR1149, FHU MOSAIC, Paris, France
| | - Jérôme Cros
- Department of Pathology, Beaujon/Bichat Hospitals (APHP.Nord), Université Paris-Cité, Clichy/Paris, France
- Centre de Recherche sur l’Inflammation, INSERM UMR1149, FHU MOSAIC, Paris, France
| | | |
Collapse
|
5
|
Guo Y, Jiang Y, Rose JB, Nagaraju GP, Jaskula-Sztul R, Hjelmeland AB, Beck AW, Chen H, Ren B. Protein Kinase D1 Signaling in Cancer Stem Cells with Epithelial-Mesenchymal Plasticity. Cells 2022; 11:3885. [PMID: 36497140 PMCID: PMC9739736 DOI: 10.3390/cells11233885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/10/2022] [Accepted: 11/20/2022] [Indexed: 12/05/2022] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are extremely diverse and highly vascularized neoplasms that arise from endocrine cells in the pancreas. The pNETs harbor a subpopulation of stem cell-like malignant cells, known as cancer stem cells (CSCs), which contribute to intratumoral heterogeneity and promote tumor maintenance and recurrence. In this study, we demonstrate that CSCs in human pNETs co-express protein kinase PKD1 and CD44. We further identify PKD1 signaling as a critical pathway in the control of CSC maintenance in pNET cells. PKD1 signaling regulates the expression of a CSC- and EMT-related gene signature and promotes CSC self-renewal, likely leading to the preservation of a subpopulation of CSCs at an intermediate EMT state. This suggests that the PKD1 signaling pathway may be required for the development of a unique CSC phenotype with plasticity and partial EMT. Given that the signaling networks connected with CSC maintenance and EMT are complex, and extend through multiple levels of regulation, this study provides insight into signaling regulation of CSC plasticity and partial EMT in determining the fate of CSCs. Inhibition of the PKD1 pathway may facilitate the elimination of specific CSC subsets, thereby curbing tumor progression and metastasis.
Collapse
Affiliation(s)
- Yichen Guo
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yinan Jiang
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - J. Bart Rose
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ganji Purnachandra Nagaraju
- Department of Medicine, Division of Hematology and Oncology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Renata Jaskula-Sztul
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Anita B. Hjelmeland
- O’Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Department of Cell Developmental and Integrative Biology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Adam W. Beck
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Herbert Chen
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Bin Ren
- Department of Surgery, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- GBS Biomedical Engineering Program, Graduate School, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
6
|
Mukherjee AG, Wanjari UR, Gopalakrishnan AV, Bradu P, Sukumar A, Patil M, Renu K, Dey A, Vellingiri B, George A, Ganesan R. Implications of cancer stem cells in diabetes and pancreatic cancer. Life Sci 2022; 312:121211. [PMID: 36414089 DOI: 10.1016/j.lfs.2022.121211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
This review provides a detailed study of pancreatic cancer (PC) and the implication of different types of cancers concerning diabetes. The combination of anti-diabetic drugs with other anti-cancer drugs and phytochemicals can help prevent and treat this disease. PC cancer stem cells (CSCs) and how they migrate and develop into malignant tumors are discussed. A detailed explanation of the different mechanisms of diabetes development, which can enhance the pancreatic CSCs' proliferation by increasing the IGF factor levels, epigenetic modifications, DNA damage, and the influence of lifestyle factors like obesity, and inflammation, has been discussed. It also explains how cancer due to diabetes is associated with high mortality rates. One of the well-known diabetic drugs, metformin, can be combined with other anti-cancer drugs and prevent the development of PC and has been taken as one of the prime focus in this review. Overall, this paper provides insight into the relationship between diabetes and PC and the methods that can be employed to diagnose this disease at an earlier stage successfully.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Pragya Bradu
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Aarthi Sukumar
- Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Megha Patil
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, 700073, India
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda - 151401, Punjab, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, 680005, Kerala, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, 24252, Republic of Korea
| |
Collapse
|
7
|
Liu X, Su Q, Zhang X, Yang W, Ning J, Jia K, Xin J, Li H, Yu L, Liao Y, Zhang D. Recent Advances of Organ-on-a-Chip in Cancer Modeling Research. BIOSENSORS 2022; 12:bios12111045. [PMID: 36421163 PMCID: PMC9688857 DOI: 10.3390/bios12111045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 05/27/2023]
Abstract
Although many studies have focused on oncology and therapeutics in cancer, cancer remains one of the leading causes of death worldwide. Due to the unclear molecular mechanism and complex in vivo microenvironment of tumors, it is challenging to reveal the nature of cancer and develop effective therapeutics. Therefore, the development of new methods to explore the role of heterogeneous TME in individual patients' cancer drug response is urgently needed and critical for the effective therapeutic management of cancer. The organ-on-chip (OoC) platform, which integrates the technology of 3D cell culture, tissue engineering, and microfluidics, is emerging as a new method to simulate the critical structures of the in vivo tumor microenvironment and functional characteristics. It overcomes the failure of traditional 2D/3D cell culture models and preclinical animal models to completely replicate the complex TME of human tumors. As a brand-new technology, OoC is of great significance for the realization of personalized treatment and the development of new drugs. This review discusses the recent advances of OoC in cancer biology studies. It focuses on the design principles of OoC devices and associated applications in cancer modeling. The challenges for the future development of this field are also summarized in this review. This review displays the broad applications of OoC technique and has reference value for oncology development.
Collapse
Affiliation(s)
- Xingxing Liu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Qiuping Su
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Xiaoyu Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| | - Wenjian Yang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| | - Junhua Ning
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Kangle Jia
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Jinlan Xin
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Huanling Li
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Longfei Yu
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510075, China
| | - Yuheng Liao
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| | - Diming Zhang
- Research Center for Intelligent Sensing Systems, Zhejiang Laboratory, Hangzhou 311100, China
| |
Collapse
|
8
|
Shin HS, Thakore A, Tada Y, Pedroza AJ, Ikeda G, Chen IY, Chan D, Jaatinen KJ, Yajima S, Pfrender EM, Kawamura M, Yang PC, Wu JC, Appel EA, Fischbein MP, Woo YJ, Shudo Y. Angiogenic stem cell delivery platform to augment post-infarction neovasculature and reverse ventricular remodeling. Sci Rep 2022; 12:17605. [PMID: 36266453 PMCID: PMC9584918 DOI: 10.1038/s41598-022-21510-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/28/2022] [Indexed: 01/13/2023] Open
Abstract
Many cell-based therapies are challenged by the poor localization of introduced cells and the use of biomaterial scaffolds with questionable biocompatibility or bio-functionality. Endothelial progenitor cells (EPCs), a popular cell type used in cell-based therapies due to their robust angiogenic potential, are limited in their therapeutic capacity to develop into mature vasculature. Here, we demonstrate a joint delivery of human-derived endothelial progenitor cells (EPC) and smooth muscle cells (SMC) as a scaffold-free, bi-level cell sheet platform to improve ventricular remodeling and function in an athymic rat model of myocardial infarction. The transplanted bi-level cell sheet on the ischemic heart provides a biomimetic microenvironment and improved cell-cell communication, enhancing cell engraftment and angiogenesis, thereby improving ventricular remodeling. Notably, the increased density of vessel-like structures and upregulation of biological adhesion and vasculature developmental genes, such as Cxcl12 and Notch3, particularly in the ischemic border zone myocardium, were observed following cell sheet transplantation. We provide compelling evidence that this SMC-EPC bi-level cell sheet construct can be a promising therapy to repair ischemic cardiomyopathy.
Collapse
Affiliation(s)
- Hye Sook Shin
- Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Akshara Thakore
- Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Yuko Tada
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Albert J Pedroza
- Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Gentaro Ikeda
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Ian Y Chen
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Doreen Chan
- Department of Chemistry, Department of Materials Science & Engineering, Stanford University, Stanford University, Stanford, USA
| | - Kevin J Jaatinen
- Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Shin Yajima
- Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Eric M Pfrender
- Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Masashi Kawamura
- Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Phillip C Yang
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Joseph C Wu
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Eric A Appel
- Department of Materials Science & Engineering, Department of Bioengineering, Department of Pediatric (Endocrinology), Stanford University, Stanford, USA
| | - Michael P Fischbein
- Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - YJoseph Woo
- Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA
| | - Yasuhiro Shudo
- Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, USA.
| |
Collapse
|
9
|
Circulating Angiogenic Markers in Gastroenteropancreatic Neuroendocrine Neoplasms: A Systematic Review. Curr Issues Mol Biol 2022; 44:4001-4014. [PMID: 36135186 PMCID: PMC9497497 DOI: 10.3390/cimb44090274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Neuroendocrine neoplasms are a heterogeneous group of tumors that raise challenges in terms of diagnosis, treatment and monitoring. Despite continuous efforts, no biomarker has showed satisfying accuracy in predicting outcome or response to treatment. Methods: We conducted a systematic review to determine relevant circulating biomarkers for angiogenesis in neuroendocrine tumors. We searched three databases (Pubmed, Embase, Web of Science) using the keywords “neuroendocrine” and “biomarkers”, plus specific biomarkers were searched by full and abbreviated name. From a total of 2448 publications, 11 articles met the eligibility criteria. Results: VEGF is the most potent and the most studied angiogenic molecule, but results were highly controversial. Placental growth factor, Angiopoietin 2 and IL-8 were the most consistent markers in predicting poor outcome and aggressive disease behavior. Conclusions: There is no robust evidence so far to sustain the use of angiogenic biomarkers in routine practice, although the results show promising leads.
Collapse
|
10
|
Aberrant transcription factors in the cancers of the pancreas. Semin Cancer Biol 2022; 86:28-45. [PMID: 36058426 DOI: 10.1016/j.semcancer.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/15/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022]
Abstract
Transcription factors (TFs) are essential for proper activation of gene set during the process of organogenesis, differentiation, lineage specificity. Reactivation or dysregulation of TFs regulatory networks could lead to deformation of organs, diseases including various malignancies. Currently, understanding the mechanism of oncogenesis became necessity for the development of targeted therapeutic strategy for different cancer types. It is evident that many TFs go awry in cancers of the pancreas such as pancreatic ductal adenocarcinoma (PDAC) and pancreatic neuroendocrine neoplasms (PanNENs). These mutated or dysregulated TFs abnormally controls various signaling pathways in PDAC and PanNENs including RTK, PI3K-PTEN-AKT-mTOR, JNK, TGF-β/SMAD, WNT/β-catenin, SHH, NOTCH and VEGF which in turn regulate different hallmarks of cancer. Aberrant regulation of such pathways have been linked to the initiation, progression, metastasis, and resistance in pancreatic cancer. As of today, a number of TFs has been identified as crucial regulators of pancreatic cancer and a handful of them shown to have potential as therapeutic targets in pre-clinical and clinical settings. In this review, we have summarized the current knowledge on the role and therapeutic usefulness of TFs in PDAC and PanNENs.
Collapse
|
11
|
Helicobacter pylori promotes gastric cancer progression through the tumor microenvironment. Appl Microbiol Biotechnol 2022; 106:4375-4385. [PMID: 35723694 DOI: 10.1007/s00253-022-12011-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 02/05/2023]
Abstract
Gastric cancer (GC) is a leading type of cancer. Although immunotherapy has yielded important recent progress in the treatment of GC, the prognosis remains poor due to drug resistance and frequent recurrence and metastasis. There are multiple known risk factors for GC, and infection with Helicobacter pylori is one of the most significant. The mechanisms underlying the associations of H. pylori and GC remain unclear, but it is well known that infection can alter the tumor microenvironment (TME). The TME and the tumor itself constitute a complete ecosystem, and the TME plays critical roles in tumor progression, metastasis, and drug resistance. H. pylori infection can act synergistically with the TME to cause DNA damage and abnormal expression of multiple genes and activation of signaling pathways. It also modulates the host immune system in ways that enhance the proliferation and metastasis of tumor cells, promote epithelial-mesenchymal transition, inhibit apoptosis, and provide energy support for tumor growth. This review elaborates myriad ways that H. pylori infections promote the occurrence and progression of GC by influencing the TME, providing new directions for immunotherapy treatments for this important disease. KEY POINTS: • H. pylori infections cause DNA damage and affect the repair of the TME to DNA damage. • H. pylori infections regulate oncogenes or activate the oncogenic signaling pathways. • H. pylori infections modulate the immune system within the TME.
Collapse
|
12
|
Wu N, Cheng CJ, Zhong JJ, He JC, Zhang ZS, Wang ZG, Sun XC, Liu H. Essential role of MALAT1 in reducing traumatic brain injury. Neural Regen Res 2022; 17:1776-1784. [PMID: 35017438 PMCID: PMC8820691 DOI: 10.4103/1673-5374.332156] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
As a highly evolutionary conserved long non-coding RNA, metastasis associated lung adenocarcinoma transcript 1 (MALAT1) was first demonstrated to be related to lung tumor metastasis by promoting angiogenesis. To investigate the role of MALAT1 in traumatic brain injury, we established mouse models of controlled cortical impact and cell models of oxygen-glucose deprivation to mimic traumatic brain injury in vitro and in vivo. The results revealed that MALAT1 silencing in vitro inhibited endothelial cell viability and tube formation but increased migration. In MALAT1-deficient mice, endothelial cell proliferation in the injured cortex, functional vessel density and cerebral blood flow were reduced. Bioinformatic analyses and RNA pull-down assays validated enhancer of zeste homolog 2 (EZH2) as a downstream factor of MALAT1 in endothelial cells. Jagged-1, the Notch homolog 1 (NOTCH1) agonist, reversed the MALAT1 deficiency-mediated impairment of angiogenesis. Taken together, our results suggest that MALAT1 controls the key processes of angiogenesis following traumatic brain injury in an EZH2/NOTCH1-dependent manner.
Collapse
Affiliation(s)
- Na Wu
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chong-Jie Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian-Jun Zhong
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun-Chi He
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhao-Si Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Gang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao-Chuan Sun
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Han Liu
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing; Department of Neurosurgery, Qilu Hospital of Shandong University (Qingdao Campus), Qingdao, Shandong Province, China
| |
Collapse
|
13
|
Ren B, Ramchandran R, Yang X. Editorial: Molecular Mechanisms and Signaling in Endothelial Cell Biology and Vascular Heterogeneity. Front Cell Dev Biol 2021; 9:821100. [PMID: 34977049 PMCID: PMC8718799 DOI: 10.3389/fcell.2021.821100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/14/2022] Open
Affiliation(s)
- Bin Ren
- Department of Surgery, O’Neal Comprehensive Cancer Center, and Comprehensive Cardiovascular Center, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Bin Ren,
| | - Ramani Ramchandran
- Department of Pediatrics and Children’s Research Institute, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Xiaofeng Yang
- Department of Cardiovascular Sciences, Centers for Cardiovascular Research and Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
14
|
Liang QQ, Liu L. Application of vascular endothelial cells in stem cell medicine. World J Clin Cases 2021; 9:10765-10780. [PMID: 35047589 PMCID: PMC8678855 DOI: 10.12998/wjcc.v9.i35.10765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
Stem cell medicine is gaining momentum in the development of therapy for various end-stage diseases. The search for new seed cells and exploration of their application prospects are topics of interest in stem cell medicine. In recent years, vascular endothelial cells (VECs) have attracted wide attention from scholars. VECs, which form the inner lining of blood vessels, are critically involved in many physiological functions, including permeability, angiogenesis, blood pressure regulation, immunity, and pathological development, such as atherosclerosis and malignant tumors. VECs have significant therapeutic effects and broad application prospects in stem cell medicine for the treatment of various refractory diseases, including atherosclerosis, myocardial infarction, diabetic complications, hypertension, coronavirus disease 2019, and malignant tumors. On the one hand, VECs and their extracellular vesicles can be directly used for the treatment of these diseases. On the other hand, VECs can be used as therapeutic targets for some diseases. However, there are still some obstacles to the use of VECs in stem cell medicine. In this review, advances in the applications and challenges that come with the use of these cells are discussed.
Collapse
Affiliation(s)
- Qing-Qing Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lei Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
15
|
Muñoz R, Girotti A, Hileeto D, Arias FJ. Metronomic Anti-Cancer Therapy: A Multimodal Therapy Governed by the Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13215414. [PMID: 34771577 PMCID: PMC8582362 DOI: 10.3390/cancers13215414] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Metronomic chemotherapy with different mechanisms of action against cancer cells and their microenvironment represents an exceptional holistic cancer treatment. Each type of tumor has its own characteristics, including each individual tumor in each patient. Understanding the complexity of the dynamic interactions that take place between tumor and stromal cells and the microenvironment in tumor progression and metastases, as well as the response of the host and the tumor itself to anticancer therapy, will allow therapeutic actions with long-lasting effects to be implemented using metronomic regimens. This study aims to highlight the complexity of cellular interactions in the tumor microenvironment and summarize some of the preclinical and clinical results that explain the multimodality of metronomic therapy, which, together with its low toxicity, supports an inhibitory effect on the primary tumor and metastases. We also highlight the possible use of nano-therapeutic agents as good partners for metronomic chemotherapy. Abstract The concept of cancer as a systemic disease, and the therapeutic implications of this, has gained special relevance. This concept encompasses the interactions between tumor and stromal cells and their microenvironment in the complex setting of primary tumors and metastases. These factors determine cellular co-evolution in time and space, contribute to tumor progression, and could counteract therapeutic effects. Additionally, cancer therapies can induce cellular and molecular responses in the tumor and host that allow them to escape therapy and promote tumor progression. In this study, we describe the vascular network, tumor-infiltrated immune cells, and cancer-associated fibroblasts as sources of heterogeneity and plasticity in the tumor microenvironment, and their influence on cancer progression. We also discuss tumor and host responses to the chemotherapy regimen, at the maximum tolerated dose, mainly targeting cancer cells, and a multimodal metronomic chemotherapy approach targeting both cancer cells and their microenvironment. In a combination therapy context, metronomic chemotherapy exhibits antimetastatic efficacy with low toxicity but is not exempt from resistance mechanisms. As such, a better understanding of the interactions between the components of the tumor microenvironment could improve the selection of drug combinations and schedules, as well as the use of nano-therapeutic agents against certain malignancies.
Collapse
Affiliation(s)
- Raquel Muñoz
- Department of Biochemistry, Physiology and Molecular Biology, University of Valladolid, Paseo de Belén, 47011 Valladolid, Spain
- Smart Biodevices for NanoMed Group, University of Valladolid, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
- Correspondence:
| | - Alessandra Girotti
- BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid, CIBER-BBN, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
| | - Denise Hileeto
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON N2L 361, Canada;
| | - Francisco Javier Arias
- Smart Biodevices for NanoMed Group, University of Valladolid, LUCIA Building, Paseo de Belén, 47011 Valladolid, Spain;
| |
Collapse
|
16
|
Hunyenyiwa T, Hendee K, Matus K, Kyi P, Mammoto T, Mammoto A. Obesity Inhibits Angiogenesis Through TWIST1-SLIT2 Signaling. Front Cell Dev Biol 2021; 9:693410. [PMID: 34660572 PMCID: PMC8511494 DOI: 10.3389/fcell.2021.693410] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/30/2021] [Indexed: 01/22/2023] Open
Abstract
Angiogenesis is required for functional adipose tissue maintenance, remodeling, and expansion. Physiologically balanced adipogenesis and angiogenesis are inhibited in subcutaneous adipose tissue in obese humans. However, the mechanism by which angiogenesis is inhibited in obese adipose tissue is not fully understood. Transcription factor TWIST1 controls angiogenesis and vascular function. TWIST1 expression is lower in obese human adipose tissues. Here, we have demonstrated that angiogenesis is inhibited in endothelial cells (ECs) isolated from adipose tissues of obese humans through TWIST1-SLIT2 signaling. The levels of TWIST1 and SLIT2 are lower in ECs isolated from obese human adipose tissues compared to those from lean tissues. Knockdown of TWIST1 in lean human adipose ECs decreases, while overexpression of TWIST1 in obese adipose ECs restores SLIT2 expression. DNA synthesis and cell migration are inhibited in obese adipose ECs and the effects are restored by TWIST1 overexpression. Obese adipose ECs also inhibit blood vessel formation in the gel subcutaneously implanted in mice, while these effects are restored when gels are mixed with SLIT2 or supplemented with ECs overexpressing TWIST1. These findings suggest that obesity impairs adipose tissue angiogenesis through TWIST1-SLIT2 signaling.
Collapse
Affiliation(s)
- Tendai Hunyenyiwa
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kathryn Hendee
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kienna Matus
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Priscilla Kyi
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tadanori Mammoto
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Akiko Mammoto
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
17
|
Jiang Y, Guo Y, Hao J, Guenter R, Lathia J, Beck AW, Hattaway R, Hurst D, Wang QJ, Liu Y, Cao Q, Krontiras H, Chen H, Silverstein R, Ren B. Development of an arteriolar niche and self-renewal of breast cancer stem cells by lysophosphatidic acid/protein kinase D signaling. Commun Biol 2021; 4:780. [PMID: 34168243 PMCID: PMC8225840 DOI: 10.1038/s42003-021-02308-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/04/2021] [Indexed: 02/05/2023] Open
Abstract
Breast cancer stem cells (BCSCs) are essential for cancer growth, metastasis and recurrence. The regulatory mechanisms of BCSC interactions with the vascular niche within the tumor microenvironment (TME) and their self-renewal are currently under extensive investigation. We have demonstrated the existence of an arteriolar niche in the TME of human BC tissues. Intriguingly, BCSCs tend to be enriched within the arteriolar niche in human estrogen receptor positive (ER+) BC and bi-directionally interact with arteriolar endothelial cells (ECs). Mechanistically, this interaction is driven by the lysophosphatidic acid (LPA)/protein kinase D (PKD-1) signaling pathway, which promotes both arteriolar differentiation of ECs and self-renewal of CSCs likely via differential regulation of CD36 transcription. This study indicates that CSCs may enjoy blood perfusion to maintain their stemness features. Targeting the LPA/PKD-1 -CD36 signaling pathway may have therapeutic potential to curb tumor progression by disrupting the arteriolar niche and effectively eliminating CSCs.
Collapse
Affiliation(s)
- Yinan Jiang
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Yichen Guo
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
- Biomedical Engineering, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Jinjin Hao
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Rachael Guenter
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Justin Lathia
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Adam W Beck
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Reagan Hattaway
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Douglas Hurst
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Qiming Jane Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yehe Liu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
| | - Qi Cao
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Helen Krontiras
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Herbert Chen
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
- Biomedical Engineering, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Roy Silverstein
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, WI, USA
| | - Bin Ren
- Department of Surgery, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA.
- Biomedical Engineering, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA.
- O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
18
|
Akil A, Gutiérrez-García AK, Guenter R, Rose JB, Beck AW, Chen H, Ren B. Notch Signaling in Vascular Endothelial Cells, Angiogenesis, and Tumor Progression: An Update and Prospective. Front Cell Dev Biol 2021; 9:642352. [PMID: 33681228 PMCID: PMC7928398 DOI: 10.3389/fcell.2021.642352] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
The Notch signaling pathway plays an essential role in a wide variety of biological processes including cell fate determination of vascular endothelial cells and the regulation of arterial differentiation and angiogenesis. The Notch pathway is also an essential regulator of tumor growth and survival by functioning as either an oncogene or a tumor suppressor in a context-dependent manner. Crosstalk between the Notch and other signaling pathways is also pivotal in tumor progression by promoting cancer cell growth, migration, invasion, metastasis, tumor angiogenesis, and the expansion of cancer stem cells (CSCs). In this review, we provide an overview and update of Notch signaling in endothelial cell fate determination and functioning, angiogenesis, and tumor progression, particularly in the development of CSCs and therapeutic resistance. We further summarize recent studies on how endothelial signaling crosstalk with the Notch pathway contributes to tumor angiogenesis and the development of CSCs, thereby providing insights into vascular biology within the tumor microenvironment and tumor progression.
Collapse
Affiliation(s)
- Abdellah Akil
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ana K. Gutiérrez-García
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Rachael Guenter
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - J. Bart Rose
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Adam W. Beck
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Herbert Chen
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Bin Ren
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
19
|
A Minimal PKPD Interaction Model for Evaluating Synergy Effects of Combined NSCLC Therapies. J Clin Med 2020; 9:jcm9061832. [PMID: 32545464 PMCID: PMC7356515 DOI: 10.3390/jcm9061832] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023] Open
Abstract
This paper introduces a mathematical compartmental formulation of dose-effect synergy modelling for multiple therapies in non small cell lung cancer (NSCLC): antiangiogenic, immuno- and radiotherapy. The model formulates the dose-effect relationship in a unified context, with tumor proliferating rates and necrotic tissue volume progression as a function of therapy management profiles. The model accounts for inter- and intra-response variability by using surface model response terms. Slow acting peripheral compartments such as fat and muscle for drug distribution are not modelled. This minimal pharmacokinetic-pharmacodynamic (PKPD) model is evaluated with reported data in mice from literature. A systematic analysis is performed by varying only radiotherapy profiles, while antiangiogenesis and immunotherapy are fixed to their initial profiles. Three radiotherapy protocols are selected from literature: (1) a single dose 5 Gy once weekly; (2) a dose of 5 Gy × 3 days followed by a 2 Gy × 3 days after two weeks and (3) a dose of 5 Gy + 2 × 0.075 Gy followed after two weeks by a 2 Gy + 2 × 0.075 Gy dose. A reduction of 28% in tumor end-volume after 30 days was observed in Protocol 2 when compared to Protocol 1. No changes in end-volume were observed between Protocol 2 and Protocol 3, this in agreement with other literature studies. Additional analysis on drug interaction suggested that higher synergy among drugs affects up to three-fold the tumor volume (increased synergy leads to significantly lower growth ratio and lower total tumor volume). Similarly, changes in patient response indicated that increased drug resistance leads to lower reduction rates of tumor volumes, with end-volume increased up to 25–30%. In conclusion, the proposed minimal PKPD model has physiological value and can be used to study therapy management protocols and is an aiding tool in the clinical decision making process. Although developed with data from mice studies, the model is scalable to NSCLC patients.
Collapse
|
20
|
Teleanu RI, Chircov C, Grumezescu AM, Teleanu DM. Tumor Angiogenesis and Anti-Angiogenic Strategies for Cancer Treatment. J Clin Med 2019; 9:E84. [PMID: 31905724 PMCID: PMC7020037 DOI: 10.3390/jcm9010084] [Citation(s) in RCA: 287] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
Angiogenesis is the process through which novel blood vessels are formed from pre-existing ones and it is involved in both physiological and pathological processes of the body. Furthermore, tumor angiogenesis is a crucial factor associated with tumor growth, progression, and metastasis. In this manner, there has been a great interest in the development of anti-angiogenesis strategies that could inhibit tumor vascularization. Conventional approaches comprise the administration of anti-angiogenic drugs that target and block the activity of proangiogenic factors. However, as their efficacy is still a matter of debate, novel strategies have been focusing on combining anti-angiogenic agents with chemotherapy or immunotherapy. Moreover, nanotechnology has also been investigated for the potential of nanomaterials to target and release anti-angiogenic drugs at specific sites. The aim of this paper is to review the mechanisms involved in angiogenesis and tumor vascularization and provide an overview of the recent trends in anti-angiogenic strategies for cancer therapy.
Collapse
Affiliation(s)
- Raluca Ioana Teleanu
- “Victor Gomoiu” Clinical Children’s Hospital, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Cristina Chircov
- Faculty of Engineering in Foreign Languages, 060042 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Daniel Mihai Teleanu
- Emergency University Hospital, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| |
Collapse
|