1
|
Hernandez J, Rodriguez JB, Trak-Fellermeier MA, Galvan R, Macchi A, Martinez-Motta P, Palacios C. Suboptimal vitamin D status and overweight/obesity are associated with gut integrity and inflammation in minority children and adolescents: A cross-sectional analysis from the MetA-bone trial. Nutr Res 2024; 133:13-21. [PMID: 39662375 DOI: 10.1016/j.nutres.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024]
Abstract
Preserving gut integrity is essential to preventing the development of chronic diseases. Several factors are associated with gut integrity and inflammation in adults. However, there is limited evidence in healthy children. This study evaluated the factors associated with gut integrity and inflammation in healthy children participating in the MetA-Bone trial. We hypothesized that age, sex, race/ethnicity, diet, vitamin D, and body composition will be associated with gut integrity and inflammation. Socio-demographic variables were collected with a questionnaire. Measures included markers of gut integrity (Intestinal Fatty Acid Binding Protein; I-FABP), and inflammation (IL-17 and calprotectin) determined by ELISA in 24-h urine and serum; serum 25(OH)D concentration (commercial lab), BMI percentile, and diet (24-h recalls). Analyses included descriptive statistics, chi-square, and adjusted logistic regressions. Participants (n=138) median age was 12.4 (11.1-13.3), 53.6% were male, 9.4% were Black/African American, and 71.1% were Hispanic/Latino. Children with suboptimal vitamin D were 3.35 times more likely to present gut integrity damage (elevated I-FABP) than those with optimal status (P = .005). Overweight/obesity and fructose intake were associated with inflammation (elevated calprotectin) (P < .05). Those with lower gut integrity damage had lower odds of having higher inflammation (P = .021). Other factors were not associated with inflammation. Suboptimal vitamin D status, overweight/obesity and inflammation may compromise the gut integrity in healthy children, suggesting an impairment on the intestinal barrier repair system. More research with a longitudinal design is needed to gain a deeper understanding of the role of additional factors linked to gut integrity and inflammation in healthy children.
Collapse
Affiliation(s)
- Jacqueline Hernandez
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, USA.
| | - Jose Bastida Rodriguez
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, USA
| | - Maria Angelica Trak-Fellermeier
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, USA
| | - Rodolfo Galvan
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, USA
| | - Alison Macchi
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, USA
| | - Preciosa Martinez-Motta
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, USA
| | - Cristina Palacios
- Department of Dietetics and Nutrition, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, USA
| |
Collapse
|
2
|
Heinzel S, Jureczek J, Kainulainen V, Nieminen AI, Suenkel U, von Thaler AK, Kaleta C, Eschweiler GW, Brockmann K, Aho VTE, Auvinen P, Maetzler W, Berg D, Scheperjans F. Elevated fecal calprotectin is associated with gut microbial dysbiosis, altered serum markers and clinical outcomes in older individuals. Sci Rep 2024; 14:13513. [PMID: 38866914 PMCID: PMC11169261 DOI: 10.1038/s41598-024-63893-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024] Open
Abstract
Fecal calprotectin is an established marker of gut inflammation in inflammatory bowel disease (IBD). Elevated levels of fecal calprotectin as well as gut microbial dysbiosis have also been observed in other clinical conditions. However, systemic and multi-omics alterations linked to elevated fecal calprotectin in older individuals remain unclear. This study comprehensively investigated the relationship between fecal calprotectin levels, gut microbiome composition, serum inflammation and targeted metabolomics markers, and relevant lifestyle and medical data in a large sample of older individuals (n = 735; mean age ± SD: 68.7 ± 6.3) from the TREND cohort study. Low (0-50 μg/g; n = 602), moderate (> 50-100 μg/g; n = 64) and high (> 100 μg/g; n = 62) fecal calprotectin groups were stratified. Several pro-inflammatory gut microbial genera were significantly increased and short-chain fatty acid producing genera were decreased in high vs. low calprotectin groups. In serum, IL-17C, CCL19 and the toxic metabolite indoxyl sulfate were increased in high vs. low fecal calprotectin groups. These changes were partially mediated by the gut microbiota. Moreover, the high fecal calprotectin group showed increased BMI and a higher disease prevalence of heart attack and obesity. Our findings contribute to the understanding of fecal calprotectin as a marker of gut dysbiosis and its broader systemic and clinical implications in older individuals.
Collapse
Affiliation(s)
- Sebastian Heinzel
- Department of Neurology, University Medical Centre Schleswig-Holstein (UKSH), Kiel, Germany.
- Institute of Medical Informatics and Statistics, University Medical Centre Schleswig-Holstein (UKSH), Kiel, Germany.
- Department of Neurology, University Medical Centre Schleswig-Holstein, Kiel University, Arnold-Heller-Straße 3, 24105, Kiel, Germany.
| | - Jenna Jureczek
- Department of Neurology, University Medical Centre Schleswig-Holstein (UKSH), Kiel, Germany
- Institute of Medical Informatics and Statistics, University Medical Centre Schleswig-Holstein (UKSH), Kiel, Germany
| | - Veera Kainulainen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
- Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
| | - Anni I Nieminen
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Ulrike Suenkel
- Department of Psychiatry and Psychotherapy, German Center of Mental Health, Tübingen University Hospital, Tübingen, Germany
| | | | - Christoph Kaleta
- Institute of Experimental Medicine, Christian-Albrechts-University Kiel and University Medical Center Schleswig-Holstein (UKSH), Kiel, Germany
| | - Gerhard W Eschweiler
- Department of Psychiatry and Psychotherapy, German Center of Mental Health, Tübingen University Hospital, Tübingen, Germany
- Geriatric Center, University Hospital Tübingen, Tübingen, Germany
| | - Kathrin Brockmann
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, German Center for Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Velma T E Aho
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
- Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Walter Maetzler
- Department of Neurology, University Medical Centre Schleswig-Holstein (UKSH), Kiel, Germany
| | - Daniela Berg
- Department of Neurology, University Medical Centre Schleswig-Holstein (UKSH), Kiel, Germany
| | - Filip Scheperjans
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
- Department of Clinical Neurosciences (Neurology), University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Plana E, Oto J, Herranz R, Medina P, Cana F, Miralles M. Calprotectin as a new inflammatory marker of abdominal aortic aneurysm: A pilot study. Vasc Med 2024; 29:189-199. [PMID: 38457311 DOI: 10.1177/1358863x241231494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
INTRODUCTION Abdominal aortic aneurysm (AAA) is a relevant clinical problem due to the risk of rupture of progressively dilated infrarenal aorta. It is characterized by degradation of elastic fibers, extracellular matrix, and inflammation of the arterial wall. Though neutrophil infiltration is a known feature of AAA, markers of neutrophil activation are scarcely analyzed; hence, the main objective of this study. METHODS Plasma levels of main neutrophil activation markers were quantified in patients with AAA and a double control group (CTL) formed by healthy volunteers (HV) and patients with severe atherosclerosis submitted for carotid endarterectomy (CE). Calprotectin, a cytoplasmic neutrophil protein, was quantified, by Western blot, in arterial tissue samples from patients with AAA and organ donors. Colocalization of calprotectin and neutrophil elastase was assessed by immunofluorescence. RESULTS Plasma calprotectin and IL-6 were both elevated in patients with AAA compared with CTL (p ⩽ 0.0001) and a strong correlation was found between both molecules (p < 0.001). This difference was maintained when comparing with HV and CE for calprotectin but only with HV for IL-6. Calprotectin was also elevated in arterial tissue samples from patients with AAA compared with organ donors (p < 0.0001), and colocalized with neutrophils in the arterial wall. CONCLUSIONS Circulating calprotectin could be a specific AAA marker and a potential therapeutical target. Calprotectin is related to inflammation and neutrophil activation in arterial wall and independent of other atherosclerotic events.
Collapse
Affiliation(s)
- Emma Plana
- Angiology and Vascular Surgery Service, La Fe University and Polytechnic Hospital, Valencia, Spain
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Julia Oto
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Raquel Herranz
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Pilar Medina
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Fernando Cana
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Manuel Miralles
- Angiology and Vascular Surgery Service, La Fe University and Polytechnic Hospital, Valencia, Spain
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
- Department of Surgery, University of Valencia, Valencia, Spain
| |
Collapse
|
4
|
Prochazkova P, Sonka K, Roubalova R, Jezkova J, Nevsimalova S, Buskova J, Merkova R, Dvorakova T, Prihodova I, Dostalova S, Tlaskalova-Hogenova H. Investigation of anti-neuronal antibodies and disparity in central hypersomnias. Sleep Med 2024; 113:220-231. [PMID: 38056084 DOI: 10.1016/j.sleep.2023.11.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/06/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
STUDY OBJECTIVES Microbial antigens can elicit an immune response leading to the production of autoantibodies cross-reacting with autoantigens. Still, their clinical significance in human sera in the context of brain diseases is unclear. Therefore, assessment of natural autoantibodies reacting with their neuropeptides may elucidate the autoimmune etiology of central hypersomnias. The study aims to determine whether serum autoantibody levels differ in patients with different types of central hypersomnias (narcolepsy type 1 and 2, NT1 and NT2; idiopathic hypersomnia, IH) and healthy controls and if the differences could suggest the participation of autoantibodies in disease pathogenesis. METHODS Sera from 91 patients with NT1, 27 with NT2, 46 with IH, and 50 healthy controls were examined for autoantibodies against assorted neuropeptides. Participants were screened using questionnaires related to sleep disorders, quality of life, and mental health conditions. In addition, serum biochemical parameters and biomarkers of microbial penetration through the intestinal wall were determined. RESULTS A higher prevalence of autoantibodies against neuropeptides was observed only for alpha-melanocytes-stimulating hormone (α-MSH) and neuropeptide glutamic acid-isoleucine (NEI), which differed slightly among diagnoses. Patients with both types of narcolepsy exhibited signs of microbial translocation through the gut barrier. According to the questionnaires, patients diagnosed with NT2 or IH had subjectively worse life quality than patients with NT1. Patients displayed significantly lower levels of bilirubin and creatinine and slightly higher alkaline phosphatase values than healthy controls. CONCLUSIONS Overall, serum anti-neuronal antibodies prevalence is rare, suggesting that their participation in the pathophysiology of concerned sleep disorders is insignificant. Moreover, their levels vary slightly between diagnoses indicating no major diagnostic significance.
Collapse
Affiliation(s)
- Petra Prochazkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | - Karel Sonka
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Radka Roubalova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Janet Jezkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic; First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Sona Nevsimalova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Jitka Buskova
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Radana Merkova
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tereza Dvorakova
- National Institute of Mental Health, Klecany, Czech Republic; Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Iva Prihodova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Simona Dostalova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - Helena Tlaskalova-Hogenova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
5
|
Drouard G, Hagenbeek FA, Whipp AM, Pool R, Hottenga JJ, Jansen R, Hubers N, Afonin A, Willemsen G, de Geus EJC, Ripatti S, Pirinen M, Kanninen KM, Boomsma DI, van Dongen J, Kaprio J. Longitudinal multi-omics study reveals common etiology underlying association between plasma proteome and BMI trajectories in adolescent and young adult twins. BMC Med 2023; 21:508. [PMID: 38129841 PMCID: PMC10740308 DOI: 10.1186/s12916-023-03198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND The influence of genetics and environment on the association of the plasma proteome with body mass index (BMI) and changes in BMI remains underexplored, and the links to other omics in these associations remain to be investigated. We characterized protein-BMI trajectory associations in adolescents and adults and how these connect to other omics layers. METHODS Our study included two cohorts of longitudinally followed twins: FinnTwin12 (N = 651) and the Netherlands Twin Register (NTR) (N = 665). Follow-up comprised 4 BMI measurements over approximately 6 (NTR: 23-27 years old) to 10 years (FinnTwin12: 12-22 years old), with omics data collected at the last BMI measurement. BMI changes were calculated in latent growth curve models. Mixed-effects models were used to quantify the associations between the abundance of 439 plasma proteins with BMI at blood sampling and changes in BMI. In FinnTwin12, the sources of genetic and environmental variation underlying the protein abundances were quantified by twin models, as were the associations of proteins with BMI and BMI changes. In NTR, we investigated the association of gene expression of genes encoding proteins identified in FinnTwin12 with BMI and changes in BMI. We linked identified proteins and their coding genes to plasma metabolites and polygenic risk scores (PRS) applying mixed-effects models and correlation networks. RESULTS We identified 66 and 14 proteins associated with BMI at blood sampling and changes in BMI, respectively. The average heritability of these proteins was 35%. Of the 66 BMI-protein associations, 43 and 12 showed genetic and environmental correlations, respectively, including 8 proteins showing both. Similarly, we observed 7 and 3 genetic and environmental correlations between changes in BMI and protein abundance, respectively. S100A8 gene expression was associated with BMI at blood sampling, and the PRG4 and CFI genes were associated with BMI changes. Proteins showed strong connections with metabolites and PRSs, but we observed no multi-omics connections among gene expression and other omics layers. CONCLUSIONS Associations between the proteome and BMI trajectories are characterized by shared genetic, environmental, and metabolic etiologies. We observed few gene-protein pairs associated with BMI or changes in BMI at the proteome and transcriptome levels.
Collapse
Affiliation(s)
- Gabin Drouard
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Fiona A Hagenbeek
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Alyce M Whipp
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Jouke Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Rick Jansen
- Department of Psychiatry, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, The Netherlands
| | - Nikki Hubers
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - Aleksei Afonin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Katja M Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
6
|
Serrano E, Bastard JP, Trystram L, Fellahi S, Soula HA, Thenet S, Oppert JM, Clément K, Poitou C, Genser L. Serum Versus Fecal Calprotectin Levels in Patients with Severe Obesity Before and 6 Months After Roux-Y-Gastric Bypass: Report of the Prospective Leaky-Gut Study. Obes Surg 2023; 33:4017-4025. [PMID: 37924465 DOI: 10.1007/s11695-023-06911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023]
Abstract
INTRODUCTION Obesity is associated with low-grade inflammation, including intestinal inflammation based on fecal or serum calprotectin (FC-SC) measurement. Roux-en-Y gastric bypass (RYGB) improves obesity-related parameters. However, the association between FC-SC levels and postoperative course and the link with metabolic and inflammatory phenotypes before and after RYGB remains unclear. METHODS We determined SC levels in 48 patients before (T0) and 6 months after (T6M) RYGB. We then analyzed postoperative changes in FC-SC levels and the relationship with inflammation and metabolic status. RESULTS Twenty-three patients (48%) had elevated SC levels (˃2.9 μg/mL) at T0 and T6M. Six of 29 patients (20.7%) had elevated FC concentrations (>50 μg/g) at T0 vs. 16 of 17 patients (94.1%) at T6M (p=0.006). At T0, FC levels correlated with BMI (Rho=0.63; p=0.001) and systemic inflammation (CRP: Rho=0.66, p=0.0006; IL-6: Rho=0.48, p=0.03; haptoglobin: Rho=0.75; p= 0.0006). SC tended to be positively associated with triglyceride levels (Rho=0.34; p=0.08), BMI (Rho=0.34; p=0.08), and inflammatory markers (CRP: Rho=0.33; p=0.09; IL-6: Rho=0.36; p=0.06). FC levels were associated with increased jejunal IL-17+CD8+ T-cell densities (Rho:0.90; p=0.0002). FC and SC were correlated together at T0 (Rho=0.83; p<0.001) but not at T6M. At T6M, SC decreased by 53.6%, whereas FC increased by 79.7%. SC and FC were not associated with any of the variables studied at T6M. CONCLUSION FC is a surrogate marker of systemic and intestinal inflammation and adiposity, whereas SC only tends to correlate with systemic inflammation. At 6 months after RYGB, SC-based systemic inflammation decreased, whereas FC-based intestinal inflammation increased. FC and SC levels follow different trajectories and are unrelated to improvements following bariatric surgery.
Collapse
Affiliation(s)
- Ella Serrano
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches, NutriOmics, research unit, 91 boulevard de l'hôpital, Paris, France
| | - Jean-Philippe Bastard
- Département de Biochimie-Pharmacologie-Biologie Moléculaire-Génétique Médicale, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Créteil, France
- FHU-SENEC, INSERM U955 and Université Paris Est (UPEC), UMR U955, Faculté de Santé, Créteil, France
| | - Laurence Trystram
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Functional Coprology, Paris, France
| | - Soraya Fellahi
- Département de Biochimie-Pharmacologie-Biologie Moléculaire-Génétique Médicale, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Créteil, France
| | - Hedi A Soula
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches, NutriOmics, research unit, 91 boulevard de l'hôpital, Paris, France
| | - Sophie Thenet
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Paris Center for Microbiome Medicine (PaCeMM) FHU, APHP, EPHE, PSL University, F-75012, F-75014, Paris, France
| | - Jean-Michel Oppert
- Sorbonne Université, Department of Nutrition, Assistance Publique- Hôpitaux de Paris, AP-HP, Pitié Salpêtrière University Hospital, 75013, Paris, France
| | - Karine Clément
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches, NutriOmics, research unit, 91 boulevard de l'hôpital, Paris, France
- Sorbonne Université, Department of Nutrition, Assistance Publique- Hôpitaux de Paris, AP-HP, Pitié Salpêtrière University Hospital, 75013, Paris, France
| | - Christine Poitou
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches, NutriOmics, research unit, 91 boulevard de l'hôpital, Paris, France
- Sorbonne Université, Department of Nutrition, Assistance Publique- Hôpitaux de Paris, AP-HP, Pitié Salpêtrière University Hospital, 75013, Paris, France
| | - Laurent Genser
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches, NutriOmics, research unit, 91 boulevard de l'hôpital, Paris, France.
- Sorbonne Université, Department of Hepato-Biliary and Pancreatic Surgery, Assistance Publique- Hôpitaux de Paris, AP-HP, Pitié-Salpêtrière University Hospital, 47-83 boulevard de l'Hôpital, 75013, Paris, France.
| |
Collapse
|
7
|
Li G, Xu X, Yang L, Cai Y, Sun Y, Guo J, Lin Y, Hu Y, Chen M, Li H, Wu S. Exploring the association between circRNA expression and pediatric obesity based on a case-control study and related bioinformatics analysis. BMC Pediatr 2023; 23:561. [PMID: 37957626 PMCID: PMC10642011 DOI: 10.1186/s12887-023-04261-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/21/2023] [Indexed: 11/15/2023] Open
Abstract
OBJECTIVE Our present study utilized case-control research to explore the relationship between specific circRNAs and pediatric obesity through a literature review and bioinformatics and to predict their possible biological functions, providing ideas for epigenetic mechanism studies of pediatric obesity. METHODS CircRNAs related to pediatric obesity were preliminarily screened by a literature review and qRT-PCR. CircRNA expression in children with obesity (n = 75) and control individuals (n = 75) was confirmed with qRT-PCR in a case-control study. This was followed by bioinformatics analyses, such as GO analysis, KEGG pathway analysis, and ceRNA network construction. Multivariate logistic regression was utilized to analyze the effects of circRNAs on obesity. A receiver operating characteristic (ROC) curve was also drawn to explore the clinical application value of circRNAs in pediatric obesity. RESULTS Has_circ_0046367 and hsa_circ_0000284 were separately validated to be statistically downregulated and upregulated, respectively, in the peripheral blood mononuclear cells of children with obesity and revealed as independent indicators of increased CHD risk [hsa_circ_0046367 (OR = 0.681, 95% CI: 0.480 ~ 0.967) and hsa_circ_0000284 (OR = 1.218, 95% CI: 1.041 ~ 1.424)]. The area under the ROC curve in the combined analysis of hsa_circ_0046367 and hsa_circ_0000284 was 0.706 (95% CI: 0.623 ~ 0.789). Enrichment analyses revealed that these circRNAs were actively involved in neural plasticity mechanisms, cell secretion and signal regulation. CONCLUSION The present research revealed that low expression of hsa_circ_0046367 and high expression of hsa_circ_0000284 are risk factors for pediatric obesity and that neural plasticity mechanisms are closely related to obesity.
Collapse
Affiliation(s)
- Guobo Li
- Department of Child Healthcare Centre, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, 350001, China
| | - Xingyan Xu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, 350122, China
| | - Le Yang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, 350122, China
| | - Yingying Cai
- Department of Developmental and Behavioral Pediatrics, Fujian Children's Hospital, Fujian, 350014, China
| | - Yi Sun
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, 350122, China
| | - Jianhui Guo
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, 350122, China
| | - Yawen Lin
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, 350122, China
| | - Yuduan Hu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, 350122, China
| | - Mingjun Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, 350122, China
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, 350122, China.
| | - Siying Wu
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Minhou County, Fuzhou, 350122, China.
| |
Collapse
|
8
|
Drouard G, Hagenbeek FA, Whipp A, Pool R, Hottenga JJ, Jansen R, Hubers N, Afonin A, Willemsen G, de Geus EJC, Ripatti S, Pirinen M, Kanninen KM, Boomsma DI, van Dongen J, Kaprio J. Longitudinal multi-omics study reveals common etiology underlying association between plasma proteome and BMI trajectories in adolescent and young adult twins. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.28.23291995. [PMID: 37425750 PMCID: PMC10327285 DOI: 10.1101/2023.06.28.23291995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Background The influence of genetics and environment on the association of the plasma proteome with body mass index (BMI) and changes in BMI remain underexplored, and the links to other omics in these associations remain to be investigated. We characterized protein-BMI trajectory associations in adolescents and adults and how these connect to other omics layers. Methods Our study included two cohorts of longitudinally followed twins: FinnTwin12 (N=651) and the Netherlands Twin Register (NTR) (N=665). Follow-up comprised four BMI measurements over approximately 6 (NTR: 23-27 years old) to 10 years (FinnTwin12: 12-22 years old), with omics data collected at the last BMI measurement. BMI changes were calculated using latent growth curve models. Mixed-effects models were used to quantify the associations between the abundance of 439 plasma proteins with BMI at blood sampling and changes in BMI. The sources of genetic and environmental variation underlying the protein abundances were quantified using twin models, as were the associations of proteins with BMI and BMI changes. In NTR, we investigated the association of gene expression of genes encoding proteins identified in FinnTwin12 with BMI and changes in BMI. We linked identified proteins and their coding genes to plasma metabolites and polygenic risk scores (PRS) using mixed-effect models and correlation networks. Results We identified 66 and 14 proteins associated with BMI at blood sampling and changes in BMI, respectively. The average heritability of these proteins was 35%. Of the 66 BMI-protein associations, 43 and 12 showed genetic and environmental correlations, respectively, including 8 proteins showing both. Similarly, we observed 6 and 4 genetic and environmental correlations between changes in BMI and protein abundance, respectively. S100A8 gene expression was associated with BMI at blood sampling, and the PRG4 and CFI genes were associated with BMI changes. Proteins showed strong connections with many metabolites and PRSs, but we observed no multi-omics connections among gene expression and other omics layers. Conclusions Associations between the proteome and BMI trajectories are characterized by shared genetic, environmental, and metabolic etiologies. We observed few gene-protein pairs associated with BMI or changes in BMI at the proteome and transcriptome levels.
Collapse
Affiliation(s)
- Gabin Drouard
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - Fiona A. Hagenbeek
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Alyce Whipp
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| | - René Pool
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Jouke Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Rick Jansen
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, The Netherlands
| | - Nikki Hubers
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - Aleksei Afonin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - BIOS Consortium
- Biobank-based Integrative Omics Study Consortium. Lists of authors and their affiliations appear in the supplementary material (see Additional file 1)
| | | | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Eco J. C. de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Matti Pirinen
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
- Department of Public Health, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| | - Katja M. Kanninen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Dorret I. Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - Jenny van Dongen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Amsterdam Reproduction & Development (AR&D) Research Institute, Amsterdam, The Netherlands
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), HiLIFE, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Jukic A, Bakiri L, Wagner EF, Tilg H, Adolph TE. Calprotectin: from biomarker to biological function. Gut 2021; 70:1978-1988. [PMID: 34145045 PMCID: PMC8458070 DOI: 10.1136/gutjnl-2021-324855] [Citation(s) in RCA: 219] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
The incidence of inflammatory bowel diseases (IBD) emerged with Westernisation of dietary habits worldwide. Crohn's disease and ulcerative colitis are chronic debilitating conditions that afflict individuals with substantial morbidity and challenge healthcare systems across the globe. Since identification and characterisation of calprotectin (CP) in the 1980s, faecal CP emerged as significantly validated, non-invasive biomarker that allows evaluation of gut inflammation. Faecal CP discriminates between inflammatory and non-inflammatory diseases of the gut and portraits the disease course of human IBD. Recent studies revealed insights into biological functions of the CP subunits S100A8 and S100A9 during orchestration of an inflammatory response at mucosal surfaces across organ systems. In this review, we summarise longitudinal evidence for the evolution of CP from biomarker to rheostat of mucosal inflammation and suggest an algorithm for the interpretation of faecal CP in daily clinical practice. We propose that mechanistic insights into the biological function of CP in the gut and beyond may facilitate interpretation of current assays and guide patient-tailored medical therapy in IBD, a concept warranting controlled clinical trials.
Collapse
Affiliation(s)
- Almina Jukic
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Latifa Bakiri
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Erwin F Wagner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
10
|
Dumitrescu L, Marta D, Dănău A, Lefter A, Tulbă D, Cozma L, Manole E, Gherghiceanu M, Ceafalan LC, Popescu BO. Serum and Fecal Markers of Intestinal Inflammation and Intestinal Barrier Permeability Are Elevated in Parkinson's Disease. Front Neurosci 2021; 15:689723. [PMID: 34220443 PMCID: PMC8249847 DOI: 10.3389/fnins.2021.689723] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is characterized by alpha-synuclein misfolding with subsequent intraneuronal amyloid formation and accumulation, low grade neuroinflammatory changes, and selective neurodegeneration. Available evidence suggests that the pathology usually begins in the gut and olfactory mucosa, spreading to the brain via the vagus and olfactory nerves, by a prion-like mechanism. A causal relationship has not been established, but gut dysbiosis is prevalent in PD and may lead to intestinal inflammation and barrier dysfunction. Additionally, epidemiological data indicate a link between inflammatory bowel diseases and PD. Calprotectin and zonulin are markers of intestinal inflammation and barrier permeability, respectively. We evaluated their serum and fecal levels in 22 patients with sporadic PD and 16 unmatched healthy controls. Mean calprotectin was higher in PD, both in serum (14.26 mcg/ml ± 4.50 vs. 5.94 mcg/ml ± 3.80, p = 0.0125) and stool (164.54 mcg/g ± 54.19 vs. 56.19 mcg/g ± 35.88, p = 0.0048). Mean zonulin was also higher in PD serum (26.69 ng/ml ± 3.55 vs. 19.43 ng/ml ± 2.56, p = 0.0046) and stool (100.19 ng/ml ± 28.25 vs. 37.3 ng/ml ± 13.26, p = 0.0012). Calprotectin was above the upper reference limit in 19 PD serums and 6 controls (OR = 10.56, 95% CI = 2.17-51.42, p = 0.0025) and in 20 PD stool samples and 4 controls (OR = 30, 95% CI = 4.75-189.30, p = 0.000045). Increased zonulin was found only in the stool samples of 8 PD patients. Despite the small sample size, our findings are robust, complementing and supporting other recently published results. The relation between serum and fecal calprotectin and zonulin levels and sporadic PD warrants further investigation in larger cohorts.
Collapse
Affiliation(s)
- Laura Dumitrescu
- Department of Clinical Neurosciences, Neurology Division at Colentina Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Department of Neurology, Colentina Clinical Hospital, Bucharest, Romania
| | - Daciana Marta
- Laboratory of Cell Biology, Neurosciences and Experimental Myology, "Victor Babeş", National Institute of Pathology, Bucharest, Romania
| | - Adela Dănău
- Department of Clinical Neurosciences, Neurology Division at Colentina Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Department of Neurology, Colentina Clinical Hospital, Bucharest, Romania
| | - Antonia Lefter
- Department of Clinical Neurosciences, Neurology Division at Colentina Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Department of Neurology, Colentina Clinical Hospital, Bucharest, Romania
| | - Delia Tulbă
- Department of Clinical Neurosciences, Neurology Division at Colentina Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Department of Neurology, Colentina Clinical Hospital, Bucharest, Romania
| | - Liviu Cozma
- Department of Clinical Neurosciences, Neurology Division at Colentina Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Department of Neurology, Colentina Clinical Hospital, Bucharest, Romania
| | - Emilia Manole
- Laboratory of Cell Biology, Neurosciences and Experimental Myology, "Victor Babeş", National Institute of Pathology, Bucharest, Romania.,Pathology Department, Colentina Clinical Hospital, Bucharest, Romania
| | - Mihaela Gherghiceanu
- Laboratory of Cell Biology, Neurosciences and Experimental Myology, "Victor Babeş", National Institute of Pathology, Bucharest, Romania.,Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Laura Cristina Ceafalan
- Laboratory of Cell Biology, Neurosciences and Experimental Myology, "Victor Babeş", National Institute of Pathology, Bucharest, Romania.,Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Bogdan Ovidiu Popescu
- Department of Clinical Neurosciences, Neurology Division at Colentina Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.,Department of Neurology, Colentina Clinical Hospital, Bucharest, Romania.,Laboratory of Cell Biology, Neurosciences and Experimental Myology, "Victor Babeş", National Institute of Pathology, Bucharest, Romania
| |
Collapse
|
11
|
Rowicka G, Dyląg H, Chełchowska M, Weker H, Ambroszkiewicz J. Serum Calprotectin and Chemerin Concentrations as Markers of Low-Grade Inflammation in Prepubertal Children with Obesity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17207575. [PMID: 33081030 PMCID: PMC7589737 DOI: 10.3390/ijerph17207575] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 01/21/2023]
Abstract
In adults, obesity is associated with chronic low-grade inflammation, which may cause long-term adverse health consequences. We evaluated whether obesity in prepubertal children also generates this kind of inflammation and whether calprotectin and chemerin may be useful markers for early detection of such inflammation in this group of children. The study population included 83 children aged 2 to 10 years; 62 with obesity and without components of metabolic syndrome and 21 healthy controls with normal body weight. White blood cell (WBC) count, concentrations of C-reactive protein (CRP), interleukin-6 (IL-6), calprotectin, and chemerin were determined in peripheral blood. Our study showed that in the group with obesity, serum concentrations of calprotectin and chemerin, as well as CRP were significantly higher as compared with the controls. We found a significant positive correlation between serum chemerin concentrations and BMI z-score (r = 0.33, p < 0.01) in children with obesity. Chemerin concentration was also positively correlated with CRP level (r = 0.36, p < 0.01) in the whole group of children. These findings suggest that obesity may generate chronic low-grade inflammation as early as in the prepubertal period which can be indicated by significantly higher serum concentrations of calprotectin and chemerin. Calprotectin and especially chemerin seem to be promising indicators of this type of inflammation in children with obesity, but the correlation between these markers requires further research.
Collapse
Affiliation(s)
- Grażyna Rowicka
- Department of Nutrition, Institute of Mother and Child, 01-211 Warsaw, Poland; (H.D.); (H.W.)
- Correspondence: ; Tel.: +48-22-3277366
| | - Hanna Dyląg
- Department of Nutrition, Institute of Mother and Child, 01-211 Warsaw, Poland; (H.D.); (H.W.)
| | - Magdalena Chełchowska
- Department of Screening Tests and Metabolic Diagnostics, Institute of Mother and Child, 01-211 Warsaw, Poland; (M.C.); (J.A.)
| | - Halina Weker
- Department of Nutrition, Institute of Mother and Child, 01-211 Warsaw, Poland; (H.D.); (H.W.)
| | - Jadwiga Ambroszkiewicz
- Department of Screening Tests and Metabolic Diagnostics, Institute of Mother and Child, 01-211 Warsaw, Poland; (M.C.); (J.A.)
| |
Collapse
|