1
|
Coman CG, Anisiei A, Cibotaru S, Ailincai D, Pasca SA, Chabot C, Gardikiotis I, Mititelu-Tartau L. Chitosan-Electrospun Fibers Encapsulating Norfloxacin: The Impact on the Biochemical, Oxidative and Immunological Profile in a Rats Burn Model. Int J Mol Sci 2024; 25:12709. [PMID: 39684419 DOI: 10.3390/ijms252312709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/23/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
This study investigates the impact of chitosan-based nanofibers on burn wound healing in a rat model. Two formulations of chitosan nanofibers were prepared through electrospinning. The formulations were then incorporated with different amounts of norfloxacin and underwent surface modifications with 2-formylphenylboronic acid. The burn model was applied to Wistar male rats by the contact method, using a heated steel rod attached to a thermocouple. The effectiveness of the nanofibers was tested against a negative control group and a standard commercial dressing (Atrauman Ag) on the described model and evaluated by wound diameter, histological analysis and biochemical profiling of systemic inflammatory markers. The results showed that chitosan-based dressings significantly accelerated burn healing compared to the control treatments. The high-concentration norfloxacin-infused chitosan coated with 2-formylphenylboronic acid' groups exhibited significant improvements in wound closure and reduced inflammation compared to the other groups; antioxidant enzymes SOD and GPx expression was significantly higher, p < 0.05, whereas pro-oxidative markers such as cortisol were lower (p < 0.05). Macroscopically, the wound area itself was significantly diminished in the chitosan-treated groups (p < 0.05). Furthermore, a histological evaluation indicated enhanced epithelialization and granulation tissue formation within the experiment time frame, while the biochemical panel revealed lower levels of inflammatory cytokines and lower leukocyte counts in the treated groups. These findings highlight the potential of the studied chitosan nanofibers as novel nanosystems for next-generation wound therapies, as well as the clinical utility of the novel chitosan fibers obtained by electrospinning technique.
Collapse
Affiliation(s)
- Corneliu-George Coman
- Pharmacology, Clinical Pharmacology and Algesiology Department, Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 700115 Iasi, Romania
- Faculté de Médecine, Pharmacie et Sciences Biomédicales, Université de Mons, 7000 Mons, Belgium
| | - Alexandru Anisiei
- "Polycondensation and Thermostable Polymers" Department, "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 700487 Iasi, Romania
| | - Sandu Cibotaru
- "Polycondensation and Thermostable Polymers" Department, "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 700487 Iasi, Romania
| | - Daniela Ailincai
- "Polycondensation and Thermostable Polymers" Department, "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 700487 Iasi, Romania
| | - Sorin Aurelian Pasca
- Pathology Department, University of Agricultural Sciences and Veterinary Medicine 'Ion Ionescu de la Brad', 700490 Iasi, Romania
| | - Caroline Chabot
- Department de Radiologie, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 1200 Bruxelles, Belgium
| | - Ioannis Gardikiotis
- Pharmacology, Clinical Pharmacology and Algesiology Department, Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 700115 Iasi, Romania
- Surgery Department, Advanced Research and Development Center for Experimental Medicine ''Prof. Ostin C. Mungiu'', University of Medicine and Pharmacy ''Grigore T. Popa'' of Iasi, 700115 Iasi, Romania
| | - Liliana Mititelu-Tartau
- Pharmacology, Clinical Pharmacology and Algesiology Department, Faculty of Medicine, University of Medicine and Pharmacy "Grigore T. Popa" of Iasi, 700115 Iasi, Romania
| |
Collapse
|
2
|
Mohammadi G, Safari M, Karimi M, Iranpanah A, Farzaei MH, Fakhri S, Echeverría J. Preparation and characterization of Pistacia atlantica oleo-gum-resin-loaded electrospun nanofibers and evaluating its wound healing activity in two rat models of skin scar and burn wound. Front Pharmacol 2024; 15:1474981. [PMID: 39654617 PMCID: PMC11625589 DOI: 10.3389/fphar.2024.1474981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/31/2024] [Indexed: 12/12/2024] Open
Abstract
Background A growing body of research is dedicated to developing new therapeutic agents for wound healing with fewer adverse effects. One of the proceedings being taken today in wound healing research is to identify promising biological materials that not only heal wounds but also vanish scarring. The effectiveness of nanofibers like polyvinyl alcohol (PVA), in improving wound healing can be related to their unique properties. Pistacia atlantica Desf. subsp. kurdica (Zohary) Rech. f. (PAK) [Anacardiaceae], also known as "Baneh" in traditional Iranian medicine, is one of the most effective herbal remedies for the treatment of different diseases like skin injuries due to its numerous pharmacological and biological properties, including anti-inflammatory, antioxidant, and anti-bacterial effects. Purpose Our study aimed to evaluate the wound-healing activity of nanofibers containing PVA/PAK oleo-gum-resin in two rat models of burn and excision wound repair. Material and Methods PVA/PKA nanofibers were prepared using the electrospinning method. Scanning electron microscope (SEM) images and mechanical properties of nanofibers were explored. Diffusion and releasing experiments of nanofibers were performed by the UV visible method at different time intervals and up to 72 h. The animal models were induced by excision and burn in Wistar rat's skin and the wound surface area was measured during the experiment for 10 and 21 days, respectively. On the last day, the wound tissue was removed for histological studies, and serum oxidative factors were measured to evaluate the antioxidant properties of the PVA/PKA. Data analysis was performed using ImageJ, Expert Design, and statistical analysis methods. Results and discussion PVA/PKA nanofibers were electrospun at different voltages (15, 18, and 20 kV). The most suitable fibers were obtained when the nozzle was positioned 15 cm away from the collector, with a working voltage of 15 kV, and an injection rate of 0.5 mm per hour, using the 30:70 w/v PKA gum. In the SEM images, it was found that the surface tension of the polymer solution decreased by adding the gum and yield thinner and longer fibers at a voltage of 15 kV with an average diameter of 96 ± 24 nm. The mechanical properties of PVA/PKA nanofibers showed that the presence of gum increased the tensile strength and decreased the tensile strength of the fibers simultaneously. In vivo results showed that PVA/PKA nanofibers led to a significant reduction in wound size and tissue damage (regeneration of the epidermal layer, higher density of dermal collagen fibers, and lower presence of inflammatory cells) compared to the positive (phenytoin and silver sulfadiazine) and negative control (untreated) groups. Wound contraction was higher in rats treated with PVA/PKA nanofibers. Additionally, antioxidative serum levels of catalase and glutathione were higher in the PVA/PKA nanofiber groups even in comparison to positive control groups. Conclusion Pistacia atlantica oleo-gum-resin-loaded electrospun nanofibers potentially improve excision and burn models of skin scars in rats through antioxidative and tissue regeneration mechanisms.
Collapse
Affiliation(s)
- Ghobad Mohammadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mosayyeb Safari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Masoud Karimi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
3
|
Mandal D, Sarmah JK, Harish V, Gupta J. Antioxidant, In Vitro Cytotoxicity, and Anti-diabetic Attributes of a Drug-Free Guar Gum Nanoformulation as a Novel Candidate for Diabetic Wound Healing. Mol Biotechnol 2024:10.1007/s12033-024-01261-z. [PMID: 39212825 DOI: 10.1007/s12033-024-01261-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
The escalating intersection of diabetes and impaired wound healing poses a substantial societal burden, marked by an increasing prevalence of chronic wounds. Diabetic individuals struggle with hindered recovery, attributed to compromised blood circulation and diminished immune function, resulting in prolonged healing periods and elevated healthcare expenditures. To address this challenge, we report here a drug-free novel guar gum (GG)-based nano-formulation which is effective against diabetic wound healing. Nanoparticles with an average particle size of 32.4 nm display stability with negative zeta potential. Differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR) analysis reveal alterations in thermal properties and molecular structures induced by the nano-particulation process. In vitro studies highlight the antioxidant potential of GGNP through concentration-dependent free radical scavenging activity in DPPH and ABTS assays. The nanoformulation also exhibits inhibitory effects on α-glucosidase and α-amylase enzymes. Cell viability studies have indicated moderate cytotoxicity in L929 cells and significant proliferation and migration in HaCaT cells, suggesting a positive impact on skin cells. In vitro enzymatic activity assessments under hyperglycaemic conditions reveal the potential of GGNP to modulate glutathione-S-transferase (GST), superoxide dismutase (SOD), and catalase activities as well as decreasing lipid peroxidation (LPO) levels, showcasing an antioxidant response. These results suggest GGNP as a promising candidate in diabetic wound healing.
Collapse
Affiliation(s)
- Debojyoti Mandal
- Department of Botany, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144411, India
| | - Jayanta K Sarmah
- Department of Chemistry, Rabindranath Tagore University, Hojai, Assam, 782435, India.
| | - Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University (LPU), Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 1444111, India
| | - Jeena Gupta
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 1444111, India.
| |
Collapse
|
4
|
Alka, Singh P, Pal RR, Mishra N, Singh N, Verma A, Saraf SA. Development of pH-Sensitive hydrogel for advanced wound Healing: Graft copolymerization of locust bean gum with acrylamide and acrylic acid. Int J Pharm 2024; 661:124450. [PMID: 38986968 DOI: 10.1016/j.ijpharm.2024.124450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
Wounds pose a formidable challenge in healthcare, necessitating the exploration of innovative tissue-healing solutions. Traditional wound dressings exhibit drawbacks, causing tissue damage and impeding natural healing. Using a Microwave (MW)-)-assisted technique, we envisaged a novel hydrogel (Hg) scaffold to address these challenges. This hydrogel scaffold was created by synthesizing a pH-responsive crosslinked material, specifically locust bean gum-grafted-poly(acrylamide-co-acrylic acid) [LBG-g-poly(AAm-co-AAc)], to enable sustained release of c-phycocyanin (C-Pc). Synthesized LBG-g-poly(AAm-co-AAc) was fine-tuned by adjusting various synthetic parameters, including the concentration of monomers, duration of reaction, and MW irradiation intensity, to maximize the yield of crosslinked LBG grafted product and enhance encapsulation efficiency of C-Pc. Following its synthesis, LBG-g-poly(AAm-co-AAc) was thoroughly characterized using advanced techniques, like XRD, TGA, FTIR, NMR, and SEM, to analyze its structural and chemical properties. Moreover, the study examined the in-vitro C-Pc release profile from LBG-g-poly(AAm-co-AAc) based hydrogel (HgCPcLBG). Findings revealed that the maximum release of C-Pc (64.12 ± 2.69 %) was achieved at pH 7.4 over 48 h. Additionally, HgCPcLBG exhibited enhanced antioxidant performance and compatibility with blood. In vivo studies confirmed accelerated wound closure, and ELISA findings revealed reduced inflammatory markers (IL-6, IL-1β, TNF-α) within treated skin tissue, suggesting a positive impact on injury repair. A low-cost and eco-friendly approach for creating LBG-g-poly(AAm-co-AAc) and HgCPcLBG has been developed. This method achieved sustained release of C-Pc, which could be a significant step forward in wound care technology.
Collapse
Affiliation(s)
- Alka
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025 Uttar Pradesh, India
| | - Priya Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025 Uttar Pradesh, India; School of Pharmacy, GITAM (Deemed-to-be) University, Rudraram, Patancheru Mandal, Hyderabad, 502329 Telangana, India
| | - Ravi Raj Pal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025 Uttar Pradesh, India
| | - Nidhi Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025 Uttar Pradesh, India
| | - Neelu Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025 Uttar Pradesh, India
| | - Abhishek Verma
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025 Uttar Pradesh, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025 Uttar Pradesh, India; National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Lucknow, 226002 Uttar Pradesh, India.
| |
Collapse
|
5
|
Torres-Herrero B, Armenia I, Ortiz C, de la Fuente JM, Betancor L, Grazú V. Opportunities for nanomaterials in enzyme therapy. J Control Release 2024; 372:619-647. [PMID: 38909702 DOI: 10.1016/j.jconrel.2024.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
In recent years, enzyme therapy strategies have rapidly evolved to catalyze essential biochemical reactions with therapeutic potential. These approaches hold particular promise in addressing rare genetic disorders, cancer treatment, neurodegenerative conditions, wound healing, inflammation management, and infectious disease control, among others. There are several primary reasons for the utilization of enzymes as therapeutics: their substrate specificity, their biological compatibility, and their ability to generate a high number of product molecules per enzyme unit. These features have encouraged their application in enzyme replacement therapy where the enzyme serves as the therapeutic agent to rectify abnormal metabolic and physiological processes, enzyme prodrug therapy where the enzyme initiates a clinical effect by activating prodrugs, and enzyme dynamic or starving therapy where the enzyme acts upon host substrate molecules. Currently, there are >20 commercialized products based on therapeutic enzymes, but approval rates are considerably lower than other biologicals. This has stimulated nanobiotechnology in the last years to develop nanoparticle-based solutions that integrate therapeutic enzymes. This approach aims to enhance stability, prevent rapid clearance, reduce immunogenicity, and even enable spatio-temporal activation of the therapeutic catalyst. This comprehensive review delves into emerging trends in the application of therapeutic enzymes, with a particular emphasis on the synergistic opportunities presented by incorporating enzymes into nanomaterials. Such integration holds the promise of enhancing existing therapies or even paving the way for innovative nanotherapeutic approaches.
Collapse
Affiliation(s)
- Beatriz Torres-Herrero
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain
| | - Ilaria Armenia
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain
| | - Cecilia Ortiz
- Laboratorio de Biotecnología, Facultad de Ingeniería, Universidad ORT Uruguay, Mercedes 1237, 11100 Montevideo, Uruguay
| | - Jesús Martinez de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Lorena Betancor
- Laboratorio de Biotecnología, Facultad de Ingeniería, Universidad ORT Uruguay, Mercedes 1237, 11100 Montevideo, Uruguay
| | - Valeria Grazú
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC/Universidad de Zaragoza, c/ Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Avenida Monforte de Lemos, 3-5, 28029 Madrid, Spain.
| |
Collapse
|
6
|
Nißler R, Dennebouy L, Gogos A, Gerken LRH, Dommke M, Zimmermann M, Pais MA, Neuer AL, Matter MT, Kissling VM, de Brot S, Lese I, Herrmann IK. Protein Aggregation on Metal Oxides Governs Catalytic Activity and Cellular Uptake. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311115. [PMID: 38556634 DOI: 10.1002/smll.202311115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/12/2024] [Indexed: 04/02/2024]
Abstract
Engineering of catalytically active inorganic nanomaterials holds promising prospects for biomedicine. Catalytically active metal oxides show applications in enhancing wound healing but have also been employed to induce cell death in photodynamic or radiation therapy. Upon introduction into a biological system, nanomaterials are exposed to complex fluids, causing interaction and adsorption of ions and proteins. While protein corona formation on nanomaterials is acknowledged, its modulation of nanomaterial catalytic efficacy is less understood. In this study, proteomic analyses and nano-analytic methodologies quantify and characterize adsorbed proteins, correlating this protein layer with metal oxide catalytic activity in vitro and in vivo. The protein corona comprises up to 280 different proteins, constituting up to 38% by weight. Enhanced complement factors and other opsonins on nanocatalyst surfaces lead to their uptake into macrophages when applied topically, localizing >99% of the nanomaterials in tissue-resident macrophages. Initially, the formation of the protein corona significantly reduces the nanocatalysts' activity, but this activity can be partially recovered in endosomal conditions due to the proteolytic degradation of the corona. Overall, the research reveals the complex relationship between physisorbed proteins and the catalytic characteristics of specific metal oxide nanoparticles, providing design parameters for optimizing nanocatalysts in complex biological environments.
Collapse
Affiliation(s)
- Robert Nißler
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
- The Ingenuity Lab, University Hospital Balgrist, University of Zurich, Forchstrasse 340, Zurich, 8008, Switzerland
| | - Lena Dennebouy
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - Alexander Gogos
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Lukas R H Gerken
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Maximilian Dommke
- Institute of Technical Chemistry and Environmental Chemistry, Friedrich Schiller University Jena, Philosophenweg 7a, 07743, Jena, Germany
| | - Monika Zimmermann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Michael A Pais
- Department of Plastic and Hand Surgery, Inselspital, Bern University Hospital, Bern, 3010, Switzerland
| | - Anna L Neuer
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Martin T Matter
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Vera M Kissling
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Simone de Brot
- COMPATH, Institute of Animal Pathology, University of Bern, Bern, 3012, Switzerland
| | - Ioana Lese
- Department of Plastic and Hand Surgery, Inselspital, Bern University Hospital, Bern, 3010, Switzerland
| | - Inge K Herrmann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
- The Ingenuity Lab, University Hospital Balgrist, University of Zurich, Forchstrasse 340, Zurich, 8008, Switzerland
| |
Collapse
|
7
|
Yuan H, Jia L, Xie X, Li Q, Peng Y, Ma Q, Guo T, Meng T. Microbially Inspired Calcium Carbonate Precipitation Pathway Integrated Polyelectrolyte Capsules (MICPC) for Biomolecules Release. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306877. [PMID: 38415820 DOI: 10.1002/smll.202306877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/19/2024] [Indexed: 02/29/2024]
Abstract
Complexation between oppositely charged polyelectrolytes offers a facile single-step strategy for assembling functional micro-nano carriers for efficient drug and vaccine delivery. However, the stability of the delivery system within the physiological environment is compromised due to the swelling of the polyelectrolyte complex, driven by the charge shielding effect, and consequently leads to uncontrollable burst release, thereby limiting its potential applications. In a pioneering approach, cellular pathway-inspired calcium carbonate precipitation pathways are developed that are integrated into polyelectrolyte capsules (MICPC). These innovative capsules are fabricated at the interface of all-aqueous microfluidic droplets, resulting in a precisely controllable and sustained release profile in physiological conditions. Unlike single-step polyelectrolyte assembly capsules which always perform rapid burst release, the MICPC exhibits a sustainable and tunable release pattern, releasing biomolecules at an average rate of 3-10% per day. Remarkably, the degree of control over MICPC's release kinetics can be finely tuned by adjusting the quantity of synthesized calcium carbonate particles within the polyelectrolyte complex. This groundbreaking work not only deepens the insights into polyelectrolyte complexation but also significantly enhances the overall stability of these complexes, opening up new avenues for expanding the range of applications involving polyelectrolyte complex-related materials.
Collapse
Affiliation(s)
- Hao Yuan
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Lufan Jia
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xin Xie
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Qinyuan Li
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yali Peng
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Qingming Ma
- School of Pharmacy, Qingdao University, Qingdao, 266071, P. R. China
| | - Ting Guo
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Tao Meng
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
8
|
Alka, Mishra N, Singh P, Singh N, Rathore K, Verma V, Ratna S, Nisha R, Verma A, Saraf SA. Multifunctional polymeric nanofibrous scaffolds enriched with azilsartan medoxomil for enhanced wound healing. Drug Deliv Transl Res 2024:10.1007/s13346-024-01637-3. [PMID: 38833068 DOI: 10.1007/s13346-024-01637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
A prolonged and compromised wound healing process poses a significant clinical challenge, necessitating innovative solutions. This research investigates the potential application of nanotechnology-based formulations, specifically nanofiber (NF) scaffolds, in addressing this issue. The study focuses on the development and characterization of multifunctional nanofibrous scaffolds (AZL-CS/PVA-NF) composed of azilsartan medoxomil (AZL) enriched chitosan/polyvinyl alcohol (CS/PVA) through electrospinning. The scaffolds underwent comprehensive characterization both in vitro and in vivo. The mean diameter and tensile strength of AZL-CS/PVA-NF were determined to be 240.42 ± 3.55 nm and 18.05 ± 1.18 MPa, respectively. A notable drug release rate of 93.86 ± 2.04%, was observed from AZL-CS/PVA-NF over 48 h at pH 7.4. Moreover, AZL-CS/PVA-NF exhibited potent antimicrobial efficacy for Staphylococcus aureus and Pseudomonas aeruginosa. The expression levels of Akt and CD31 were significantly elevated, while Stat3 showed a decrease, indicating a heightened tissue regeneration rate with AZL-CS/PVA-NF compared to other treatment groups. In vivo ELISA findings revealed reduced inflammatory markers (IL-6, IL-1β, TNF-α) within treated skin tissue, implying a beneficial effect on injury repair. The comprehensive findings of the present endeavour underscore the superior wound healing activity of the developed AZL-CS/PVA-NF scaffolds in a Wistar rat full-thickness excision wound model. This indicates their potential as novel carriers for drugs and dressings in the field of wound care.
Collapse
Affiliation(s)
- Alka
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Nidhi Mishra
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Priya Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
- School of Pharmacy, GITAM (Deemed-to-Be) University, Rudraram, Patancheru Mandal, Hyderabad, 502329, Telangana, India
| | - Neelu Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Kalpana Rathore
- Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur, 208016, Uttar Pradesh, India
| | - Vivek Verma
- Department of Materials Science and Engineering, Indian Institute of Technology, Kanpur, 208016, Uttar Pradesh, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, 208016, Uttar Pradesh, India
- Samtel Centre for Display Technologies, Indian Institute of Technology Kanpur, 208016, Uttar Pradesh, India
- National Centre for Flexible Electronics, Indian Institute of Technology Kanpur, 208016, Uttar Pradesh, India
| | - Sheel Ratna
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Raquibun Nisha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Abhishek Verma
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University Lucknow (A Central University), Uttar Pradesh, Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India.
- National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, 226025, Uttar Pradesh, India.
| |
Collapse
|
9
|
Tunç AS, Ercan N. Effect of topical sildenafil on wound healing and oxidative stress in rats. Injury 2024; 55:111525. [PMID: 38608450 DOI: 10.1016/j.injury.2024.111525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND In this study, the effects of topical sildenafil applications on oxidative damage levels and antioxidative metabolism and their contribution to wound healing and treatment were investigated. MATERIALS AND METHODS A total of 24 healthy male rats aged 16-18 weeks, each weighing 200-250 g, were randomly divided into three groups: Group A received a saline solution, Group B received an epithelializing cream, and Group C received sildenafil cream. Following skin preparation and anesthesia, 6 mm diameter punch biopsies created wounds on the rats' backs. The treatment protocol involved daily topical dressing for seven days, after which tissue and blood samples were collected for analysis. Tissue samples underwent histopathological examination, while malondialdehyde (MDA) levels, superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase activities in wound tissue and blood samples were measured. RESULTS The wound surface area created by the punch decreased in all groups by the end of the seventh day; However, the degree of wound healing differed in favor of the sildenafil cream group. Histopathologically, according to Greenhalgh's Modified Wound Healing Scoring System, all findings were graded. In the Anova test, the differences between glutathione peroxidase, catalase, and malondialdehyde levels in the serum and tissue of rats was statistically significant (P < 0.05), whereas superoxide dismutase levels were not statistically significant (P > 0.05). In the Bonferroni test, the serum CAT levels between groups A and C (P = 0.003), between groups B and C (P = 0.035), and the serum MDA levels between groups A and B (P = 0.018) and between groups A and C (P = 0.001) were found to be significant statistically. By the way, the results between tissue CAT levels in the B and C groups (P = 0.020) and between tissue GPx levels (P = 0.001) in all groups were also significant statistically. CONCLUSIONS The study findings indicated that topical application of sildenafil led to noteworthy alterations in serum and tissue antioxidative metabolism as well as oxidative damage levels among rats with induced wounds. Sildenafil may be useful in wound treatment; it has been concluded that it is capable of directing new studies to be carried out.
Collapse
Affiliation(s)
- Arda Selin Tunç
- Department of Pathology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey.
| | - Nazlı Ercan
- Department of Biochemistry, Faculty of Veterinary Medicine, Sivas Cumhuriyet University, Sivas, Turkey
| |
Collapse
|
10
|
Yadav RB, Pathak DP, Varshney R, Arora R. Elucidation of the Role of TRPV1, VEGF-A, TXA2, Redox Homeostasis, and Inflammatory Cascades in Protection against Cold Injuries by Herbosomal-Loaded PEG-Poloxamer Topical Formulation. ACS APPLIED BIO MATERIALS 2024; 7:2836-2850. [PMID: 38717017 DOI: 10.1021/acsabm.3c01197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
High-altitude regions, cold deserts, permafrost regions, and the polar region have some of the severest cold conditions on earth and pose immense perils of cold injuries to exposed individuals. Accidental and unintended exposures to severe cold, either unintentionally or due to occupational risks, can greatly increase the risk of serious conditions including hypothermia, trench foot, and cold injuries like frostbite. Cold-induced vasoconstriction and intracellular/intravascular ice crystal formation lead to hypoxic conditions at the cellular level. The condition is exacerbated in individuals having inadequate and proper covering and layering, particularly when large area of the body are exposed to extremely cold environments. There is a paucity of preventive and therapeutic pharmacological modalities that have been explored for managing and treating cold injuries. Given this, an efficient modality that can potentiate the healing of frostbite was investigated by studying various complex pathophysiological changes that occur during severe cold injuries. In the current research, we report the effectiveness and healing properties of a standardized formulation, i.e., a herbosomal-loaded PEG-poloxamer topical formulation (n-HPTF), on frostbite. The intricate mechanistic pathways modulated by the novel formulation have been elucidated by studying the pathophysiological sequelae that occur following severe cold exposures leading to frostbite. The results indicate that n-HPTF ameliorates the outcome of frostbite, as it activates positive sensory nerves widely distributed in the epidermis transient receptor potential vanilloid 1 (TRPV1), significantly (p < 0.05) upregulates cytokeratin-14, promotes angiogenesis (VEGF-A), prominently represses the expression of thromboxane formation (TXA2), and significantly (p < 0.05) restores levels of enzymatic (glutathione reductase, superoxide dismutase, and catalase) and nonenzymatic antioxidants (glutathione). Additionally, n-HPTF attenuates oxidative stress and the expression of inflammatory proteins PGF-2α, NFκB-p65, TNF-α, IL-6, IL-1β, malondialdehyde (MDA), advanced oxidative protein products (AOPP), and protein carbonylation (PCO). Masson's Trichrome staining showed that n-HPTF stimulates cellular proliferation, and increases collagen fiber deposition, which significantly (p < 0.05) promotes the healing of frostbitten tissue, as compared to control. We conclude that protection against severe cold injuries by n-HPTF is mediated via modulation of pathways involving TRPV1, VEGF-A, TXA2, redox homeostasis, and inflammatory cascades. The study is likely to have widespread implications for the prophylaxis and management of moderate-to-severe frostbite conditions.
Collapse
Affiliation(s)
- Renu Bala Yadav
- Disruptive and Deterrence Technologies Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi 110054, India
- Delhi Pharmaceutical Science and Research University, Pushp Vihar, New Delhi 110017, India
| | - Dharam Pal Pathak
- Delhi Pharmaceutical Science and Research University, Pushp Vihar, New Delhi 110017, India
| | - Rajeev Varshney
- Disruptive and Deterrence Technologies Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi 110054, India
| | - Rajesh Arora
- Disruptive and Deterrence Technologies Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, New Delhi 110054, India
| |
Collapse
|
11
|
Zaher A, Mapuskar KA, Petronek MS, Tanas MR, Isaacson AL, Dodd RD, Milhem M, Furqan M, Spitz DR, Miller BJ, Beardsley RA, Allen BG. Superoxide Dismutase Mimetic Avasopasem Manganese Enhances Radiation Therapy Effectiveness in Soft Tissue Sarcomas and Accelerates Wound Healing. Antioxidants (Basel) 2024; 13:587. [PMID: 38790692 PMCID: PMC11117842 DOI: 10.3390/antiox13050587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/23/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Soft tissue sarcomas (STSs) are mesenchymal malignant lesions that develop in soft tissues. Despite current treatments, including radiation therapy (RT) and surgery, STSs can be associated with poor patient outcomes and metastatic recurrences. Neoadjuvant radiation therapy (nRT), while effective, is often accompanied by severe postoperative wound healing complications due to damage to the surrounding normal tissues. Thus, there is a need to develop therapeutic approaches to reduce nRT toxicities. Avasopasem manganese (AVA) is a selective superoxide dismutase mimetic that protects against IR-induced oral mucositis and lung fibrosis. We tested the efficacy of AVA in enhancing RT in STSs and in promoting wound healing. Using colony formation assays and alkaline comet assays, we report that AVA selectively enhanced the STS (liposarcoma, fibrosarcoma, leiomyosarcoma, and MPNST) cellular response to radiation compared to normal dermal fibroblasts (NDFs). AVA is believed to selectively enhance radiation therapy by targeting differential hydrogen peroxide clearance in tumor cells compared to non-malignant cells. STS cells demonstrated increased catalase protein levels and activity compared to normal fibroblasts. Additionally, NDFs showed significantly higher levels of GPx1 activity compared to STSs. The depletion of glutathione using buthionine sulfoximine (BSO) sensitized the NDF cells to AVA, suggesting that GPx1 may, in part, facilitate the selective toxicity of AVA. Finally, AVA significantly accelerated wound closure in a murine model of wound healing post RT. Our data suggest that AVA may be a promising combination strategy for nRT therapy in STSs.
Collapse
Affiliation(s)
- Amira Zaher
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA; (A.Z.); (K.A.M.); (M.S.P.); (D.R.S.)
| | - Kranti A. Mapuskar
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA; (A.Z.); (K.A.M.); (M.S.P.); (D.R.S.)
| | - Michael S. Petronek
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA; (A.Z.); (K.A.M.); (M.S.P.); (D.R.S.)
| | - Munir R. Tanas
- Department of Pathology, The University of Iowa, Iowa City, IA 52242, USA; (M.R.T.); (A.L.I.)
| | - Alexandra L. Isaacson
- Department of Pathology, The University of Iowa, Iowa City, IA 52242, USA; (M.R.T.); (A.L.I.)
- Department of Pathology, The Cleveland Clinic, Cleveland, OH 44195, USA
| | - Rebecca D. Dodd
- Department of Internal Medicine, Division of Hematology and Oncology, The University of Iowa, Iowa City, IA 52242, USA; (R.D.D.); (M.M.); (M.F.)
| | - Mohammed Milhem
- Department of Internal Medicine, Division of Hematology and Oncology, The University of Iowa, Iowa City, IA 52242, USA; (R.D.D.); (M.M.); (M.F.)
| | - Muhammad Furqan
- Department of Internal Medicine, Division of Hematology and Oncology, The University of Iowa, Iowa City, IA 52242, USA; (R.D.D.); (M.M.); (M.F.)
| | - Douglas R. Spitz
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA; (A.Z.); (K.A.M.); (M.S.P.); (D.R.S.)
| | - Benjamin J. Miller
- Department of Orthopedics and Rehabilitation, The University of Iowa, Iowa City, IA 52242, USA;
| | - Robert A. Beardsley
- Galera Therapeutics Inc., 2 West Liberty Blvd., Suite 110, Malvern, PA 19355, USA;
| | - Bryan G. Allen
- Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242, USA; (A.Z.); (K.A.M.); (M.S.P.); (D.R.S.)
| |
Collapse
|
12
|
Jangra N, Kawatra A, Datten B, Gupta S, Gulati P. Recent trends in targeted delivery of smart nanocarrier-based microbial enzymes for therapeutic applications. Drug Discov Today 2024; 29:103915. [PMID: 38340953 DOI: 10.1016/j.drudis.2024.103915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Smart carrier-based immobilization has widened the use of enzymes for the treatment of several disorders. Large surface areas, tunable morphology, and surface modification ability aid the targeted and controlled release of therapeutic enzymes from such formulations. Smart nanocarriers, such as polymeric carriers, liposomes, and silica have also increased the stability, half-life, and permeability of these enzymes. In this review, summarize recent advances in the smart immobilization of microbial enzymes and their development as precision nanomedicine for the treatment of cancer, thrombosis, phenylketonuria (PKU), and wound healing. We also discuss the challenges and measures to be adopted for the successful clinical translation of these formulations.
Collapse
Affiliation(s)
- Nikita Jangra
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Anubhuti Kawatra
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Bharti Datten
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Shefali Gupta
- Department of Industrial Microbiology, Sam Higginbottom University of Agriculture Technology and Sciences (SHUATS), Allahabad, Uttar Pradesh
| | - Pooja Gulati
- Medical Microbiology and Bioprocess Technology Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India.
| |
Collapse
|
13
|
Pimentel EF, de Oliveira BG, Pereira ACH, Figueira MM, Portes DB, Scherer R, Ruas FG, Romão W, Fronza M, Endringer DC. Polyphenols, Antioxidants, and Wound Healing of Lecythis pisonis Seed Coats. PLANTA MEDICA 2024; 90:243-251. [PMID: 37973148 DOI: 10.1055/a-2212-0262] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
To better use the Lecythis pisonis Cambess. biomass, this study investigates whether Sapucaia seed coats present wound healing properties. We analyzed the antibacterial, antioxidant, and wound healing-promoting potentials, plus cytotoxicity and stimulation of vascular endothelial growth factor-A. The chemical composition was analyzed by positive ion mode electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. A total of 19 compounds were identified, such as proanthocyanidin A1, procyanidins A1, B2, and C1, epigallocatechin, and kaempferol (p-coumaroyl) glycoside. Potent antioxidant strength/index was verified for 2,2-diphenyl-1-picrylhydrazyl radical (IC50 = 0.99 µg/mL) and ferric reducing antioxidant power (IC50 = 1.09 µg/mL). The extract did not present cytotoxicity and promoted significant cell migration and/or proliferation of fibroblasts (p < 0.05). Vascular endothelial growth factor-A was stimulated dose-dependently at 6 µg/mL (167.13 ± 8.30 pg/mL), 12.5 µg/mL (210.3 ± 14.2 pg/mL), and 25 µg/mL (411.6 ± 29.4 pg/mL). Platelet-derived growth factor (PDGF) (0.002 µg/mL) was stimulated at 215.98 pg/mL. Staphylococcus aureus was susceptible to the extract, with a minimum inhibitory concentration of 31.25 µg/mL. The identified compounds benefit the antioxidant activity, promoting hemostasis for the wound healing process, indicating that this extract has the potential for use in dermatological cosmetics.
Collapse
Affiliation(s)
| | | | | | | | - Danielle Braga Portes
- Pharmaceutical Science Graduate Program, Vila Velha University, Vila Velha, ES, Brazil
| | - Rodrigo Scherer
- Pharmaceutical Science Graduate Program, Vila Velha University, Vila Velha, ES, Brazil
| | - Fabiana Gomes Ruas
- Capixaba Institute for Research, Technical Assistance, and Rural Extension, Vitoria, Brazil
| | | | - Márcio Fronza
- Pharmaceutical Science Graduate Program, Vila Velha University, Vila Velha, ES, Brazil
| | | |
Collapse
|
14
|
Toyos-Rodríguez C, Valero-Calvo D, Iglesias-Mayor A, de la Escosura-Muñiz A. Effect of nanoporous membranes thickness in electrochemical biosensing performance: application for the detection of a wound infection biomarker. Front Bioeng Biotechnol 2024; 12:1310084. [PMID: 38464543 PMCID: PMC10921427 DOI: 10.3389/fbioe.2024.1310084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Introduction: Nanoporous alumina membranes present a honeycomb-like structure characterized by two main parameters involved in their performance in electrochemical immunosening: pore diameter and pore thickness. Although this first one has been deeply studied, the effect of pore thickness in electrochemical-based nanopore immunosensors has been less taken into consideration. Methods: In this work, the influence of the thickness of nanoporous membranes in the steric blockage is studied for the first time, through the formation of an immunocomplex in their inner walls. Finally, the optimal nanoporous membranes were applied to the detection of catalase, an enzyme related with chronic wound infection and healing. Results: Nanoporous alumina membranes with a fixed pore diameter (60 nm) and variable pore thicknesses (40, 60, 100 μm) have been constructed and evaluated as immunosensing platform for protein detection. Our results show that membranes with a thickness of 40 μm provide a higher sensitivity and lower limit-of-detection (LOD) compared to thicker membranes. This performance is even improved when compared to commercial membranes (with 20 nm pore diameter and 60 μm pore thickness), when applied for human IgG as model analyte. A label-free immunosensor using a monoclonal antibody against anti-catalase was also constructed, allowing the detection of catalase in the range of 50-500 ng/mL and with a LOD of 1.5 ng/mL. The viability of the constructed sensor in real samples was also tested by spiking artificial wound infection solutions, providing recovery values of 110% and 118%. Discussion: The results obtained in this work evidence the key relevance of the nanochannel thickness in the biosensing performance. Such findings will illuminate nanoporous membrane biosensing research, considering thickness as a relevant parameter in electrochemical-based nanoporous membrane sensors.
Collapse
Affiliation(s)
- C. Toyos-Rodríguez
- NanoBioAnalysis Group, Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
- Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Spain
| | - D. Valero-Calvo
- NanoBioAnalysis Group, Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
- Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Spain
| | - A. Iglesias-Mayor
- NanoBioAnalysis Group, Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
- Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Spain
| | - A. de la Escosura-Muñiz
- NanoBioAnalysis Group, Department of Physical and Analytical Chemistry, University of Oviedo, Oviedo, Spain
- Biotechnology Institute of Asturias, University of Oviedo, Oviedo, Spain
| |
Collapse
|
15
|
Ito H, Shoji Y, Matsumoto KI, Fukuhara K, Nakanishi I. Enhanced Inhibition of Cancer Cell Migration by a Planar Catechin Analog. ACS Med Chem Lett 2024; 15:310-313. [PMID: 38352823 PMCID: PMC10860178 DOI: 10.1021/acsmedchemlett.3c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/30/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Cancer cell migration is related to malignancy and patient prognosis. We previously reported that intracellular reactive oxygen species (ROS) promoted cancer cellular migration and invasion and that an antioxidant enzyme could help to attenuate the malignancy. Catechin is known as an antioxidant, and we have developed a catechin analog, planar catechin, which showed an antioxidant activity significantly stronger than that of the parent (+)-catechin. In this study, we examined the effects of the planar catechin on the migration of gastric normal and cancer cells. A scratched assay showed that the planar catechin suppressed the cellular migration rates in both normal and cancer cells, while the prevention levels in cancer cells were remarkable compared to the normal cells. These results suggest that the planar catechin with the enhanced antioxidant activity effectively scavenged the ROS overexpressed in the cancer cells and inhibited cancer cellular activities, including migration.
Collapse
Affiliation(s)
- Hiromu Ito
- Quantum
RedOx Chemistry Team, Institute for Quantum Life Science (iQLS), Quantum
Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| | - Yoshimi Shoji
- Quantum
RedOx Chemistry Team, Institute for Quantum Life Science (iQLS), Quantum
Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
- Quantitative
RedOx Sensing Group, Department of Radiation Regulatory Science Research,
Institute for Radiological Sciences (NIRS), Quantum Life and Medical
Science Directorate (QLMS), National Institutes
for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| | - Ken-ichiro Matsumoto
- Quantitative
RedOx Sensing Group, Department of Radiation Regulatory Science Research,
Institute for Radiological Sciences (NIRS), Quantum Life and Medical
Science Directorate (QLMS), National Institutes
for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| | - Kiyoshi Fukuhara
- Division
of Medicinal Chemistry, Department of Pharmaceutical Sciences, Showa University School of Pharmacy, Tokyo 142-8555, Japan
| | - Ikuo Nakanishi
- Quantum
RedOx Chemistry Team, Institute for Quantum Life Science (iQLS), Quantum
Life and Medical Science Directorate (QLMS), National Institutes for Quantum Science and Technology (QST), Chiba 263-8555, Japan
| |
Collapse
|
16
|
Michel P, Żbikowska HM, Rudnicka K, Gonciarz W, Krupa A, Gajewski A, Machała P, Olszewska MA. Anti-inflammatory, antioxidant and photoprotective activity of standardised Gaultheria procumbens L. leaf, stem, and fruit extracts in UVA-irradiated human dermal fibroblasts. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117219. [PMID: 37742876 DOI: 10.1016/j.jep.2023.117219] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/10/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Gaultheria procumbens L. is a polyphenolic-rich medicinal and food plant. Its leaves, stems, and fruits are traditional anti-inflammatory, antipyretic, antioxidant, and antimicrobial herbal medicines used to treat internal and external inflammation-related ailments, including rheumatic diseases, influenza, the common cold, fever, and skin and periodontal problems. Moreover, G. procumbens leaf extract is used for skin care as an anti-ageing and anti-wrinkle ingredient. AIM OF THE STUDY Various environmental factors, especially solar ultraviolet radiation, accelerate skin ageing by promoting oxidative stress and inflammation. Despite the dermoprotective and anti-ageing applications, the impact of G. procumbens on human dermal fibroblasts is unknown. Therefore, the study aimed to evaluate the anti-inflammatory, antioxidant, and photoprotective activity of G. procumbens standardised leaf, stem, and fruit extracts in cellular models, including human dermal fibroblasts (Hs68 cells) under UVA-irradiation, the primary pro-ageing skin stressor. MATERIALS AND METHODS Hs68 fibroblasts were pre-treated (24h) with G. procumbens extracts (0.5-100 μg/mL) or reference compounds followed by UVA-irradiation (8 J/cm2). Cell viability and metabolic activity were measured by CCK-8 and MTT assays in human Hs68 and mouse L929 fibroblasts, respectively. The ROS level, SOD, and GST activities were estimated by fluorescence and spectrophotometric techniques. The pro-inflammatory potential (NF-κB transcription factor activation) was checked using THP1-Blue™ NF-κB cells, and the anti-inflammatory activity was studied by measuring IL-8, ICAM-1, and NF-κB levels and phosphorylation of Erk kinase in LPS-stimulated Hs68 cells by spectrophotometry and confocal microscopy. The UVA-induced DNA damage and cell migration were evaluated by comet and scratch assays, respectively. RESULTS The extracts did not affect the metabolic activity of mouse L929 fibroblasts and the viability of unirradiated human Hs68 cells. Additionally, the extracts noticeably enhanced the viability of UVA-irradiated Hs68 cells up to 115-120% (p < 0.001) for stem and leaf extract at 25 μg/mL. All extracts in a wide concentration range (0.5-100 μg/mL) did not activate monocytes or induce the NF-κB transcription factor in LPS-stimulated Hs68 fibroblasts. On the other hand, the extracts (5-25 μg/mL) restored the activity of endogenous antioxidant enzymes, i.e., SOD and GST, up to 120-140% (p < 0.001) in the UVA-irradiated Hs68 cells. Moreover, a statistically significant reduction of ROS, IL-8, ICAM-1, and NF-κB levels by up to 48%, 88%, 43%, and 39%, respectively (p < 0.001) and strong suppression of Erk kinase activation was observed for the extracts (25-50 μg/mL) in LPS-stimulated human fibroblasts. The total DNA damage (% tail DNA) in irradiated Hs68 cells was also strongly decreased by up to 66-69% (p < 0.001) at 50 μg/mL. However, the treatment with the extracts did not relevantly enhance the cell migration of Hs68 fibroblasts. CONCLUSIONS The results suggest that G. procumbens may effectively protect human skin fibroblast from UVA irradiation. The leaf and stem extracts were the most potent antioxidants, while fruit and stem extracts revealed the strongest anti-inflammatory activity. The observed effects support the traditional use of aerial plant parts (leaves, stems, and fruits) in treating inflammation-related skin disorders cross-linked with oxidative stress and the topical application of Gaultheria extracts as anti-ageing agents intended for skin care.
Collapse
Affiliation(s)
- Piotr Michel
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151, Lodz, Poland.
| | - Halina Małgorzata Żbikowska
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Karolina Rudnicka
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | - Weronika Gonciarz
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | - Agnieszka Krupa
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | - Adrian Gajewski
- Department of Immunology and Allergy, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland.
| | - Paulina Machała
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Monika Anna Olszewska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151, Lodz, Poland.
| |
Collapse
|
17
|
Kim M, Heo H, Hong S, Lee J, Lee H. Synergistic Effect of Madecassoside and Rosmarinic Acid Against Ultraviolet B-Induced Photoaging in Human Skin Fibroblasts. J Med Food 2023; 26:919-926. [PMID: 37976111 DOI: 10.1089/jmf.2023.k.0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023] Open
Abstract
Madecassoside (MD) and rosmarinic acid (RA) are well-known compounds with wound healing and antiaging effects. We demonstrated the synergistic protective activity of the MD-RA combination in Hs68 cells against ultraviolet B (UVB)-induced photoaging. The cell viabilities of MD, RA, and MD-RA combinations at various ratios (9:1, 8:2, 7:3, 6:4, 5:5, 4:6, 3:7, 2:8, and 1:9, v/v) were measured to compare their protective effects against UVB radiation. The synergistic interaction between MD and RA was confirmed using a combination index. The strongest effect of the MD-RA combination was observed at a ratio of 3:7. The combination of MD-RA 3:7 exerted a synergistic effect against UVB-induced changes in cell viability, as well as superoxide dismutase activity, reactive oxygen species, glutathione, catalase activity, and malondialdehyde levels. Moreover, the inhibitory effect of the MD-RA combination (3:7) on matrix metalloproteinases and total collagen production was higher than that of MD or RA alone. These results demonstrated that the MD-RA combination (3:7) generated a strong synergistic effect against UVB-induced photoaging in Hs68 cells. Overall, our results provide scientific evidence to support the development of a new combination therapy for skin protection against UVB-induced photoaging through the synergistic interaction between MD and RA. These natural compounds are promising options for antiaging and skin protection in the cosmetic and pharmaceutical industries.
Collapse
Affiliation(s)
- Minha Kim
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Huijin Heo
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Seonghwa Hong
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Junsoo Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Korea
| | - Hana Lee
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
18
|
Biyashev D, Siwicka ZE, Onay UV, Demczuk M, Xu D, Ernst MK, Evans ST, Nguyen CV, Son FA, Paul NK, McCallum NC, Farha OK, Miller SD, Gianneschi NC, Lu KQ. Topical application of synthetic melanin promotes tissue repair. NPJ Regen Med 2023; 8:61. [PMID: 37919305 PMCID: PMC10622536 DOI: 10.1038/s41536-023-00331-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 09/22/2023] [Indexed: 11/04/2023] Open
Abstract
In acute skin injury, healing is impaired by the excessive release of reactive oxygen species (ROS). Melanin, an efficient scavenger of radical species in the skin, performs a key role in ROS scavenging in response to UV radiation and is upregulated in response to toxic insult. In a chemical injury model in mice, we demonstrate that the topical application of synthetic melanin particles (SMPs) significantly decreases edema, reduces eschar detachment time, and increases the rate of wound area reduction compared to vehicle controls. Furthermore, these results were replicated in a UV-injury model. Immune array analysis shows downregulated gene expression in apoptotic and inflammatory signaling pathways consistent with histological reduction in apoptosis. Mechanistically, synthetic melanin intervention increases superoxide dismutase (SOD) activity, decreases Mmp9 expression, and suppresses ERK1/2 phosphorylation. Furthermore, we observed that the application of SMPs caused increased populations of anti-inflammatory immune cells to accumulate in the skin, mirroring their decrease from splenic populations. To enhance antioxidant capacity, an engineered biomimetic High Surface Area SMP was deployed, exhibiting increased wound healing efficiency. Finally, in human skin explants, SMP intervention significantly decreased the damage caused by chemical injury. Therefore, SMPs are promising and effective candidates as topical therapies for accelerated wound healing, including via pathways validated in human skin.
Collapse
Affiliation(s)
- Dauren Biyashev
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Zofia E Siwicka
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center. Northwestern University, Evanston, IL, USA
| | - Ummiye V Onay
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michael Demczuk
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Dan Xu
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Madison K Ernst
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Spencer T Evans
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Cuong V Nguyen
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Florencia A Son
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center. Northwestern University, Evanston, IL, USA
| | - Navjit K Paul
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center. Northwestern University, Evanston, IL, USA
| | - Naneki C McCallum
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center. Northwestern University, Evanston, IL, USA
| | - Omar K Farha
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center. Northwestern University, Evanston, IL, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nathan C Gianneschi
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center. Northwestern University, Evanston, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
- Department of Chemistry, University of California San Diego, San Diego, Ca, USA.
| | - Kurt Q Lu
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
19
|
Chizooma E, Fabyan S, Panda A, Ahmed MH, Panourgia M, Owles H, Webber J. Recurrent abdominal laparotomy wound infection and dehiscence in a patient with zinc and selenium deficiency associated with Roux-en-Y gastric bypass: Case report and literature review. J Family Med Prim Care 2023; 12:2979-2982. [PMID: 38186775 PMCID: PMC10771219 DOI: 10.4103/jfmpc.jfmpc_84_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/24/2023] [Accepted: 05/19/2023] [Indexed: 01/09/2024] Open
Abstract
We report a case of a 72-year-old woman who developed recurrent abdominal laparotomy wound dehiscence and infection following a hepatico-jejunostomy. Her surgical history included a Roux-en-Y gastric bypass (RYGB) that was carried out 11 years ago. Upon further assessment in the current admission, she was found to be deficient in both selenium and zinc. Daily multivitamin and mineral tablets and a nutritional supplement drink were prescribed to address her deficiencies. After 2 months of supplementation, the laparotomy wound had made significant healing progress and no further surgical input was required. This case illustrates the importance of assessing micronutrient levels in patients with a history of bariatric surgery who present with poor wound healing and infection. Bariatric patients should also be educated about the risks of nutritional deficiencies and encouraged to adhere to prescribed dietary and lifestyle changes. Importantly, family medicine and primary care physicians need to consider an adequate level of supplementation of micronutrients in all patients with RYGB surgery.
Collapse
Affiliation(s)
- Eugine Chizooma
- Medical School, The University of Buckingham, Buckingham, United Kingdom
| | - Sarah Fabyan
- Medical School, The University of Buckingham, Buckingham, United Kingdom
| | - Akhila Panda
- Medical School, The University of Buckingham, Buckingham, United Kingdom
| | - Mohamed Hassan Ahmed
- Department of Medicine and HIV Metabolic Clinic, Milton Keynes University Hospital NHS Foundation Trust, Eaglestone, Milton Keynes, Buckinghamshire, UK
| | - Maria Panourgia
- Department of Geriatric Medicine, Milton Keynes University Hospital NHS Foundation Trust, Eaglestone, Milton Keynes, Buckinghamshire, UK
| | - Henry Owles
- Department of Geriatric Medicine, Milton Keynes University Hospital NHS Foundation Trust, Eaglestone, Milton Keynes, Buckinghamshire, UK
| | - Jane Webber
- Department of Orthopaedic and Trauma, Milton Keynes University Hospital NHS Foundation Trust, Eaglestone, Milton Keynes, Buckinghamshire, UK
| |
Collapse
|
20
|
König A, Sadova N, Dornmayr M, Schwarzinger B, Neuhauser C, Stadlbauer V, Wallner M, Woischitzschläger J, Müller A, Tona R, Kofel D, Weghuber J. Combined acid hydrolysis and fermentation improves bioactivity of citrus flavonoids in vitro and in vivo. Commun Biol 2023; 6:1083. [PMID: 37880345 PMCID: PMC10600125 DOI: 10.1038/s42003-023-05424-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023] Open
Abstract
Many bioactive plant compounds, known as phytochemicals, have the potential to improve health. Unfortunately, the bioavailability and bioactivity of phytochemicals such as polyphenolic flavonoids are reduced due to conjugation with sugar moieties. Here, we combine acid hydrolysis and tailored fermentation by lactic acid bacteria (Lactiplantibacillus plantarum) to convert the biologically less active flavonoid glycosides hesperidin and naringin into the more active aglycones hesperetin and naringenin. Using a comprehensive approach, we identify the most effective hydrolysis and fermentation conditions to increase the concentration of the aglycones in citrus extracts. The higher cellular transport and bioactivity of the biotransformed citrus extract are also demonstrated in vitro and in vivo. Superior antioxidant, anti-inflammatory and cell migration activities in vitro, as well as intestinal barrier protecting and antioxidant activities in Drosophila melanogaster are identified. In conclusion, the presented biotransformation approach improves the bioactivity of flavonoids, clearly traced back to the increase in aglycone content.
Collapse
Affiliation(s)
- Alice König
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels, 4600, Austria
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, Tulln, 3430, Austria
| | - Nadiia Sadova
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels, 4600, Austria
| | - Marion Dornmayr
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels, 4600, Austria
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, Tulln, 3430, Austria
| | - Bettina Schwarzinger
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels, 4600, Austria
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, Tulln, 3430, Austria
| | - Cathrina Neuhauser
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels, 4600, Austria
| | - Verena Stadlbauer
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels, 4600, Austria
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, Tulln, 3430, Austria
| | - Melanie Wallner
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels, 4600, Austria
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, Tulln, 3430, Austria
| | - Jakob Woischitzschläger
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels, 4600, Austria
| | - Andreas Müller
- TriPlant AG, Industriestrasse 17, Buetzberg, 4922, Switzerland
| | - Rolf Tona
- TriPlant AG, Industriestrasse 17, Buetzberg, 4922, Switzerland
| | - Daniel Kofel
- TriPlant AG, Industriestrasse 17, Buetzberg, 4922, Switzerland
| | - Julian Weghuber
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, Wels, 4600, Austria.
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1D, Tulln, 3430, Austria.
| |
Collapse
|
21
|
Ouhaddi Y, Dalisson B, Rastinfard A, Gilardino M, Watters K, Job D, Azizi-Mehr P, Merle G, Lasagabaster AV, Barralet J. Necrosis reduction efficacy of subdermal biomaterial mediated oxygen delivery in ischemic skin flaps. BIOMATERIALS ADVANCES 2023; 153:213519. [PMID: 37392519 DOI: 10.1016/j.bioadv.2023.213519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/24/2023] [Accepted: 06/10/2023] [Indexed: 07/03/2023]
Abstract
Inadequate tissue blood supply as may be found in a wound or a poorly vascularised graft, can result in tissue ischemia and necrosis. As revascularization is a slow process relative to the proliferation of bacteria and the onset of tissue necrosis, extensive tissue damage and loss can occur before healing is underway. Necrosis can develop rapidly, and treatment options are limited such that loss of tissue following necrosis onset is considered unavoidable and irreversible. Oxygen delivery from biomaterials exploiting aqueous decomposition of peroxy-compounds has shown some potential in overcoming the supply limitations by creating oxygen concentration gradients higher than can be attained physiologically or by air saturated solutions. We sought to test whether subdermal oxygen delivery from a material composite that was buffered and contained a catalyst, to reduce hydrogen peroxide release, could ameliorate necrosis in a 9 × 2 cm flap in a rat model that reliably underwent 40 % necrosis if untreated. Blood flow in this flap reduced from near normal to essentially zero, along its 9 cm length and subdermal perforator vessel anastomosis was physically prevented by placement of a polymer sheet. In the middle, low blood flow region of the flap, treatment significantly reduced necrosis based on measurements from photographs and histological micrographs. No change was observed in blood vessel density but significant differences in HIF1-α, inducible nitric oxide synthase and liver arginase were observed with oxygen delivery.
Collapse
Affiliation(s)
- Yassine Ouhaddi
- Division of Orthopaedics, Department of Surgery, Faculty of Medicine and Health Sciences, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
| | - Benjamin Dalisson
- Faculty of Dentistry, McGill University, 2001 McGill College Avenue, Montreal, QC, H3A 1G1, Canada
| | - Arghavan Rastinfard
- Division of Orthopaedics, Department of Surgery, Faculty of Medicine and Health Sciences, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
| | - Mirko Gilardino
- Division of Pastic and Reconstructive Surgery, Department of Surgery, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
| | - Kevin Watters
- Department of Pathology, Glen Site, McGill University Health Centre, Montreal, Quebec H4A 3J1, Canada
| | - Dario Job
- Division of Orthopaedics, Department of Surgery, Faculty of Medicine and Health Sciences, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
| | - Parsa Azizi-Mehr
- Division of Orthopaedics, Department of Surgery, Faculty of Medicine and Health Sciences, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
| | - Geraldine Merle
- Division of Orthopaedics, Department of Surgery, Faculty of Medicine and Health Sciences, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
| | - Arturo Vela Lasagabaster
- Division of Pastic and Reconstructive Surgery, Department of Surgery, Montreal General Hospital, Montreal, QC H3G 1A4, Canada
| | - Jake Barralet
- Division of Orthopaedics, Department of Surgery, Faculty of Medicine and Health Sciences, Montreal General Hospital, Montreal, QC H3G 1A4, Canada; Faculty of Dentistry, McGill University, 2001 McGill College Avenue, Montreal, QC, H3A 1G1, Canada.
| |
Collapse
|
22
|
Verma A, Rai N, Gupta P, Singh S, Tiwari H, Chauhan SB, Kailashiya V, Gautam V. Exploration of in vitro cytotoxic and in ovo antiangiogenic activity of ethyl acetate extract of Penicillium oxalicum. ENVIRONMENTAL TOXICOLOGY 2023; 38:2509-2523. [PMID: 37461856 DOI: 10.1002/tox.23889] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/27/2023] [Accepted: 06/29/2023] [Indexed: 09/19/2023]
Abstract
Fungal endophytes have established new paradigms in the area of biomedicine due to their ability to produce metabolites of pharmacological importance. The present study reports the in vitro cytotoxic and in ovo antiangiogenic activity of the ethyl acetate (EA) extract of Penicillium oxalicum and their chemical profiling through Gas Chromatography-Mass Spectrometry analysis. Treatment of the EA extract of P. oxalicum to the selected human breast cancer cell lines (MDA-MB-231 and MCF-7) leads to the reduced glucose uptake and increased nitric oxide production suggesting the cytotoxic activity of EA extract of P. oxalicum. Our results further show that treatment of EA extract of P. oxalicum attenuates the colony number, cell migration ability and alters nuclear morphology in both the human breast cancer cell lines. Furthermore, the treatment of EA extract of P. oxalicum mediates apoptosis by increasing the expression of BAX, P21, FADD, and CASPASE-8 genes, with increased Caspase-3 activity. Additionally, in ovo chorioallantoic membrane (CAM) assay showed that the treatment of EA extract of P. oxalicum leads to antiangiogenic activity with perturbed formation of blood vessels. Overall, our findings suggest that the EA extract of P. oxalicum show in vitro cytotoxic and antiproliferative activity against human breast cancer cell lines, and in ovo antiangiogenic activity in CAM model.
Collapse
Affiliation(s)
- Ashish Verma
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Nilesh Rai
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Priyamvada Gupta
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Swati Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Harshita Tiwari
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shashi Bhushan Chauhan
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vikas Kailashiya
- Department of Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vibhav Gautam
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
23
|
Deng QS, Gao Y, Rui BY, Li XR, Liu PL, Han ZY, Wei ZY, Zhang CR, Wang F, Dawes H, Zhu TH, Tao SC, Guo SC. Double-network hydrogel enhanced by SS31-loaded mesoporous polydopamine nanoparticles: Symphonic collaboration of near-infrared photothermal antibacterial effect and mitochondrial maintenance for full-thickness wound healing in diabetes mellitus. Bioact Mater 2023; 27:409-428. [PMID: 37152712 PMCID: PMC10160601 DOI: 10.1016/j.bioactmat.2023.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/24/2023] [Accepted: 04/02/2023] [Indexed: 05/09/2023] Open
Abstract
Diabetic wound healing has become a serious healthcare challenge. The high-glucose environment leads to persistent bacterial infection and mitochondrial dysfunction, resulting in chronic inflammation, abnormal vascular function, and tissue necrosis. To solve these issues, we developed a double-network hydrogel, constructed with pluronic F127 diacrylate (F127DA) and hyaluronic acid methacrylate (HAMA), and enhanced by SS31-loaded mesoporous polydopamine nanoparticles (MPDA NPs). As components, SS31, a mitochondria-targeted peptide, maintains mitochondrial function, reduces mitochondrial reactive oxygen species (ROS) and thus regulates macrophage polarization, as well as promoting cell proliferation and migration, while MPDA NPs not only scavenge ROS and exert an anti-bacterial effect by photothermal treatment under near-infrared light irradiation, but also control release of SS31 in response to ROS. This F127DA/HAMA-MPDA@SS31 (FH-M@S) hydrogel has characteristics of adhesion, superior biocompatibility and mechanical properties which can adapt to irregular wounds at different body sites and provide sustained release of MPDA@SS31 (M@S) NPs. In addition, in a diabetic rat full thickness skin defect model, the FH-M@S hydrogel promoted macrophage M2 polarization, collagen deposition, neovascularization and wound healing. Therefore, the FH-M@S hydrogel exhibits promising therapeutic potential for skin regeneration.
Collapse
Affiliation(s)
- Qing-Song Deng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yuan Gao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Bi-Yu Rui
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
| | - Xu-Ran Li
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Po-Lin Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zi-Yin Han
- Department of Rheumatology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, No.29, Xinglongxiang, Tianning District, Changzhou, 213000, China
| | - Zhan-Ying Wei
- Shanghai Clinical Research Centre of Bone Diseases, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chang-Ru Zhang
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Fei Wang
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Second Road, Shanghai, 200025, China
| | - Helen Dawes
- Faculty of Health and Life Science, Oxford Brookes University, Headington Road, Oxford, OX3 0BP, UK
- NIHR Oxford Health Biomedical Research Centre, Oxford, OX3 7JX, UK
- College of Medicine and Health, St Lukes Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, UK
| | - Tong-He Zhu
- School of Chemistry and Chemical Engineering, Shanghai Engineering Research Center of Pharmaceutical Intelligent Equipment, Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Non-Coding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, China
| | - Shi-Cong Tao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Corresponding author. Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| | - Shang-Chun Guo
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- School of Medicine, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai, 200025, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- Corresponding author. Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
24
|
Atayik MC, Çakatay U. Redox signaling in impaired cascades of wound healing: promising approach. Mol Biol Rep 2023; 50:6927-6936. [PMID: 37341917 DOI: 10.1007/s11033-023-08589-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023]
Abstract
In the aging communities, wound healing management is a quite remarkable problem especially in elderly individuals. The optimal level of healing of wounds developed spontaneously or due to surgery is of critical importance in order to prevent the negative effects that may occur due to delayed healing (for example, organ or system damage caused by infections that may develop in the wound area). The deteriorated subcellular redox signaling is considered to be as the main factor in the chronicity of wounds. The pivotal role of mitochondria in redox regulation reveals the importance of modulation of redox signaling pathways in senescent cells. Secretory factors released upon the acquisition of senescence-associated secretory phenotype (SASP) function in a paracrine manner to disseminate impaired tissue redox status by affecting the redox metabolome of nearby cells, which could promote age-related pro-inflammatory pathologies. Evaluating the wound-site redox regulation in impaired redox signaling pathways may help prevent the formation of chronic wounds and the development of long-term complications of the wounds, especially in the elderly. Using the redox modulatory pharmacologically active substances targeting the senescent cells in chronic wound areas hopefully opens a new avenue in wound management. As the signaling mechanisms of wound healing and its relationship with advanced age become more clearly understood, many promising therapeutic approaches and redox modulator substances are coming into clinical view for the management of chronic wounds.
Collapse
Affiliation(s)
- Mehmet Can Atayik
- Cerrahpasa Faculty of Medicine, Medical Program, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ufuk Çakatay
- Cerrahpasa Faculty of Medicine, Department of Medical Biochemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| |
Collapse
|
25
|
Han X, Ju LS, Irudayaraj J. Oxygenated Wound Dressings for Hypoxia Mitigation and Enhanced Wound Healing. Mol Pharm 2023; 20:3338-3355. [PMID: 37338289 PMCID: PMC10324602 DOI: 10.1021/acs.molpharmaceut.3c00352] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
Oxygen is a critical factor that can regulate the wound healing processes such as skin cell proliferation, granulation, re-epithelialization, angiogenesis, and tissue regeneration. However, hypoxia, a common occurrence in the wound bed, can impede normal healing processes. To enhance wound healing, oxygenation strategies that could effectively increase wound oxygen levels are effective. The present review summarizes wound healing stages and the role of hypoxia in wound healing and overviews current strategies to incorporate various oxygen delivery or generating materials for wound dressing, including catalase, nanoenzyme, hemoglobin, calcium peroxide, or perfluorocarbon-based materials, in addition to photosynthetic bacteria and hyperbaric oxygen therapy. Mechanism of action, oxygenation efficacy, and potential benefits and drawbacks of these dressings are also discussed. We conclude by highlighting the importance of design optimization in wound dressings to address the clinical needs to improve clinical outcomes.
Collapse
Affiliation(s)
- Xiaoxue Han
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green St., Urbana, Illinois 61801, United States
- Cancer
Center at Illinois, Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
- Beckman
Institute, Holonyak Micro and Nanotechnology Laboratory, Carle R. Woese Institute for Genomic Biology, Urbana, Illinois 61801, United States
| | - Leah Suyeon Ju
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green St., Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
| | - Joseph Irudayaraj
- Department
of Bioengineering, University of Illinois
at Urbana−Champaign, 1102 Everitt Lab, 1406 W. Green St., Urbana, Illinois 61801, United States
- Cancer
Center at Illinois, Urbana, Illinois 61801, United States
- Biomedical
Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, Illinois 61801, United States
- Beckman
Institute, Holonyak Micro and Nanotechnology Laboratory, Carle R. Woese Institute for Genomic Biology, Urbana, Illinois 61801, United States
| |
Collapse
|
26
|
Nurzynska A, Klimek K, Michalak A, Dos Santos Szewczyk K, Arczewska M, Szalaj U, Gagos M, Ginalska G. Do Curdlan Hydrogels Improved with Bioactive Compounds from Hop Exhibit Beneficial Properties for Skin Wound Healing? Int J Mol Sci 2023; 24:10295. [PMID: 37373441 DOI: 10.3390/ijms241210295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic wounds, among others, are mainly characterized by prolonged inflammation associated with the overproduction of reactive oxygen species and pro-inflammatory cytokines by immune cells. As a consequence, this phenomenon hinders or even precludes the regeneration process. It is known that biomaterials composed of biopolymers can significantly promote the process of wound healing and regeneration. The aim of this study was to establish whether curdlan-based biomaterials modified with hop compounds can be considered as promising candidates for the promotion of skin wound healing. The resultant biomaterials were subjected to an evaluation of their structural, physicochemical, and biological in vitro and in vivo properties. The conducted physicochemical analyses confirmed the incorporation of bioactive compounds (crude extract or xanthohumol) into the curdlan matrix. It was found that the curdlan-based biomaterials improved with low concentrations of hop compounds possessing satisfactory hydrophilicity, wettability, porosity, and absorption capacities. In vitro, tests showed that these biomaterials were non-cytotoxic, did not inhibit the proliferation of skin fibroblasts, and had the ability to inhibit the production of pro-inflammatory interleukin-6 by human macrophages stimulated with lipopolysaccharide. Moreover, in vivo studies showed that these biomaterials were biocompatible and could promote the regeneration process after injury (study on Danio rerio larvae model). Thus, it is worth emphasizing that this is the first paper demonstrating that a biomaterial based on a natural biopolymer (curdlan) improved with hop compounds may have biomedical potential, especially in the context of skin wound healing and regeneration.
Collapse
Affiliation(s)
- Aleksandra Nurzynska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
| | - Katarzyna Klimek
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
| | - Agnieszka Michalak
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, Chodzki 4 a Street, 20-093 Lublin, Poland
| | | | - Marta Arczewska
- Department of Biophysics, University of Life Sciences, Akademicka 13 Street, 20-033 Lublin, Poland
- Department of Biophysics, Medical University of Lublin, Jaczewskiego 4 Street, 20-090 Lublin, Poland
| | - Urszula Szalaj
- Laboratory of Nanostructures, Polish Academy of Science, Sokolowska 29/37 Street, 01-142 Warsaw, Poland
- Faculty of Materials Engineering, Warsaw University of Technology, 02-507 Warsaw, Poland
| | - Mariusz Gagos
- Department of Cell Biology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki Street 1, 20-093 Lublin, Poland
| | - Grazyna Ginalska
- Chair and Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
| |
Collapse
|
27
|
Karkada G, Maiya GA, Arany P, KG MR, Adiga S, Kamath SU. Dose-response relationship of photobiomodulation therapy and oxidative stress markers in healing dynamics of diabetic neuropathic ulcers in Wistar rats. J Diabetes Metab Disord 2023; 22:393-400. [PMID: 37255770 PMCID: PMC10225440 DOI: 10.1007/s40200-022-01157-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/30/2022] [Accepted: 11/07/2022] [Indexed: 06/01/2023]
Abstract
Purpose Diabetic foot ulcers are reported to be the most expensive complications of diabetes, with high morbidity and mortality rates. If the necessary care is not provided for the wound to heal, the individual may end up amputating the affected feet. Photobiomodulation therapy is a promising non-pharmacological treatment option for wound healing. The objective of the present study is to establish a dose-response relationship between photobiomodulation therapy and oxidative stress markers in the healing dynamics of diabetic neuropathic ulcers in Wistar rats. Methodology Diabetic neuropathy was induced in 126 Albino Wistar rats. An excisional wound of an area of 2cm2 was made on the neuropathy-induced leg. Photobiomodulation therapy of dosages 4, 6, 8, 10, 12, and 15 J/cm2 of wavelengths 655 and 808 nm was irradiated. The control group animals were kept un-irradiated. The outcome measures were assessed during wound healing's inflammatory, proliferative and remodelling phases. Results In the experimental group, animals treated with photobiomodulation therapy at doses of 4, 6, and 8 J/cm2 showed better wound healing dynamics. Photobiomodulation therapy modulated the reactive oxygen species and antioxidant levels, thereby improving the oxidative status of the wound. Conclusion Photobiomodulation therapy of dosages 4, 6, and 8 J/cm2 is effective and is a promising adjuvant modality in treating diabetic neuropathic ulcers. There was a strong dose-response relationship in the experimental groups treated with 4, 6 and 8 J/ cm2. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-022-01157-2.
Collapse
Affiliation(s)
- Gagana Karkada
- Centre for Diabetic Foot Care and Research, Department of Physiotherapy, Manipal College of Health Professions, Manipal Academy of Higher Education, 576 104 Manipal, Karnataka India
| | - G Arun Maiya
- Department of Physiotherapy, Chief- Centre for Diabetic Foot Care and Research, Manipal College of Health Professions, Manipal Academy of Higher Education, 576 104 Manipal, Karnataka India
| | - Praveen Arany
- Department of Oral Biology, School of Dental Medicine, Engineering & Applied Sciences, University at Buffalo, 3435 Main Street, B36A, Foster Hall- Buffalo, NY14214-8031 New York, USA
| | - Mohandas Rao KG
- Department of Anatomy, Melaka Manipal Medical College- Manipal, Manipal Academy of Higher Education, 576104 Manipal, Karnataka India
| | - Shalini Adiga
- Department of Pharmacology, Kasturba Medical College, Manipal Academy of Higher Education, 576 104 Manipal, Karnataka India
| | - Shobha U Kamath
- Department of Biochemistry, Kasturba Medical College, Manipal Academy of Higher Education, 576104 Manipal, Karnataka India
| |
Collapse
|
28
|
Kartal B, Alimogulları E, Elçi P, Fatsa T, Ören S. RETRACTED ARTICLE: The effects of quercetin on wound healing in the human umbilical vein endothelial cells. Cell Tissue Bank 2023; 24:387. [PMID: 36138273 DOI: 10.1007/s10561-022-10041-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/13/2022] [Indexed: 11/02/2022]
Affiliation(s)
- Bahar Kartal
- Ankara Yıldırım Beyazıt Üniversitesi, Çankaya, Ankara, Turkey.
| | | | - Pınar Elçi
- Ankara Yıldırım Beyazıt Üniversitesi, Çankaya, Ankara, Turkey
| | - Tugba Fatsa
- Ankara Yıldırım Beyazıt Üniversitesi, Çankaya, Ankara, Turkey
| | - Sema Ören
- Ankara Yıldırım Beyazıt Üniversitesi, Çankaya, Ankara, Turkey
| |
Collapse
|
29
|
Kim M, Jang H, Park JH. Balloon Flower Root-Derived Extracellular Vesicles: In Vitro Assessment of Anti-Inflammatory, Proliferative, and Antioxidant Effects for Chronic Wound Healing. Antioxidants (Basel) 2023; 12:1146. [PMID: 37371876 DOI: 10.3390/antiox12061146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Excessive reactive oxygen species (ROS) in wound lesions can lead to oxidative stress and failure of normal wound healing processes, eventually resulting in chronic skin wounds. A multitude of researchers have investigated various natural products with physiological activities, including antioxidant effects, for healing chronic skin wounds. Balloon flower root (BFR), which contains bioactive components such as platycodins, is known for its anti-inflammatory and antioxidant effects. In this study, we isolated BFR-derived extracellular vesicles (BFR-EVs) that possess anti-inflammatory, proliferative, and antioxidant activities via a combination of polyethylene glycol-based precipitation and ultracentrifugation. Our objective was to investigate the potential of BFR-EVs in treating chronic wounds caused by ROS. Despite efficient intracellular delivery, BFR-EVs showed no significant cytotoxicity. In addition, BFR-EVs inhibited the expression of pro-inflammatory cytokine genes in lipopolysaccharide-stimulated RAW 264.7 cells. Furthermore, water-soluble tetrazolium salt-8 assay showed that BFR-EVs had a proliferation-promoting effect on human dermal fibroblasts (HDFs). Scratch closure and transwell migration assays indicated that BFR-EVs could promote the migration of HDFs. When the antioxidant effect of BFR-EVs was evaluated through 2',7'-dichlorodihydrofluorescein diacetate staining and quantitative real-time polymerase chain reaction, the results revealed that BFR-EVs significantly suppressed ROS generation and oxidative stress induced by H2O2 and ultraviolet irradiation. Our findings suggest that BFR-EVs hold the potential as a natural candidate for healing chronic skin wounds.
Collapse
Affiliation(s)
- Manho Kim
- Department of Biomedical Science, Kangwon National University, Chuncheon-si 24341, Republic of Korea
| | - Hyejun Jang
- Department of Biomedical Science, Kangwon National University, Chuncheon-si 24341, Republic of Korea
| | - Ju Hyun Park
- Department of Biomedical Science, Kangwon National University, Chuncheon-si 24341, Republic of Korea
| |
Collapse
|
30
|
Shao M, Bigham A, Yousefiasl S, Yiu CKY, Girish YR, Ghomi M, Sharifi E, Sezen S, Nazarzadeh Zare E, Zarrabi A, Rabiee N, Paiva-Santos AC, Del Turco S, Guo B, Wang X, Mattoli V, Wu A. Recapitulating Antioxidant and Antibacterial Compounds into a Package for Tissue Regeneration: Dual Function Materials with Synergistic Effect. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207057. [PMID: 36775954 DOI: 10.1002/smll.202207057] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/18/2023] [Indexed: 05/11/2023]
Abstract
Oxidative damage and infection can prevent or delay tissue repair. Moreover, infection reinforces reactive oxygen species (ROS) formation, which makes the wound's condition even worse. Therefore, the need for antioxidant and antibacterial agents is felt for tissue regeneration. There are emerging up-and-coming biomaterials that recapitulate both properties into a package, offering an effective solution to turn the wound back into a healing state. In this article, the principles of antioxidant and antibacterial activity are summarized. The review starts with biological aspects, getting the readers to familiarize themselves with tissue barriers against infection. This is followed by the chemistry and mechanism of action of antioxidant and antibacterial materials (dual function). Eventually, the outlook and challenges are underlined to provide where the dual-function biomaterials are and where they are going in the future. It is expected that the present article inspires the designing of dual-function biomaterials to more advanced levels by providing the fundamentals and comparative points of view and paving the clinical way for these materials.
Collapse
Affiliation(s)
- Minmin Shao
- Department of Otorhinolaryngology, The Second Affiliated Hospital of Shanghai University, Wenzhou Central Hospital, Wenzhou, 325000, P. R. China
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), 80125, Naples, Italy
| | - Satar Yousefiasl
- School of Dentistry, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Cynthia K Y Yiu
- Paediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, 999077, P. R. China
| | - Yarabahally R Girish
- Centre for Research and Innovations, School of Natural Sciences, BGSIT, Adichunchanagiri University, B.G. Nagara, Mandya District, Mandya, Karnataka, 571448, India
| | - Matineh Ghomi
- School of Chemistry, Damghan University, Damghan, 36716-45667, Iran
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Serap Sezen
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, 34956, Turkey
| | | | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, 34396, Turkey
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, 6150, Australia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Serena Del Turco
- National Research Council, Institute of Clinical Physiology, 56124, Pisa, Italy
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, 56025, Pontedera, Pisa, Italy
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University Shanghai Medical College, Shanghai, 200032, P. R. China
| | - Virgilio Mattoli
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, 56025, Pontedera, Pisa, Italy
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, P. R. China
| |
Collapse
|
31
|
Prospective features of functional 2D nanomaterial graphene oxide in the wound healing process. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
32
|
Fadilah NIM, Phang SJ, Kamaruzaman N, Salleh A, Zawani M, Sanyal A, Maarof M, Fauzi MB. Antioxidant Biomaterials in Cutaneous Wound Healing and Tissue Regeneration: A Critical Review. Antioxidants (Basel) 2023; 12:antiox12040787. [PMID: 37107164 DOI: 10.3390/antiox12040787] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/21/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
Natural-based biomaterials play an important role in developing new products for medical applications, primarily in cutaneous injuries. A large panel of biomaterials with antioxidant properties has revealed an advancement in supporting and expediting tissue regeneration. However, their low bioavailability in preventing cellular oxidative stress through the delivery system limits their therapeutic activity at the injury site. The integration of antioxidant compounds in the implanted biomaterial should be able to maintain their antioxidant activity while facilitating skin tissue recovery. This review summarises the recent literature that reported the role of natural antioxidant-incorporated biomaterials in promoting skin wound healing and tissue regeneration, which is supported by evidence from in vitro, in vivo, and clinical studies. Antioxidant-based therapies for wound healing have shown promising evidence in numerous animal studies, even though clinical studies remain very limited. We also described the underlying mechanism of reactive oxygen species (ROS) generation and provided a comprehensive review of ROS-scavenging biomaterials found in the literature in the last six years.
Collapse
|
33
|
Criollo-Mendoza MS, Contreras-Angulo LA, Leyva-López N, Gutiérrez-Grijalva EP, Jiménez-Ortega LA, Heredia JB. Wound Healing Properties of Natural Products: Mechanisms of Action. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020598. [PMID: 36677659 PMCID: PMC9867334 DOI: 10.3390/molecules28020598] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023]
Abstract
A wound is the loss of the normal integrity, structure, and functions of the skin due to a physical, chemical, or mechanical agent. Wound repair consists of an orderly and complex process divided into four phases: coagulation, inflammation, proliferation, and remodeling. The potential of natural products in the treatment of wounds has been reported in numerous studies, emphasizing those with antioxidant, anti-inflammatory, and antimicrobial properties, e.g., alkaloids, saponins, terpenes, essential oils, and polyphenols from different plant sources, since these compounds can interact in the various stages of the wound healing process. This review addresses the most current in vitro and in vivo studies on the wound healing potential of natural products, as well as the main mechanisms involved in this activity. We observed sufficient evidence of the activity of these compounds in the treatment of wounds; however, we also found that there is no consensus on the effective concentrations in which the natural products exert this activity. For this reason, it is important to work on establishing optimal treatment doses, as well as an appropriate route of administration. In addition, more research should be carried out to discover the possible side effects and the behavior of natural products in clinical trials.
Collapse
Affiliation(s)
- Marilyn S. Criollo-Mendoza
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a Eldorado Km 5.5, Col. Campo el Diez, Culiacán CP 80110, SI, Mexico
| | - Laura A. Contreras-Angulo
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a Eldorado Km 5.5, Col. Campo el Diez, Culiacán CP 80110, SI, Mexico
| | - Nayely Leyva-López
- Post-Doc. CONACYT-Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km 5.5, Col. Campo El Diez, Culiacán CP 80110, SI, Mexico
| | - Erick P. Gutiérrez-Grijalva
- Cátedras CONACYT-Centro de Investigación en Alimentación y Desarrollo, A.C., Carretera a Eldorado Km 5.5, Col. Campo El Diez, Culiacán CP 80110, SI, Mexico
| | - Luis Alfonso Jiménez-Ortega
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a Eldorado Km 5.5, Col. Campo el Diez, Culiacán CP 80110, SI, Mexico
| | - J. Basilio Heredia
- Centro de Investigación en Alimentación y Desarrollo, A.C. Carretera a Eldorado Km 5.5, Col. Campo el Diez, Culiacán CP 80110, SI, Mexico
- Correspondence:
| |
Collapse
|
34
|
dos Santos CG, Sousa MF, Vieira JIG, de Morais LR, Fernandes AAS, de Oliveira Littiere T, Itajara Otto P, Machado MA, Silva MVGB, Bonafé CM, Braga Magalhães AF, Verardo LL. Candidate genes for tick resistance in cattle: a systematic review combining post-GWAS analyses with sequencing data. JOURNAL OF APPLIED ANIMAL RESEARCH 2022. [DOI: 10.1080/09712119.2022.2096035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Cassiane Gomes dos Santos
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Mariele Freitas Sousa
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - João Inácio Gomes Vieira
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | - Luana Rafaela de Morais
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | | | | | - Pamela Itajara Otto
- Department of Animal Science, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | | | | | - Cristina Moreira Bonafé
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| | | | - Lucas Lima Verardo
- Department of Animal Science, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil
| |
Collapse
|
35
|
Zhang X, Wei P, Yang Z, Liu Y, Yang K, Cheng Y, Yao H, Zhang Z. Current Progress and Outlook of Nano-Based Hydrogel Dressings for Wound Healing. Pharmaceutics 2022; 15:pharmaceutics15010068. [PMID: 36678696 PMCID: PMC9864871 DOI: 10.3390/pharmaceutics15010068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Wound dressing is an important tool for wound management. Designing wound dressings by combining various novel materials and drugs to optimize the peri-wound environment and promote wound healing is a novel concept. Hydrogels feature good ductility, high water content, and favorable oxygen transport, which makes them become some of the most promising materials for wound dressings. In addition, nanomaterials exhibit superior biodegradability, biocompatibility, and colloidal stability in wound healing and can play a role in promoting healing through their nanoscale properties or as carriers of other drugs. By combining the advantages of both technologies, several outstanding and efficient wound dressings have been developed. In this paper, we classify nano-based hydrogel dressings into four categories: hydrogel dressings loaded with a nanoantibacterial drug; hydrogel dressings loaded with oxygen-delivering nanomedicines; hydrogel dressings loaded with nanonucleic acid drugs; and hydrogel dressings loaded with other nanodelivered drugs. The design ideas, advantages, and challenges of these nano-based hydrogel wound dressings are reviewed and analyzed. Finally, we envisaged possible future directions for wound dressings in the context of relevant scientific and technological advances, which we hope will inform further research in wound management.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Pengyu Wei
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Zhengyang Yang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| | - Yishan Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Kairui Yang
- Jun Skincare Co., Ltd., Jiangsu Life Science & Technology Innovation Park, Nanjing 210093, China
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuhao Cheng
- Jun Skincare Co., Ltd., Jiangsu Life Science & Technology Innovation Park, Nanjing 210093, China
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Sciences, Nanjing University, Nanjing 210093, China
- Correspondence: (Y.C.); (H.Y.)
| | - Hongwei Yao
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
- Correspondence: (Y.C.); (H.Y.)
| | - Zhongtao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- National Clinical Research Center for Digestive Diseases, Beijing 100050, China
| |
Collapse
|
36
|
Wang Q, Luo Z, Wu YL, Li Z. Recent Advances in Enzyme‐Based Biomaterials Toward Diabetic Wound Healing. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Qi Wang
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University Xiamen 361102 China
| | - Zheng Luo
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University Xiamen 361102 China
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way Innovis, #08-03 Singapore 138634 Singapore
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology School of Pharmaceutical Sciences Xiamen University Xiamen 361102 China
| | - Zibiao Li
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) 2 Fusionopolis Way Innovis, #08-03 Singapore 138634 Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) Agency for Science, Technology and Research (A*STAR) 2 Fusionopolis Way Singapore 138634 Singapore
- Department of Materials Science and Engineering National University of Singapore 9 Engineering Drive 1 Singapore 117576 Singapore
| |
Collapse
|
37
|
Ahmad N, Khalid MS, Khan MF, Ullah Z. Beneficial effects of topical 6-gingerol loaded nanoemulsion gel for wound and inflammation management with their comparative dermatokinetic. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
38
|
Erarslan S, Coskun-Cevher S. The Effects of FGF2 Application on Oxidative Status of Wound Tissue in Normo- and Hyperglycemic Rats: A Time-Based Study. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022140059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
39
|
Cellular and Molecular Events of Wound Healing and the Potential of Silver Based Nanoformulations as Wound Healing Agents. Bioengineering (Basel) 2022; 9:bioengineering9110712. [PMID: 36421113 PMCID: PMC9687874 DOI: 10.3390/bioengineering9110712] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Chronic wounds are a silent epidemic threatening the lives of many people worldwide. They are associated with social, health care and economic burdens and can lead to death if left untreated. The treatment of chronic wounds is very challenging as it may not be fully effective and may be associated with various adverse effects. New wound healing agents that are potentially more effective are being discovered continuously to combat these chronic wounds. These agents include silver nanoformulations which can contain nanoparticles or nanocomposites. To be effective, the discovered agents need to have good wound healing properties which will enhance their effectiveness in the different stages of wound healing. This review will focus on the process of wound healing and describe the properties of silver nanoformulations that contribute to wound healing.
Collapse
|
40
|
Cinnamaldehyde-Based Self-Nanoemulsion (CA-SNEDDS) Accelerates Wound Healing and Exerts Antimicrobial, Antioxidant, and Anti-Inflammatory Effects in Rats’ Skin Burn Model. Molecules 2022; 27:molecules27165225. [PMID: 36014463 PMCID: PMC9413107 DOI: 10.3390/molecules27165225] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/19/2022] Open
Abstract
Cinnamaldehyde, the main phytoconstituent of the cinnamon oil, has been reported for its potential wound healing activity, associated to its antimicrobial and anti-inflammatory effects. In this study, we are reporting on the cinnamaldehyde-based self-nanoemulsifying drug delivery system (CA-SNEDDS), which was prepared and evaluated for its antimicrobial, antioxidant, anti-inflammatory, and wound healing potential using the rat third-degree skin injury model. The parameters, i.e., skin healing, proinflammatory, and oxidative/antioxidant markers, were evaluated after 3 weeks of treatment regimens with CA-SNEDDS. Twenty rats were divided randomly into negative control (untreated), SNEDDS control, silver sulfadiazine cream positive control (SS), and CA-SNEDDS groups. An aluminum cylinder (120 °C, 10-s duration) was used to induce 3rd-degree skin burns (1-inch square diameter each) on the rat’s dorsum. At the end of the experiment, skin biopsies were collected for biochemical analysis. The significantly reduced wound size in CA-SNEDDS compared to the negative group was observed. CA-SNEDDS-treated and SS-treated groups demonstrated significantly increased antioxidant biomarkers, i.e., superoxide dismutase (SOD) and catalase (CAT), and a significant reduction in the inflammatory marker, i.e., NAP-3, compared to the negative group. Compared to SNEDDS, CA-SNEDDS exhibited a substantial antimicrobial activity against all the tested organisms at the given dosage of 20 µL/disc. Among all the tested microorganisms, MRSA and S. typhimurium were the most susceptible bacteria, with an inhibition zone diameter (IZD) of 17.0 ± 0.3 mm and 19.0 ± 0.9 mm, respectively. CA-SNEDDS also exhibited strong antifungal activity against C. albicans and A. niger, with IZD of 35.0 ± 0.5 mm and 34.0 ± 0.5 mm, respectively. MIC and MBC of CA-SNEDDS for the tested bacteria ranged from 3.125 to 6.25 µL/mL and 6.25 to 12.5 µL/mL, respectively, while the MIC and MBC for C. albicans and A. niger were 1.56 µL/mL and 3.125 µL/mL, respectively. The MBIC and MBEC of CA-SNEDDS were also very significant for the tested bacteria and ranged from 6.25 to 12.5 µL/mL and 12.5 to 25.0 µL/mL, respectively, while the MBIC and MBEC for C. albicans and A. niger were 3.125 µL/mL and 6.25 µL/mL, respectively. Thus, the results indicated that CA-SNEDDS exhibited significant wound healing properties, which appeared to be attributed to the formulation’s antimicrobial, antioxidant, and anti-inflammatory effects.
Collapse
|
41
|
Bioinspired gelatin based sticky hydrogel for diverse surfaces in burn wound care. Sci Rep 2022; 12:13735. [PMID: 35962001 PMCID: PMC9374690 DOI: 10.1038/s41598-022-17054-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022] Open
Abstract
Proper burn wound management considers patient’s compliance and provides an environment to accelerate wound closure. Sticky hydrogels are conducive to wound management. They can act as a preventive infection patch with controlled drug delivery and diverse surface adherence. A hypothesis-driven investigation explores a bioinspired polydopamine property in a gelatin-based hydrogel (GbH) where polyvinyl alcohol and starch function as hydrogel backbone. The GbH displayed promising physical properties with O–H group rich surface. The GbH was sticky onto dry surfaces (glass, plastic and aluminium) and wet surfaces (pork and chicken). The GbH demonstrated mathematical kinetics for a transdermal formulation, and the in vitro and in vivo toxicity of the GbH on test models confirmed the models’ healthy growth and biocompatibility. The quercetin-loaded GbH showed 45–50% wound contraction on day 4 for second-degree burn wounds in rat models that were equivalent to the silver sulfadiazine treatment group. The estimates for tensile strength, biochemicals, connective tissue markers and NF-κB were restored on day 21 in the GbH treated healed wounds to imitate the normal level of the skin. The bioinspired GbH promotes efficient wound healing of second-degree burn wounds in rat models, indicating its pre-clinical applicability.
Collapse
|
42
|
Effectiveness of green tea cream in comparison with silver sulfadiazine cream in the treatment of second degree burn in human subjects. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Abdel-Mageed HM, Abd El Aziz AE, Abdel Raouf BM, Mohamed SA, Nada D. Antioxidant-biocompatible and stable catalase-based gelatin-alginate hydrogel scaffold with thermal wound healing capability: immobilization and delivery approach. 3 Biotech 2022; 12:73. [PMID: 35211369 PMCID: PMC8859020 DOI: 10.1007/s13205-022-03131-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/24/2022] [Indexed: 12/19/2022] Open
Abstract
Hydrogel-based matrix prepared using biopolymers is a new frontier of emerging platforms for enzyme immobilization for biomedical applications. Catalase (CAT) delivery can be effective in inhibiting reactive oxygen species (ROS)-mediated prolongation of the wound healing process. In this study, to improve CAT stability for effective application, gelatin(Gel)–alginate (Alg) biocompatible hydrogel (Gel–Alg), as immobilization support, was prepared using calcium chloride as an ionic cross-linker. High entrapment efficiency of 92% was obtained with 2% Gel and 1.5% Alg. Hydrogel immobilized CAT (CAT–Gel–Alg) showed a wide range of pH from 4 to 9 and temperature stability between 20 to 60 °C, compared to free CAT. CAT–Gel–Alg kinetic parameters revealed an increased Km (24.15 mM) and a decreased Vmax (1.39 µmol H2O2/mg protein min) × 104. CAT–Gel–Alg retained 52% of its original activity after 20 consecutive catalytic runs and displayed improved thermal stability with a higher t1/2 value (half-life of 100.43 vs. 46 min). In addition, 85% of the initial activity was maintained after 8 weeks’ storage at 4 °C. At 24 h after thermal injury, a statistically significant difference in lesion sizes between the treated group and the control group was reported. Finally, our findings suggest that the superior CAT–Gel–Alg stability and reusability are resonant features for efficient biomedical applications, and ROS scavenging by CAT in the post-burn phase offers protection for local treatment of burned tissues with encouraging wound healing kinetics.
Collapse
Affiliation(s)
| | - Amira Emad Abd El Aziz
- Centre of Excellence, Arab Academy for Science and Technology and Maritime Transport, Alexandria, Egypt
| | | | - Saleh Ahmed Mohamed
- Molecular Biology Department, National Research Centre, El Behoth St, Dokki, Cairo, Egypt
| | - Dina Nada
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, Egypt
| |
Collapse
|
44
|
Borges Rosa de Moura F, Antonio Ferreira B, Helena Muniz E, Benatti Justino A, Gabriela Silva A, de Azambuja Ribeiro RIM, Oliveira Dantas N, Lisboa Ribeiro D, de Assis Araújo F, Salmen Espindola F, Christine Almeida Silva A, Carla Tomiosso T. Antioxidant, anti-inflammatory, and wound healing effects of topical silver-doped zinc oxide and silver oxide nanocomposites. Int J Pharm 2022; 617:121620. [PMID: 35219826 DOI: 10.1016/j.ijpharm.2022.121620] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/02/2022] [Accepted: 02/22/2022] [Indexed: 12/11/2022]
Abstract
Silver nanoparticles (Ag-NPs), silver oxide nanoparticles (AgO-NPs), and zinc oxide nanoparticles (ZnO-NPs) have healing, antibacterial, and antioxidant properties. Furthermore, Ag-NPs and ZnO-NPs also have anti-inflammatory properties. In this study, we synthesized a nanocomposite using Ag-ZnO and AgO-NPs (Ag-ZnO/AgO NPs). The structural and morphological properties of nanocrystals and nanocomposite were investigated by X-ray diffraction and scanning electronics microscopic. The wurtzite crystalline structure of Ag-ZnO and two morphologies for the nanocomposite (nanorods and nanoplatelets) were determined. Topical treatment with 1% Ag-ZnO/AgO NPs was compared to untreated wounds (control group). Wounds were induced in the dorsal region of BALB/c mice and evaluated after 3, 7, 14, and 21 days of treatment. The nanocomposite demonstrated anti-inflammatory and antioxidant capacities. In addition, wounds treated with Ag-ZnO/AgO NPs showed accelerated closure, non-cytotoxicity, especially on keratinocytes and collagen deposition, and increased metalloproteinases 2 and 9 activity. The nanocomposite improved healing by reducing the inflammatory process, protecting tissues from damage caused by free radicals, and increasing collagen deposition in the extracellular matrix. These characteristics contributed to the accelerated wound closure process. Thus, Ag-ZnO/AgO NPs show potential for can be a strategy for topical use in formulations of new drugs to treat wounds.
Collapse
Affiliation(s)
- Francyelle Borges Rosa de Moura
- Biomedical Sciences Institute, Federal University of Uberlândia, 38400-902, Uberlândia-MG, Brazil; Biology Institute, State University of Campinas, 13083-862, Campinas-SP, Brazil
| | - Bruno Antonio Ferreira
- Biomedical Sciences Institute, Federal University of Uberlândia, 38400-902, Uberlândia-MG, Brazil
| | - Elusca Helena Muniz
- Biomedical Sciences Institute, Federal University of Uberlândia, 38400-902, Uberlândia-MG, Brazil
| | | | - Ana Gabriela Silva
- Laboratory of Experimental Pathology, Federal University of São João del-Rei, 35501-296, Divinópolis-MG, Brazil
| | | | - Noelio Oliveira Dantas
- Laboratory of New Nanostructured and Functional Materials, Physics Institute, Federal University of Alagoas, 57072-900, Maceió-AL, Brazil
| | - Daniele Lisboa Ribeiro
- Biomedical Sciences Institute, Federal University of Uberlândia, 38400-902, Uberlândia-MG, Brazil
| | - Fernanda de Assis Araújo
- Biomedical Sciences Institute, Federal University of Uberlândia, 38400-902, Uberlândia-MG, Brazil
| | - Foued Salmen Espindola
- Biotechnology Institute, Federal University of Uberlândia, 38405-319, Uberlândia-MG, Brazil
| | - Anielle Christine Almeida Silva
- Laboratory of New Nanostructured and Functional Materials, Physics Institute, Federal University of Alagoas, 57072-900, Maceió-AL, Brazil; Post-Graduation Program in Northeast Network in Biotechnology, Federal University of Alagoas, 57072-970 Maceió, AL, Brazil.
| | - Tatiana Carla Tomiosso
- Biomedical Sciences Institute, Federal University of Uberlândia, 38400-902, Uberlândia-MG, Brazil; Biology Institute, State University of Campinas, 13083-862, Campinas-SP, Brazil.
| |
Collapse
|
45
|
Omeka WKM, Liyanage DS, Jeong T, Lee S, Lee J. Molecular characterization, immune responses, and functional activities of manganese superoxide dismutase in disk abalone (Haliotis discus discus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 127:104299. [PMID: 34662686 DOI: 10.1016/j.dci.2021.104299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Superoxide dismutases (SODs) are metalloenzymes that convert superoxide radicals to H2O2 and O2. Although SODs have been extensively studied in mammals and other species, comparative studies in invertebrates, such as abalones, are lacking. Here, we aimed to characterize manganese superoxide dismutase in disk abalone (Haliotis discus discus) (AbMnSOD) by assessing its transcriptional levels at different embryonic developmental stages. Additionally, the temporal expression of AbMnSOD in different abalone tissues in response to bacterial, viral, and pathogen-associated molecular pattern (PAMP) stimuli was investigated. SOD activity was measured at various recombinant protein concentrations via the xanthine oxidase/WST-1 system. Cell viability upon exposure to H2O2, wound healing ability, and subcellular localization were determined in AbMnSOD-transfected cells. AbMnSOD was 681 bp long and contained the SOD-A domain. AbMnSOD expression was higher at the trochophore stage than at the other stages. When challenged with immune stimulants, AbMnSOD showed the highest expression at 6 h post-injection (p.i.) for all stimulants except lipopolysaccharides. In the gills, the highest AbMnSOD expression was observed at 6 h p.i., except for the Vibrio parahaemolyticus challenge. Recombinant AbMnSOD showed concentration-dependent xanthine oxidase activity. Furthermore, AbMnSOD-transfected cells survived H2O2-induced apoptosis and exhibited significant wound gap closure. As expected, AbMnSOD was localized in the mitochondria of the cells. Our findings suggest that AbMnSOD is an essential antioxidant enzyme that participates in regulating developmental processes and defense mechanisms against oxidative stress in hosts.
Collapse
Affiliation(s)
- W K M Omeka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Sukkyoung Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
46
|
Eid BG, Alhakamy NA, Fahmy UA, Ahmed OAA, Md S, Abdel-Naim AB, Caruso G, Caraci F. Melittin and diclofenac synergistically promote wound healing in a pathway involving TGF-β1. Pharmacol Res 2022; 175:105993. [PMID: 34801680 DOI: 10.1016/j.phrs.2021.105993] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 12/23/2022]
Abstract
A dysregulation of the wound healing process can lead to the development of various intractable ulcers or excessive scar formation. Therefore it is essential to identify novel pharmacological strategies to promote wound healing and restore the mechanical integrity of injured tissue. The goal of the present study was to formulate a nano-complex containing melittin (MEL) and diclofenac (DCL) with the aim to evaluate their synergism and preclinical efficacy in an in vivo model of acute wound. After its preparation and characterization, the therapeutic potential of the combined nano-complexes was evaluated. MEL-DCL nano-complexes exhibited better regenerated epithelium, keratinization, epidermal proliferation, and granulation tissue formation, which in turn showed better wound healing activity compared to MEL, DCL, or positive control. The nano-complexes also showed significantly enhanced antioxidant activity. Treatment of wounded skin with MEL-DCL nano-complexes showed significant reduction of interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α) pro-inflammatory markers that was paralleled by a substantial increase in mRNA expression levels of collagen, type I, alpha 1 (Col1A1) and collagen, type IV, alpha 1 (Col4A1), and hydroxyproline content as compared to individual drugs. Additionally, MEL-DCL nano-complexes were able to significantly increase hypoxia-inducible factor 1-alpha (HIF-1α) and transforming growth factor beta 1 (TGF-β1) proteins expression compared to single drugs or negative control group. SB431542, a selective inhibitor of type-1 TGF-β receptor, significantly prevented in our in vitro assay the wound healing process induced by the MEL-DCL nano-complexes, suggesting a key role of TGF-β1 in the wound closure. In conclusion, the nano-complex of MEL-DCL represents a novel pharmacological tool that can be topically applied to improve wound healing.
Collapse
Affiliation(s)
- Basma G Eid
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Scientific chair "Mohamed Saeed Tamer Chair for Pharmaceutical industries", King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Usama A Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Osama A A Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Advanced Drug Delivery Research Group, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Scientific chair "Mohamed Saeed Tamer Chair for Pharmaceutical industries", King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ashraf B Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy.
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; Oasi Research Institute-IRCCS, 94018 Troina, Italy.
| |
Collapse
|
47
|
Bagheri M, Validi M, Gholipour A, Makvandi P, Sharifi E. Chitosan nanofiber biocomposites for potential wound healing applications: Antioxidant activity with synergic antibacterial effect. Bioeng Transl Med 2022; 7:e10254. [PMID: 35111951 PMCID: PMC8780905 DOI: 10.1002/btm2.10254] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/11/2021] [Accepted: 08/29/2021] [Indexed: 12/14/2022] Open
Abstract
Bacterial wound infection is one of the most common nosocomial infections. The unnecessary employment of antibiotics led to raising the growth of antibiotic-resistant bacteria. Accordingly, alternative armaments capable of accelerating wound healing along with bactericidal effects are urgently needed. Considering this, we fabricated chitosan (CS)/polyethylene oxide (PEO) nanofibers armed with antibacterial silver and zinc oxide nanoparticles. The nanocomposites exhibited a high antioxidant effect and antibacterial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. Besides, based on the results of the cell viability assays, the optimum concentration of ZnONPs and AgNPs in the nanofibrous mats is 0.2% w/v and 0.08% w/v respectively and had no cytotoxicity on fibroblast cells. The scaffold also showed good blood compatibility according to the effects of coagulation time. As well as significant fibroblast migration and proliferation on the wound margin, according to wound-healing assay. All in all, the developed biocompatible, antioxidant, and antibacterial Ag-ZnO NPs incorporated CS/PEO nanofibrous mats showed their potential as an effective wound dressing.
Collapse
Affiliation(s)
- Mitra Bagheri
- Department of Microbiology and ImmunologySchool of Medicine, Shahrekord University of Medical SciencesShahrekordIran
| | - Majid Validi
- Department of Medical Laboratory SciencesSchool of Allied Medical Sciences, Shahrekord University of Medical SciencesShahrekordIran
| | - Abolfazl Gholipour
- Department of Microbiology and ImmunologySchool of Medicine, Shahrekord University of Medical SciencesShahrekordIran
- Cellular and Molecular Research CenterShahrekord University of Medical SciencesShahrekordIran
| | - Pooyan Makvandi
- Istituto Italiano di TecnologiaCentre for Micro‐BioRoboticsPisaItaly
| | - Esmaeel Sharifi
- Department of Tissue Engineering and BiomaterialsSchool of Advanced Medical Sciences and Technologies, Hamadan University of Medical SciencesHamadanIran
| |
Collapse
|
48
|
Multifunctional Gelatin/Chitosan Electrospun Wound Dressing Dopped with Undaria pinnatifida Phlorotannin-Enriched Extract for Skin Regeneration. Pharmaceutics 2021; 13:pharmaceutics13122152. [PMID: 34959432 PMCID: PMC8704818 DOI: 10.3390/pharmaceutics13122152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/04/2021] [Accepted: 12/08/2021] [Indexed: 01/14/2023] Open
Abstract
The similarities of electrospun fibers with the skin extracellular matrix (ECM) make them promising structures for advanced wound dressings. Moreover, infection and resistance in wounds are a major health concern that may be reduced with antibacterial wound dressings. In this work, a multifunctional wound dressing was developed based on gelatin/chitosan hybrid fibers dopped with phlorotannin-enrich extract from the seaweed Undaria pinnatifida. The intrinsic electrospun structure properties combined with the antimicrobial and anti-inflammatory properties of phlorotannin-enrich extract will enhance the wound healing process. Electrospun meshes were produced by incorporating 1 or 2 wt% of extract, and the structure without extract was used as a control. Physico-chemical, mechanical, and biological properties were evaluated for all conditions. Results demonstrated that all developed samples presented a homogenous fiber deposition with the average diameters closer to the native ECM fibrils, and high porosities (~90%) that will be crucial to control the wound moist environment. According to the tensile test assays, the incorporation of phlorotannin-enriched extract enhances the elastic performance of the samples. Additionally, the extract incorporation made the structure stable over time since its in vitro degradation rates decreased under enzymatic medium. Extract release profile demonstrated a longstanding delivery (up to 160 days), reaching a maximum value of ~98% over time. Moreover, the preliminary antimicrobial results confirm the mesh's antimicrobial activity against Pseudomonas aeruginosa and Staphylococcus aureus. In terms of biological characterization, no condition presented cytotoxicity effects on hDNF cells, allowing their adhesion and proliferation over 14 days, except the condition of 2 wt% after 7 days. Overall, the electrospun structure comprising phlorotannins-enriched extract is a promising bioactive structure with potential to be used as a drug delivery system for skin regeneration by reducing the bacterial infection in the wound bed.
Collapse
|
49
|
Setyawati A, Wahyuningsih MSH, Nugrahaningsih DAA, Effendy C, Fneish F, Fortwengel G. Piper crocatum Ruiz & Pav. ameliorates wound healing through p53, E-cadherin and SOD1 pathways on wounded hyperglycemia fibroblasts. Saudi J Biol Sci 2021; 28:7257-7268. [PMID: 34867030 PMCID: PMC8626332 DOI: 10.1016/j.sjbs.2021.08.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 01/22/2023] Open
Abstract
INTRODUCTION Piper crocatum Ruiz & Pav (P. crocatum) has been reported to accelerate the diabetic wound healing process empirically. Some studies showed the benefits of P. crocatum in treating various diseases but its mechanisms in diabetic wound healing have never been reported. In the present study we investigated the diabetic wound healing activity of the active fraction of P. crocatum on wounded hyperglycemia fibroblasts (wHFs). METHODS Bioassay-guided fractionation was performed to get the most active fraction. The selected active fraction was applied to wHFs within 72 h incubation. Mimicking a diabetic condition was done using basal glucose media containing an additional 17 mMol/L D-glucose. A wound was simulated via the scratch assay. The collagen deposition was measured using Picro-Sirius Red and wound closure was measured using scratch wound assay. Underlying mechanisms through p53, αSMA, SOD1 and E-cadherin were measured using western blotting. RESULTS We reported that FIV is the most active fraction of P. crocatum. We confirmed that FIV \(7.81 µg/ml, 15.62 µg/ml, 31.25 µg/ml, 62.5 µg/ml, and 125 µg/ml) induced the collagen deposition and wound closure of wHFs. Furthermore, FIV treatment (7.81 µg/ml, 15.62 µg/ml, 31.25 µg/ml) down-regulated the protein expression level of p53 and up-regulated the protein expression levels of αSMA, E-cadherin, and SOD1. DISCUSSION/CONCLUSIONS Our findings suggest that ameliorating collagen deposition and wound closure through protein regulation of p53, αSMA, E-cadherin, and SOD1 are some of the mechanisms by which FIV of P. crocatum is involved in diabetic wound healing therapy.
Collapse
Key Words
- CHCl3, Chloroform
- DMEM, Dulbecco's Modified Eagle's Medium
- Diabetic wound healing
- E-cadherin
- ETOAc, Ethyl acetate
- HFs, Hyperglycemia fibroblasts
- MTT, 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide
- MeOH, Methanol
- Mechanism
- NFs, Normal fibroblasts
- Piper crocatum Ruiz & Pav
- ROS, Reactive oxygen species
- SOD1
- SOD1, superoxide dismutase 1
- TLC, Thin layer chromatography
- WB, Washed benzene
- p53
- p53, tumor suppressor protein
- wHFs, wounded hyperglycemia fibroblasts
- αSMA, alpha smooth muscle actin
Collapse
Affiliation(s)
- Andina Setyawati
- Lecturer of Department of Surgical and Medical Nursing, Faculty of Nursing, Universitas Hasanuddin, Jl. Perintis Kemerdekaan km 10, Kampus Tamalanrea, Makassar 90245, Indonesia
- Student of Department of Medicine and Health Science Doctorate Program, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jl. Senolowo, Sekip Utara, Depok, Sleman, Yogyakarta 55281, Indonesia
| | - Mae Sri Hartati Wahyuningsih
- Lecturer of Department of Pharmacology and Therapy, Centre for Herbal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jl. Senolowo, Sekip Utara, Depok, Sleman, Yogyakarta 55281, Indonesia
| | - Dwi Aris Agung Nugrahaningsih
- Lecturer of Department of Pharmacology and Therapy, Centre for Herbal Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jl. Senolowo, Sekip Utara, Depok, Sleman, Yogyakarta 55281, Indonesia
| | - Christantie Effendy
- Lecturer of Department of Surgical and Medical Nursing, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jl. Senolowo, Sekip Utara, Depok, Sleman, Yogyakarta 55281, Indonesia
| | - Firas Fneish
- Lecturer of Department of Biostatistics, Gottfried Wilhelm Leibniz Universität, Postfach 6009, 30060 Hannover, Germany
| | - Gerhard Fortwengel
- Lecturer of Department of Clinical Research and Epidemiology, Hochschule Hannover University of Applied Sciences & Arts, Expo Plaza 12, 30539 Hannover, Germany
| |
Collapse
|
50
|
Naomi R, Bahari H, Yazid MD, Embong H, Othman F. Zebrafish as a Model System to Study the Mechanism of Cutaneous Wound Healing and Drug Discovery: Advantages and Challenges. Pharmaceuticals (Basel) 2021; 14:1058. [PMID: 34681282 PMCID: PMC8539578 DOI: 10.3390/ph14101058] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022] Open
Abstract
In humans, cutaneous wounds may heal without scars during embryogenesis. However, in the adult phase, the similar wound may undergo a few events such as homeostasis, blood clotting, inflammation, vascularization, and the formation of granulation tissue, which may leave a scar at the injury site. In consideration of this, research evolves daily to improve the healing mechanism in which the wound may heal without scarring. In regard to this, zebrafish (Danio rerio) serves as an ideal model to study the underlying signaling mechanism of wound healing. This is an important factor in determining a relevant drug formulation for wound healing. This review scrutinizes the biology of zebrafish and how this favors the cutaneous wound healing relevant to the in vivo evidence. This review aimed to provide the current insights on drug discovery for cutaneous wound healing based on the zebrafish model. The advantages and challenges in utilizing the zebrafish model for cutaneous wound healing are discussed in this review. This review is expected to provide an idea to formulate an appropriate drug for cutaneous wound healing relevant to the underlying signaling mechanism. Therefore, this narrative review recapitulates current evidence from in vivo studies on the cutaneous wound healing mechanism, which favours the discovery of new drugs. This article concludes with the need for zebrafish as an investigation model for biomedical research in the future to ensure that drug repositions are well suited for human skin.
Collapse
Affiliation(s)
- Ruth Naomi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.N.); (H.B.)
| | - Hasnah Bahari
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (R.N.); (H.B.)
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Hashim Embong
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Fezah Othman
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|