1
|
Lee S, Cha D, Jin JX, Kim GA, Lee BC. Paradoxical effects of inhibition of Δ14-reductase and Δ7-reductase on porcine oocyte maturation and subsequent embryo development after parthenogenetic activation. Theriogenology 2025; 235:245-253. [PMID: 39879673 DOI: 10.1016/j.theriogenology.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025]
Abstract
Follicular fluid-derived meiosis-activating sterol (FF-MAS), an intermediate in the cholesterol biosynthesis pathway, plays a crucial role in the meiotic resumption of mammalian oocytes. Maintaining a high concentration of FF-MAS in vitro is challenging; therefore, AY9944 A-7, an inhibitor of Δ14-reductase [which converts FF-MAS to testis meiosis-activating sterol (T-MAS)] and Δ7-reductase (which converts T-MAS to cholesterol), has been used to enhance oocyte maturation. This study examined the effects of various concentrations (0, 10, 20, and 40 μM) of AY9944 A-7 on porcine oocyte maturation and subsequent embryo development. Results indicate that treatment with 10 and 20 μM AY9944 A-7 during in vitro maturation (IVM) enhanced oocyte nuclear maturation, with 10 μM significantly increasing the transcript expression of oocyte maturation-related genes. However, blastocyst formation rates significantly decreased in oocytes treated with AY9944 A-7 concentrations above 10 μM. To explore these unexpected findings, the study evaluated the effects of AY9944 A-7 on lipid content in oocytes and the sonic hedgehog (SHH) signaling pathway in subsequent parthenogenetic embryos. A concentration-dependent decrease in oocyte lipid content was observed following AY9944 A-7 treatment. Additionally, transcripts of SHH signaling pathway genes were detected in preimplantation-stage parthenogenetic embryos, with reduced expression in the 10 μM AY9944 A-7-treated group. Taken together, AY9944 A-7 supplementation during porcine IVM enhanced oocyte maturation by accumulating FF-MAS, but subsequent embryo development was impaired due to cholesterol deficiency, potentially mediated by SHH signaling downregulation.
Collapse
Affiliation(s)
- Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 34134, Daejeon, Republic of Korea; Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 08826, Seoul, Republic of Korea
| | - Dabin Cha
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, 34134, Daejeon, Republic of Korea
| | - Jun-Xue Jin
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 08826, Seoul, Republic of Korea; Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, 150030, Harbin, China
| | - Geon A Kim
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 08826, Seoul, Republic of Korea; Department of Biomedical Laboratory Science, School of Health Science, Eulji University, 34824, Uijeongbu, Republic of Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, 08826, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Zhang Z, Hu H, Xu Z, Shan C, Chen H, Xie K, Wang K, Wang Y, Zhu Q, Yin Y, Cai H, Zhang Y, Li Z. A Chemically Defined Culture for Tooth Reconstitution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2404345. [PMID: 39601338 PMCID: PMC11744639 DOI: 10.1002/advs.202404345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 11/10/2024] [Indexed: 11/29/2024]
Abstract
It is known for decades that dental epithelium and mesenchyme can reconstitute and regenerate a functional tooth. However, the mechanism of tooth reconstitution remains largely unknown due to the lack of an efficient in vitro model. Here, a chemically defined culture system is established that supports tooth reconstitution, further development with normal anatomy, and prompt response to chemical interference in key developmental signaling pathways, termed as toothoids. By using such a system, it is discovered that, during reconstitution, instead of resetting the developmental clock, dental cells reorganized and restarted from the respective developmental stage where they are originally isolated. Moreover, co-stimulation of Activin A and Hedgehog/Smoothened agonist (SAG) sustained the initial induction of tooth fate from the first branchial arch, which would be otherwise quickly lost in culture. Furthermore, activation of Bone Morphogenetic Protein (BMP) signaling triggered efficient enamel formation in the late-stage toothoids, without affecting the normal development of ameloblasts. Together, these data highlight the toothoid culture as a powerful tool to dissect the molecular mechanisms of tooth reconstitution and regeneration.
Collapse
Affiliation(s)
- Ziwei Zhang
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Hong Hu
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Zhiheng Xu
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Ce Shan
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Hanyi Chen
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Kun Xie
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Kun Wang
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Yifu Wang
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Qing Zhu
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
- Department of AnesthesiologyWest China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of EducationSichuan UniversityNo. 20, Section 3, South Renmin RoadChengdu610041China
| | - Yike Yin
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Haoyang Cai
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Yunqiu Zhang
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
| | - Zhonghan Li
- Center of Growth Metabolism and AgingKey Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationAnimal Disease Prevention and Food Safety Key Laboratory of Sichuan ProvinceCollege of Life SciencesSichuan University24 South Section 1, 1st Ring RoadChengdu610065China
- Department of AnesthesiologyWest China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of EducationSichuan UniversityNo. 20, Section 3, South Renmin RoadChengdu610041China
- State Key Laboratory of Oral DiseaseWest China Hospital of StomatologySichuan UniversityNo. 14, Section 3, South Renmin RoadChengdu610041China
- Yunnan Key Laboratory of StomatologyDepartment of Pediatric DentistryThe Affiliated Stomatology Hospital of Kunming Medical UniversityKunming Medical UniversityNo. 1088, Mid‐Haiyuan RoadKunming650500China
| |
Collapse
|
3
|
Zhang G, Xia G, Zhang C, Li S, Wang H, Zheng D. Combined single cell and spatial transcriptome analysis reveals cellular heterogeneity of hedgehog pathway in gastric cancer. Genes Immun 2024; 25:459-470. [PMID: 39251886 DOI: 10.1038/s41435-024-00297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/04/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
Gastric cancer (GC) is one of the most common and deadly malignancies in the world. Abnormal activation of hedgehog pathway is closely related to tumor development and progression. However, potential therapeutic targets for GC based on the hedgehog pathway have not been clearly identified. In the present study, we combined single-cell sequencing data and spatial transcriptomics to deeply investigate the role of hedgehog pathway in GC. Based on a comprehensive scoring algorithm, we found that fibroblasts from GC tumor tissues were characterized by a highly enriched hedgehog pathway. By analyzing the development process of fibroblasts, we found that CCND1 plays an important role at the end stage of fibroblast development, which may be related to the formation of tumor-associated fibroblasts. Based on spatial transcriptome data, we deeply mined the role of CCND1 in fibroblasts. We found that CCND1-negative and -positive fibroblasts have distinct characteristics. Based on bulk transcriptome data, we verified that highly infiltrating CCND1 + fibroblasts are a risk factor for GC patients and can influence the immune and chemotherapeutic efficacy of GC patients. Our study provides unique insights into GC and hedgehog pathways and also new directions for cancer treatment strategies.
Collapse
Affiliation(s)
- Guoliang Zhang
- Department of General Surgery, Central Hospital of Shaoxing, Shaoxing, Zhejiang, China
| | - Guojun Xia
- Department of General Surgery, Central Hospital of Shaoxing, Shaoxing, Zhejiang, China
| | - Chunxu Zhang
- Department of General Surgery, Central Hospital of Shaoxing, Shaoxing, Zhejiang, China
| | - Shaodong Li
- Department of General Surgery, Central Hospital of Shaoxing, Shaoxing, Zhejiang, China
| | - Huangen Wang
- Department of General Surgery, Central Hospital of Shaoxing, Shaoxing, Zhejiang, China
| | - Difeng Zheng
- Department of General Surgery, Central Hospital of Shaoxing, Shaoxing, Zhejiang, China.
| |
Collapse
|
4
|
Jiang S, Zhang Y, Zheng H, Zhao K, Yang Y, Lai B, Deng X, Wei Y. Spatiotemporal Molecular Architecture of Lineage Allocation and Cellular Organization in Tooth Morphogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403627. [PMID: 39535354 DOI: 10.1002/advs.202403627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/03/2024] [Indexed: 11/16/2024]
Abstract
The remarkable evolution of teeth morphological complexity represents a giant leap for vertebrate. Despite its importance in life history, the understanding of spatiotemporal organization of teeth remains rudimentary. Herein, a high-resolution genome-wide molecular patterning of lineage allocation and cellular organization in tooth morphogenesis is described, constructed by integrating spatial transcriptome and single-cell RNA sequencing. Twelve spatial compartments and seventeen heterogeneous cell clusters linked to tooth morphogenic milestones are identified. Eighty-eight percent of total lineage species has already appeared in the initial tooth bud rather than the generally considered sequential emergence. A previously unrecognized sprouting-like patterning mode of the dental papilla is discovered, that the inner compartment can break through the outer shell compartment to build up the final papilla cusp. Meanwhile, the continuum differentiation hierarchies of enamel knots in time and space are revealed. Furthermore, the regulatory network directing tooth morphogenesis is established, whereby a series of mechanotransduction signals are spatiotemporally involved beyond the well-established classical odontogenesis signals. Finally, genes underlying tooth dysplasia are successfully tracked to highly specific time points and cell types. The results raise the idea that tooth morphogenesis is orchestrated by mechanical niches combined with biochemical signaling.
Collapse
Affiliation(s)
- Shengjie Jiang
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Yuning Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Huimin Zheng
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Kai Zhao
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Yue Yang
- Department of Prosthodontics, The First Clinical Division, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Binbin Lai
- Biomedical Engineering Department, Institute of Advanced Clinical Medicine, Peking University, Beijing, 100191, P. R. China
- Department of Dermatology, Peking University First Hospital, Beijing, 100034, P. R. China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, P. R. China
| | - Yan Wei
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, 100191, P. R. China
| |
Collapse
|
5
|
Shi Y, Yu Y, Li J, Sun S, Han L, Wang S, Guo K, Yang J, Qiu J, Wei W. Spatiotemporal cell landscape of human embryonic tooth development. Cell Prolif 2024; 57:e13653. [PMID: 38867378 PMCID: PMC11503248 DOI: 10.1111/cpr.13653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 06/14/2024] Open
Abstract
Understanding the cellular composition and trajectory of human tooth development is valuable for dentistry and stem cell engineering research. Previous single-cell studies have focused on mature human teeth and developing mouse teeth, but the cell landscape of human embryonic dental development is still unknown. In this study, tooth germ tissues were collected from aborted foetus (17-24 weeks) for single-cell RNA sequence and spatial transcriptome analysis. The cells were classified into seven subclusters of epithelium, and seven clusters of mesenchyme, as well as other cell types such as Schwann cell precursor and pericyte. For epithelium, the stratum intermedium branch and the ameloblast branch diverged from the same set of outer enamel-inner enamel-ALCAM+ epithelial cell lineage, but their spatial distribution of two branches was not clearly distinct. This trajectory received spatially adjacent regulation signals from mesenchyme and pericyte, including JAG1 and APP. The differentiation of pulp cell and pre-odontoblast showed four waves of temporally distinct gene expression, which involved regulation networks of LHX9, DLX5 and SP7, and these genes were regulated by upstream ligands such as the BMP family. This provides a reference landscape for the research on early human tooth development, covering different spatial structures and developmental periods.
Collapse
Affiliation(s)
- Yueqi Shi
- Department of Stomatology, Tongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yejia Yu
- State Key Laboratory of Oral Disease, West China Hospital of StomatologySichuan UniversityChengduChina
| | - Jutang Li
- Hongqiao International Institute of MedicineTongren Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shoufu Sun
- Department of Stomatology, Tongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Li Han
- Department of Obstetrics and Gynecology, Tongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shaoyi Wang
- Department of Oral Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ke Guo
- Department of Stomatology, Tongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jingang Yang
- Department of Stomatology, Tongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jin Qiu
- Department of Obstetrics and Gynecology, Tongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenjia Wei
- Department of Stomatology, Tongren HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
6
|
Nicoletti G, Saler M, Moro U, Faga A. Dysembryogenetic Pathogenesis of Basal Cell Carcinoma: The Evidence to Date. Int J Mol Sci 2024; 25:8452. [PMID: 39126021 PMCID: PMC11312899 DOI: 10.3390/ijms25158452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
The Basal Cell Carcinoma (BCC) is a sort of unique tumour due to its combined peculiar histological features and clinical behaviour, such as the constant binary involvement of the epithelium and the stroma, the virtual absence of metastases and the predilection of specific anatomical sites for both onset and spread. A potential correlation between the onset of BCC and a dysembryogenetic process has long been hypothesised. A selective investigation of PubMed-indexed publications supporting this theory retrieved 64 selected articles published between 1901 and 2024. From our analysis of the literature review, five main research domains on the dysembryogenetic pathogenesis of BCC were identified: (1) The correlation between the topographic distribution of BCC and the macroscopic embryology, (2) the correlation between BCC and the microscopic embryology, (3) the genetic BCC, (4) the correlation between BCC and the hair follicle and (5) the correlation between BCC and the molecular embryology with a specific focus on the Hedgehog signalling pathway. A large amount of data from microscopic and molecular research consistently supports the hypothesis of a dysembryogenetic pathogenesis of BCC. Such evidence is promoting advances in the clinical management of this disease, with innovative targeted molecular therapies on an immune modulating basis being developed.
Collapse
Affiliation(s)
- Giovanni Nicoletti
- Plastic and Reconstructive Surgery, Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Viale Camillo Golgi, 27100 Pavia, Italy;
- Advanced Technologies for Regenerative Medicine and Inductive Surgery Research Center, University of Pavia, Viale Brambilla, 74, 27100 Pavia, Italy;
- Surgery Unit, Azienda Socio-Sanitaria Territoriale di Pavia, Viale Repubblica, 34, 27100 Pavia, Italy
- Integrated Unit of Experimental Surgery, Advanced Microsurgery and Regenerative Medicine, University of Pavia, Via Adolfo Ferrata, 9, 27100 Pavia, Italy
| | - Marco Saler
- Plastic and Reconstructive Surgery, Department of Clinical Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Viale Camillo Golgi, 27100 Pavia, Italy;
- Advanced Technologies for Regenerative Medicine and Inductive Surgery Research Center, University of Pavia, Viale Brambilla, 74, 27100 Pavia, Italy;
- Integrated Unit of Experimental Surgery, Advanced Microsurgery and Regenerative Medicine, University of Pavia, Via Adolfo Ferrata, 9, 27100 Pavia, Italy
| | | | - Angela Faga
- Advanced Technologies for Regenerative Medicine and Inductive Surgery Research Center, University of Pavia, Viale Brambilla, 74, 27100 Pavia, Italy;
| |
Collapse
|
7
|
Semjid D, Ahn H, Bayarmagnai S, Gantumur M, Kim S, Lee JH. Identification of novel candidate genes associated with non-syndromic tooth agenesis in Mongolian families. Clin Oral Investig 2023; 28:56. [PMID: 38157055 PMCID: PMC10756872 DOI: 10.1007/s00784-023-05415-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVES This study aimed to identify genetic variants associated with non-syndromic tooth agenesis (TA) in nine families from Mongolia using whole-exome sequencing (WES) and bioinformatics analysis. MATERIAL AND METHODS The study enrolled 41 participants, including three inherited and six non-inherited families. WES analysis was performed on 14 saliva samples from individuals with non-syndromic TA. The potential candidate genes were identified through variant filtering and segregation analysis. The filtered variants were then analyzed in silico mutation impact analysis. RESULTS WES analysis identified 21 variants associated with TA, and 5 of these variants met all filtering criteria. These variants were located in the exome region of MAST4, ITGA6, PITX2, CACNA1S, and CDON genes. The variant in PITX2 was found in eight participants from inherited and non-inherited families, while the MAST4 variant was identified in 6 participants from inherited families. CONCLUSIONS The study identified various genetic variant candidates associated with TA in different family groups, with PITX2 being the most commonly identified. Our findings suggest that MAST4 may also be a novel candidate gene for TA due to its association with the Wnt signaling pathway. Additionally, we found that five candidate genes related to focal adhesion and calcium channel complex were significant and essential in tooth development. CLINICAL RELEVANCE Identifying new pathogenic genes associated with TA can improve our understanding of the molecular mechanisms underlying the disease, leading to better diagnosis, prevention, and treatment. Early detection of TA based on biomarkers can improve dental management and facilitate orthodontic and prosthetic treatment.
Collapse
Affiliation(s)
- Dejidnorov Semjid
- Department of Prosthodontics, College of Dentistry at Yonsei University, 50-1 Yonsei-Ro, Seodaemoon-Gu, Seoul, 120-752, Republic of Korea
| | - Hyunsoo Ahn
- Department of Life Sciences, Pohang University of Science and Technology, 80 Jigok-Ro, Nam-Gu, Pohang, 790-784, Republic of Korea
| | - Sapaar Bayarmagnai
- Department of Prosthodontics, School of Dentistry, Mongolian National University of Medical Sciences, Chingeltei District, Nuuriin 2-21, Ulaanbaatar, Mongolia
| | - Munkhjargal Gantumur
- Department of Prosthodontics, School of Dentistry, Mongolian National University of Medical Sciences, Chingeltei District, Nuuriin 2-21, Ulaanbaatar, Mongolia
| | - Sanguk Kim
- Department of Life Sciences, Pohang University of Science and Technology, 80 Jigok-Ro, Nam-Gu, Pohang, 790-784, Republic of Korea.
| | - Jae Hoon Lee
- Department of Prosthodontics, College of Dentistry at Yonsei University, 50-1 Yonsei-Ro, Seodaemoon-Gu, Seoul, 120-752, Republic of Korea.
| |
Collapse
|
8
|
Xu J, Iyyanar PPR, Lan Y, Jiang R. Sonic hedgehog signaling in craniofacial development. Differentiation 2023; 133:60-76. [PMID: 37481904 PMCID: PMC10529669 DOI: 10.1016/j.diff.2023.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/25/2023]
Abstract
Mutations in SHH and several other genes encoding components of the Hedgehog signaling pathway have been associated with holoprosencephaly syndromes, with craniofacial anomalies ranging in severity from cyclopia to facial cleft to midfacial and mandibular hypoplasia. Studies in animal models have revealed that SHH signaling plays crucial roles at multiple stages of craniofacial morphogenesis, from cranial neural crest cell survival to growth and patterning of the facial primordia to organogenesis of the palate, mandible, tongue, tooth, and taste bud formation and homeostasis. This article provides a summary of the major findings in studies of the roles of SHH signaling in craniofacial development, with emphasis on recent advances in the understanding of the molecular and cellular mechanisms regulating the SHH signaling pathway activity and those involving SHH signaling in the formation and patterning of craniofacial structures.
Collapse
Affiliation(s)
- Jingyue Xu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| | - Paul P R Iyyanar
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Yu Lan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Departments of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Division of Plastic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA; Departments of Pediatrics and Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
9
|
Cierpikowski P, Leszczyszyn A, Bar J. The Role of Hedgehog Signaling Pathway in Head and Neck Squamous Cell Carcinoma. Cells 2023; 12:2083. [PMID: 37626893 PMCID: PMC10453169 DOI: 10.3390/cells12162083] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/12/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth leading malignancy worldwide, with a poor prognosis and limited treatment options. Molecularly targeted therapies for HNSCC are still lacking. However, recent reports provide novel insights about many molecular alterations in HNSCC that may be useful in future therapies. Therefore, it is necessary to identify new biomarkers that may provide a better prediction of the disease and promising targets for personalized therapy. The poor response of HNSCC to therapy is attributed to a small population of tumor cells called cancer stem cells (CSCs). Growing evidence indicates that the Hedgehog (HH) signaling pathway plays a crucial role in the development and maintenance of head and neck tissues. The HH pathway is normally involved in embryogenesis, stem cell renewal, and tissue regeneration. However, abnormal activation of the HH pathway is also associated with carcinogenesis and CSC regulation. Overactivation of the HH pathway was observed in several tumors, including basal cell carcinoma, that are successfully treated with HH inhibitors. However, clinical studies about HH pathways in HNSCC are still rare. In this review, we summarize the current knowledge and recent advances regarding the HH pathway in HNSCC and discuss its possible implications for prognosis and future therapy.
Collapse
Affiliation(s)
- Piotr Cierpikowski
- Department of Maxillofacial Surgery, The Ludwik Rydygier Specialist Hospital, Osiedle Zlotej Jesieni 1, 31-826 Krakow, Poland
| | - Anna Leszczyszyn
- Dental Surgery Outpatient Clinic, 4th Military Clinical Hospital, Weigla 5, 53-114 Wroclaw, Poland;
| | - Julia Bar
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Bujwida 44, 50-345 Wroclaw, Poland
| |
Collapse
|
10
|
Zimm R, Berio F, Debiais-Thibaud M, Goudemand N. A shark-inspired general model of tooth morphogenesis unveils developmental asymmetries in phenotype transitions. Proc Natl Acad Sci U S A 2023; 120:e2216959120. [PMID: 37027430 PMCID: PMC10104537 DOI: 10.1073/pnas.2216959120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/07/2023] [Indexed: 04/08/2023] Open
Abstract
Developmental complexity stemming from the dynamic interplay between genetic and biomechanic factors canalizes the ways genotypes and phenotypes can change in evolution. As a paradigmatic system, we explore how changes in developmental factors generate typical tooth shape transitions. Since tooth development has mainly been researched in mammals, we contribute to a more general understanding by studying the development of tooth diversity in sharks. To this end, we build a general, but realistic, mathematical model of odontogenesis. We show that it reproduces key shark-specific features of tooth development as well as real tooth shape variation in small-spotted catsharks Scyliorhinus canicula. We validate our model by comparison with experiments in vivo. Strikingly, we observe that developmental transitions between tooth shapes tend to be highly degenerate, even for complex phenotypes. We also discover that the sets of developmental parameters involved in tooth shape transitions tend to depend asymmetrically on the direction of that transition. Together, our findings provide a valuable base for furthering our understanding of how developmental changes can lead to both adaptive phenotypic change and trait convergence in complex, phenotypically highly diverse, structures.
Collapse
Affiliation(s)
- Roland Zimm
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Lyon Cedex07 69364, France
| | - Fidji Berio
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Lyon Cedex07 69364, France
- Institut des Sciences de l’Evolution de Montpellier, University of Montpellier, CNRS, Institut de la Recherche pour le Développement, Montpellier34095, France
| | - Mélanie Debiais-Thibaud
- Institut des Sciences de l’Evolution de Montpellier, University of Montpellier, CNRS, Institut de la Recherche pour le Développement, Montpellier34095, France
| | - Nicolas Goudemand
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, Lyon Cedex07 69364, France
| |
Collapse
|
11
|
Maxillary lateral incisor agenesis is associated with maxillary form: a geometric morphometric analysis. Clin Oral Investig 2023; 27:1063-1070. [PMID: 36036293 PMCID: PMC9985555 DOI: 10.1007/s00784-022-04690-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/15/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND AND OBJECTIVE Agenesis of the maxillary lateral incisor occurs in up to 4% of all individuals and requires multidisciplinary treatment. Its developmental origins, however, are not fully understood. Earlier studies documented genetic factors contributing to agenesis but also an association with craniofacial morphology. In this study, we assessed the association between maxillary morphology and lateral incisor agenesis by a geometric morphometric approach to disentangle the roles of developmental plasticity and genetic factors. MATERIALS AND METHODS We quantified the maxillary alveolar ridge by 19 two-dimensional landmarks on cross-sectional images of 101 computed tomography scans. We compared the shape and size of the alveolar ridge across patients with unilateral or bilateral agenesis of maxillary lateral incisors and patients with extracted or in situ incisors. RESULTS The maxillary alveolar ridge was clearly narrower in patients with agenesis or an extracted incisor compared to the control group, whereas the contralateral side of the unilateral agenesis had an intermediate width. Despite massive individual variation, the ventral curvature of the alveolar ridge was, on average, more pronounced in the bilateral agenesis group compared to unilateral agenesis and tooth extraction. CONCLUSIONS This suggests that pleiotropic genetic and epigenetic factors influence both tooth development and cranial growth, but an inappropriately sized or shaped alveolar process may also inhibit normal formation or development of the tooth bud, thus leading to dental agenesis. CLINICAL RELEVANCE Our results indicate that bilateral agenesis of the lateral incisor tends to be associated with a higher need of bone augmentation prior to implant placement than unilateral agenesis.
Collapse
|
12
|
Hii EPW, Ramanathan A, Pandarathodiyil AK, Wong GR, Sekhar EVS, Binti Talib R, Zaini ZM, Zain RB. Homeobox Genes in Odontogenic Lesions: A Scoping Review. Head Neck Pathol 2023; 17:218-232. [PMID: 36344906 PMCID: PMC10063701 DOI: 10.1007/s12105-022-01481-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Homeobox genes play crucial roles in tooth morphogenesis and development and thus mutations in homeobox genes cause developmental disorders such as odontogenic lesions. The aim of this scoping review is to identify and compile available data from the literatures on the topic of homeobox gene expression in odontogenic lesions. METHOD An electronic search to collate all the information on studies on homeobox gene expression in odontogenic lesions was carried out in four databases (PubMed, EBSCO host, Web of Science and Cochrane Library) with selected keywords. All papers which reported expression of homeobox genes in odontogenic lesions were considered. RESULTS A total of eleven (11) papers describing expression of homeobox genes in odontogenic lesions were identified. Methods of studies included next generation sequencing, microarray analysis, RT-PCR, Western blotting, in situ hybridization, and immunohistochemistry. The homeobox reported in odontogenic lesions includes LHX8 and DLX3 in odontoma; PITX2, MSX1, MSX2, DLX, DLX2, DLX3, DLX4, DLX5, DLX6, ISL1, OCT4 and HOX C in ameloblastoma; OCT4 in adenomatoid odontogenic tumour; PITX2 and MSX2 in primordial odontogenic tumour; PAX9 and BARX1 in odontogenic keratocyst; PITX2, ZEB1 and MEIS2 in ameloblastic carcinoma while there is absence of DLX2, DLX3 and MSX2 in clear cell odontogenic carcinoma. CONCLUSIONS This paper summarized and reviews the possible link between homeobox gene expression in odontogenic lesions. Based on the current available data, there are insufficient evidence to support any definite role of homeobox gene in odontogenic lesions.
Collapse
Affiliation(s)
- Erica Pey Wen Hii
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Anand Ramanathan
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | | | - Gou Rean Wong
- Faculty of Dentistry, MAHSA University, Jenjarom, Selangor, Malaysia
| | - E V Soma Sekhar
- Faculty of Dentistry, MAHSA University, Jenjarom, Selangor, Malaysia
| | | | - Zuraiza Mohamad Zaini
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rosnah Binti Zain
- Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Faculty of Dentistry, MAHSA University, Jenjarom, Selangor, Malaysia
| |
Collapse
|
13
|
Zhang Z, Wang W, Wei Y, Gu Y, Wang Y, Li X, Wang W. Cloning, tissue distribution of desert hedgehog (dhh) gene and expression profiling during different developmental stages of Pseudopleuronectes yokohamae. Gene Expr Patterns 2022; 46:119277. [PMID: 36152995 DOI: 10.1016/j.gep.2022.119277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/12/2022] [Accepted: 09/18/2022] [Indexed: 01/09/2023]
Abstract
As a crucial member of the Hedgehog (Hh) protein family, desert hedgehog (dhh) plays a vital role in multiple developmental processes, cell differentiation and tissue homeostasis. However, it is unclear how it regulates development in fish. In this study, we cloned and characterized the dhh gene from Pseudopleuronectes yokohamae. The full-length cDNA of Pydhh comprises 3194 bp, with a 1386 bp open reading frame (ORF) that encodes a polypeptide of 461 amino acids with a typical HH-signal domain, Hint-N and Hint-C domains. Multiple sequence alignment revealed that the putative PyDHH protein sequence was highly conserved across species, especially in the typical domains. Phylogenetic analysis showed that the PyDHH clustered within the Pleuronectiformes. Real-time quantitative PCR showed that Pydhh was detected in fourteen different tissues in adult-female and adult-male marbled flounder, and nine different tissues in juvenile fish. During early embryonic development stages, the expression of Pydhh was revealed high levels at hatching stage of embryo development. Moreover, the relative expression of Pydhh was significantly higher in the juvenile liver than adults', and higher in the female skin than the male skin. To further investigate its location, the in situ hybridization (ISH) assay was performed, the results showed that the hybridization signal was obviously expressed in the immune organs of Pseudopleuronectes yokohamae, with weak signal expression in the other tissues. Our results suggested that Pydhh is highly conserved among species and plays a vital role in embryonic development and formation of immune related organs.
Collapse
Affiliation(s)
- Zheng Zhang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Wenjie Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Yanchao Wei
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Yixin Gu
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Yue Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Xuejie Li
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China.
| | - Wei Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
14
|
Jing J, Zhang M, Guo T, Pei F, Yang Y, Chai Y. Rodent incisor as a model to study mesenchymal stem cells in tissue homeostasis and repair. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.1068494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The homeostasis of adult tissues, such as skin, hair, blood, and bone, requires continuous generation of differentiated progeny of stem cells. The rodent incisor undergoes constant renewal and can provide an extraordinary model for studying stem cells and their progeny in adult tissue homeostasis, cell differentiation and injury-induced regeneration. Meanwhile, cellular heterogeneity in the mouse incisor also provides an opportunity to study cell-cell communication between different cell types, including interactions between stem cells and their niche environment. More importantly, the molecular and cellular regulatory mechanisms revealed by the mouse incisor have broad implications for other organs. Here we review recent findings and advances using the mouse incisor as a model, including perspectives on the heterogeneity of cells in the mesenchyme, the niche environment, and signaling networks that regulate stem cell behavior. The progress from this field will not only expand the knowledge of stem cells and organogenesis, but also bridge a gap between animal models and tissue regeneration.
Collapse
|
15
|
Nguyen J, Saffari P, Pollack A, Vennam S, Gong X, West R, Pollack J. New Ameloblastoma Cell Lines Enable Preclinical Study of Targeted Therapies. J Dent Res 2022; 101:1517-1525. [PMID: 35689405 PMCID: PMC9608093 DOI: 10.1177/00220345221100773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Ameloblastoma (AB) is an odontogenic tumor that arises from ameloblast-lineage cells. Although relatively uncommon and rarely metastatic, AB tumors are locally invasive and destructive to the jawbone and surrounding structures. Standard-of-care surgical resection often leads to disfigurement, and many tumors will locally recur, necessitating increasingly challenging surgeries. Recent genomic studies of AB have uncovered oncogenic driver mutations, including in the mitogen-activated protein kinase (MAPK) and Hedgehog signaling pathways. Medical therapies targeting those drivers would be a highly desirable alternative or addition to surgery; however, a paucity of existing AB cell lines has stymied clinical translation. To bridge this gap, here we report the establishment of 6 new AB cell lines-generated by "conditional reprogramming"-and their genomic characterization that reveals driver mutations in FGFR2, KRAS, NRAS, BRAF, PIK3CA, and SMO. Furthermore, in proof-of-principle studies, we use the new cell lines to investigate AB oncogene dependency and drug sensitivity. Among our findings, AB cells with KRAS or NRAS mutation (MAPK pathway) are exquisitely sensitive to MEK inhibition, which propels ameloblast differentiation. AB cells with activating SMO-L412F mutation (Hedgehog pathway) are insensitive to vismodegib; however, a distinct small-molecule SMO inhibitor, BMS-833923, significantly reduces both downstream Hedgehog signaling and tumor cell viability. The novel cell line resource enables preclinical studies and promises to speed the translation of new molecularly targeted therapies for the management of ameloblastoma and related odontogenic neoplasms.
Collapse
Affiliation(s)
- J. Nguyen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - P.S. Saffari
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - A.S. Pollack
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - S. Vennam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - X. Gong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - R.B. West
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - J.R. Pollack
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
16
|
Thomas DC, Moorthy JD, Prabhakar V, Ajayakumar A, Pitchumani PK. Role of primary cilia and Hedgehog signaling in craniofacial features of Ellis-van Creveld syndrome. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:36-46. [PMID: 35393766 DOI: 10.1002/ajmg.c.31969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Ellis-van Creveld syndrome (EvC) is an autosomal recessive genetic disorder involving pathogenic variants of EVC and EVC2 genes and classified as a ciliopathy. The syndrome is caused by mutations in the EVC gene on chromosome 4p16, and EVC2 gene, located close to the EVC gene, in a head-to-head configuration. Regardless of the affliction of EVC or EVC2, the clinical features of Ellis-van Creveld syndrome are similar. Both these genes are expressed in tissues such as, but not limited to, the heart, liver, skeletal muscle, and placenta, while the predominant expression in the craniofacial tissues is that of EVC2. Biallelic mutations of EVC and EVC2 affect Hedgehog signaling and thereby ciliary function, crucial factors in vertebrate development, culminating in the phenotypical features characteristic of EvC. The clinical features of Ellis-van Creveld syndrome are consistent with significant abnormalities in morphogenesis and differentiation of the affected tissues. The robust role of primary cilia in histodifferentiation and morphodifferentiation of oral, perioral, and craniofacial tissues is becoming more evident in the most recent literature. In this review, we give a summary of the mechanistic role of primary cilia in craniofacial development, taking Ellis-van Creveld syndrome as a representative example.
Collapse
Affiliation(s)
- Davis C Thomas
- Center for TMD and Orofacial Pain, Rutgers School of Dental Medicine, Newark, New Jersey, USA
| | | | | | | | | |
Collapse
|
17
|
Hermans F, Hemeryck L, Lambrichts I, Bronckaers A, Vankelecom H. Intertwined Signaling Pathways Governing Tooth Development: A Give-and-Take Between Canonical Wnt and Shh. Front Cell Dev Biol 2021; 9:758203. [PMID: 34778267 PMCID: PMC8586510 DOI: 10.3389/fcell.2021.758203] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
Teeth play essential roles in life. Their development relies on reciprocal interactions between the ectoderm-derived dental epithelium and the underlying neural crest-originated mesenchyme. This odontogenic process serves as a prototype model for the development of ectodermal appendages. In the mouse, developing teeth go through distinct morphological phases that are tightly controlled by epithelial signaling centers. Crucial molecular regulators of odontogenesis include the evolutionarily conserved Wnt, BMP, FGF and sonic hedgehog (Shh) pathways. These signaling modules do not act on their own, but are closely intertwined during tooth development, thereby outlining the path to be taken by specific cell populations including the resident dental stem cells. Recently, pivotal Wnt-Shh interaction and feedback loops have been uncovered during odontogenesis, showing conservation in other developing ectodermal appendages. This review provides an integrated overview of the interplay between canonical Wnt and Shh throughout mouse tooth formation stages, extending from the initiation of dental placode to the fully formed adult tooth.
Collapse
Affiliation(s)
- Florian Hermans
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium.,Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Lara Hemeryck
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| | - Ivo Lambrichts
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Annelies Bronckaers
- Biomedical Research Institute (BIOMED), Department of Cardio and Organ Systems, UHasselt-Hasselt University, Diepenbeek, Belgium
| | - Hugo Vankelecom
- Laboratory of Tissue Plasticity in Health and Disease, Cluster of Stem Cell and Developmental Biology, Department of Development and Regeneration, Leuven Stem Cell Institute, KU Leuven (University of Leuven), Leuven, Belgium
| |
Collapse
|
18
|
Mao C, Lai Y, Liao C, Chen J, Hong Y, Ren C, Wang C, Lu M, Chen W. Revitalizing mouse diphyodontic dentition formation by inhibiting the sonic hedgehog signaling pathway. Dev Dyn 2021; 251:759-776. [PMID: 34719835 DOI: 10.1002/dvdy.436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/24/2021] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tooth regeneration depends on the longevity of the dental epithelial lamina. However, the exact mechanism of dental lamina regression has not yet been clarified. To explore the role of the Sonic hedgehog (Shh) signaling pathway in regression process of the rudimentary successional dental lamina (RSDL) in mice, we orally administered a single dose of a Shh signaling pathway inhibitor to pregnant mice between embryonic day 13.0 (E13.0) and E17.0. RESULTS We observed that the Shh signaling pathway inhibitor effectively inhibited the expression of Shh signaling pathway components and revitalized RSDL during E15.0-E17.0 by promoting cell proliferation. In addition, mRNA-seq, reverse transcription plus polymerase chain reaction (RT-qPCR), and immunohistochemical analyses indicated that diphyodontic dentition formation might be related to FGF signal up-regulation and the Sostdc1-Wnt negative feedback loop. CONCLUSIONS Overall, our results indicated that the Shh signaling pathway may play an initial role in preventing further development of mouse RSDL in a time-dependent manner.
Collapse
Affiliation(s)
- Chuanqing Mao
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yongzhen Lai
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Caiyu Liao
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jiangping Chen
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Stomatology, Fujian Medical University, Fuzhou, China
| | - Yuhang Hong
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Institute of Stomatology, Fujian Medical University, Fuzhou, China
| | - Chengyan Ren
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Institute of Stomatology, Fujian Medical University, Fuzhou, China
| | - Chengyong Wang
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Meng Lu
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Weihui Chen
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Fujian Key Laboratory of Oral Diseases & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Fujian Biological Materials Engineering and Technology Center of Stomatology, Fuzhou, China
| |
Collapse
|
19
|
Shi Y, Yu Y, Zhou Y, Zhao J, Zhang W, Zou D, Song W, Wang S. A single-cell interactome of human tooth germ from growing third molar elucidates signaling networks regulating dental development. Cell Biosci 2021; 11:178. [PMID: 34600587 PMCID: PMC8487529 DOI: 10.1186/s13578-021-00691-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/16/2021] [Indexed: 01/17/2023] Open
Abstract
Background Development of dental tissue is regulated by extensive cell crosstalk based on various signaling molecules, such as bone morphogenetic protein (BMP) and fibroblast growth factor (FGF) pathways. However, an intact network of the intercellular regulation is still lacking. Result To gain an unbiased and comprehensive view of this dental cell interactome, we applied single-cell RNA-seq on immature human tooth germ of the growing third molar, discovered refined cell subtypes, and applied multiple network analysis to identify the central signaling pathways. We found that immune cells made up over 80% of all tooth germ cells, which exhibited profound regulation on dental cells via Transforming growth factor-β, Tumor necrosis factor (TNF) and Interleukin-1. During osteoblast differentiation, expression of genes related to extracellular matrix and mineralization was continuously elevated by signals from BMP and FGF family. As for the self-renewal of apical papilla stem cell, BMP-FGFR1-MSX1 pathway directly regulated the G0-to-S cell cycle transition. We also confirmed that Colony Stimulating Factor 1 secreted from pericyte and TNF Superfamily Member 11 secreted from osteoblast regulated a large proportion of genes related to osteoclast transformation from macrophage and monocyte. Conclusions We constructed the intercellular signaling networks that regulated the essential developmental process of human tooth, which served as a foundation for future dental regeneration engineering and the understanding of oral pathology. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-021-00691-5.
Collapse
Affiliation(s)
- Yueqi Shi
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Stomatology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yejia Yu
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqiong Zhou
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Zhao
- Department of Orthodontics, Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjie Zhang
- Department of Prosthodontics, Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Duohong Zou
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weichen Song
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Shaoyi Wang
- Department of Oral Surgery, Shanghai Key Laboratory of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
20
|
Aryal YP, Kim TY, Lee ES, An CH, Kim JY, Yamamoto H, Lee S, Lee Y, Sohn WJ, Neupane S, Kim JY. Signaling Modulation by miRNA-221-3p During Tooth Morphogenesis in Mice. Front Cell Dev Biol 2021; 9:697243. [PMID: 34513833 PMCID: PMC8424101 DOI: 10.3389/fcell.2021.697243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/03/2021] [Indexed: 11/13/2022] Open
Abstract
miRNAs are conserved short non-coding RNAs that play a role in the modulation of various biological pathways during tissue and organ morphogenesis. In this study, the function of miRNA-221-3p in tooth development, through its loss or gain in function was evaluated. A variety of techniques were utilized to evaluate detailed functional roles of miRNA-221-3p during odontogenesis, including in vitro tooth cultivation, renal capsule transplantation, in situ hybridization, real-time PCR, and immunohistochemistry. Two-day in vitro tooth cultivation at E13 identified altered cellular events, including cellular proliferation, apoptosis, adhesion, and cytoskeletal arrangement, with the loss and gain of miRNA-221-3p. qPCR analysis revealed alterations in gene expression of tooth-related signaling molecules, including β-catenin, Bmp2, Bmp4, Fgf4, Ptch1, and Shh, when inhibited with miRNA-221-3p and mimic. Also, the inhibition of miRNA-221-3p demonstrated increased mesenchymal localizations of pSMAD1/5/8, alongside decreased expression patterns of Shh and Fgf4 within inner enamel epithelium (IEE) in E13 + 2 days in vitro cultivated teeth. Moreover, 1-week renal transplantation of in vitro cultivated teeth had smaller tooth size with reduced enamel and dentin matrices, along with increased cellular proliferation and Shh expression along the Hertwig epithelial root sheath (HERS), within the inhibitor group. Similarly, in 3-week renal calcified teeth, the overexpression of miRNA-221-3p did not affect tooth phenotype, while the loss of function resulted in long and slender teeth with short mesiodistal length. This study provides evidence that a suitable level of miRNA-221-3p is required for the modulation of major signaling pathways, including Wnt, Bmp, and Shh, during tooth morphogenesis.
Collapse
Affiliation(s)
- Yam Prasad Aryal
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Tae-Young Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Eui-Seon Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Chang-Hyeon An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Ji-Youn Kim
- Department of Dental Hygiene, College of Health Science, Gachon University, Incheon, South Korea
| | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo, Japan
| | - Sanggyu Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Wern-Joo Sohn
- Pre-Major of Cosmetics and Pharmaceutics, Daegu Haany University, Gyeongsan-si, South Korea
| | - Sanjiv Neupane
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, United States
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
21
|
Braunstein JA, Robbins AE, Stewart S, Stankunas K. Basal epidermis collective migration and local Sonic hedgehog signaling promote skeletal branching morphogenesis in zebrafish fins. Dev Biol 2021; 477:177-190. [PMID: 34038742 PMCID: PMC10802891 DOI: 10.1016/j.ydbio.2021.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/23/2022]
Abstract
Teleost fish fins, like all vertebrate limbs, comprise a series of bones laid out in characteristic pattern. Each fin's distal bony rays typically branch to elaborate skeletal networks providing form and function. Zebrafish caudal fin regeneration studies suggest basal epidermal-expressed Sonic hedgehog (Shh) promotes ray branching by partitioning pools of adjacent pre-osteoblasts. This Shh role is distinct from its well-studied Zone of Polarizing Activity role establishing paired limb positional information. Therefore, we investigated if and how Shh signaling similarly functions during developmental ray branching of both paired and unpaired fins while resolving cellular dynamics of branching by live imaging. We found shha is expressed uniquely by basal epidermal cells overlying pre-osteoblast pools at the distal aspect of outgrowing juvenile fins. Lateral splitting of each shha-expressing epidermal domain followed by the pre-osteoblast pools precedes overt ray branching. We use ptch2:Kaede fish and Kaede photoconversion to identify short stretches of shha+basal epidermis and juxtaposed pre-osteoblasts as the Shh/Smoothened (Smo) active zone. Basal epidermal distal collective movements continuously replenish each shha+domain with individual cells transiently expressing and responding to Shh. In contrast, pre-osteoblasts maintain Shh/Smo activity until differentiating. The Smo inhibitor BMS-833923 prevents branching in all fins, paired and unpaired, with surprisingly minimal effects on caudal fin initial skeletal patterning, ray outgrowth or bone differentiation. Staggered BMS-833923 addition indicates Shh/Smo signaling acts throughout the branching process. We use live cell tracking to find Shh/Smo restrains the distal movement of basal epidermal cells by apparent 'tethering' to pre-osteoblasts. We propose short-range Shh/Smo signaling promotes these heterotypic associations to couple instructive basal epidermal collective movements to pre-osteoblast repositioning as a unique mode of branching morphogenesis.
Collapse
Affiliation(s)
- Joshua A Braunstein
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA; Department of Biology, University of Oregon, 77 Klamath Hall, 1370 Franklin Blvd, Eugene, OR, 97403-1210, USA
| | - Amy E Robbins
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA; Department of Biology, University of Oregon, 77 Klamath Hall, 1370 Franklin Blvd, Eugene, OR, 97403-1210, USA
| | - Scott Stewart
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA
| | - Kryn Stankunas
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA; Department of Biology, University of Oregon, 77 Klamath Hall, 1370 Franklin Blvd, Eugene, OR, 97403-1210, USA.
| |
Collapse
|
22
|
Fraser GJ, Standing A, Underwood C, Thiery AP. The Dental Lamina: An Essential Structure for Perpetual Tooth Regeneration in Sharks. Integr Comp Biol 2021; 60:644-655. [PMID: 32663287 DOI: 10.1093/icb/icaa102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In recent years, nonclassical models have emerged as mainstays for studies of evolutionary, developmental, and regenerative biology. Genomic advances have promoted the use of alternative taxa for the study of developmental biology, and the shark is one such emerging model vertebrate. Our research utilizes the embryonic shark (Scyliorhinus canicula) to characterize key developmental and regenerative processes that have been overlooked or not possible to study with more classic developmental models. Tooth development is a major event in the construction of the vertebrate body plan, linked in part with the emergence of jaws. Early development of the teeth and morphogenesis is well known from the murine model, but the process of tooth redevelopment and regeneration is less well known. Here we explore the role of the dental lamina in the development of a highly regenerative dentition in sharks. The shark represents a polyphyodont vertebrate with continuously repeated whole tooth regeneration. This is presented as a major developmental shift from the more derived renewal process that the murine model offers, where incisors exhibit continuous renewal and growth of the same tooth. Not only does the shark offer a study system for whole unit dental regeneration, it also represents an important model for understanding the evolutionary context of vertebrate tooth regeneration.
Collapse
Affiliation(s)
- Gareth J Fraser
- Department of Biology, University of Florida, Gainesville, 32611, FL, USA
| | - Ariane Standing
- Department of Biology, University of Florida, Gainesville, 32611, FL, USA
| | - Charlie Underwood
- Department of Earth and Planetary Sciences, University of London, WC1E 7HX, Birkbeck, London, UK
| | - Alexandre P Thiery
- Department of Craniofacial Development and Stem Cell Biology, King's College London, SE1 9RT, London, UK
| |
Collapse
|
23
|
Hovorakova M, Zahradnicek O, Bartos M, Hurnik P, Stransky J, Stembirek J, Tucker AS. Reawakening of Ancestral Dental Potential as a Mechanism to Explain Dental Pathologies. Integr Comp Biol 2021; 60:619-629. [PMID: 32492167 DOI: 10.1093/icb/icaa053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
During evolution, there has been a trend to reduce both the number of teeth and the location where they are found within the oral cavity. In mammals, the formation of teeth is restricted to a horseshoe band of odontogenic tissue, creating a single dental arch on the top and bottom of the jaw. Additional teeth and structures containing dental tissue, such as odontogenic tumors or cysts, can appear as pathologies. These tooth-like structures can be associated with the normal dentition, appearing within the dental arch, or in nondental areas. The etiology of these pathologies is not well elucidated. Reawakening of the potential to form teeth in different parts of the oral cavity could explain the origin of dental pathologies outside the dental arch, thus such pathologies are a consequence of our evolutionary history. In this review, we look at the changing pattern of tooth formation within the oral cavity during vertebrate evolution, the potential to form additional tooth-like structures in mammals, and discuss how this knowledge shapes our understanding of dental pathologies in humans.
Collapse
Affiliation(s)
- Maria Hovorakova
- Institute of Histology and Embryology, First Faculty of Medicine, Charles University in Prague, Albertov 4, 128 00 Prague 2, Czech Republic.,Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Oldrich Zahradnicek
- Institute of Experimental Medicine, Czech Academy of Sciences, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Martin Bartos
- Department of Stomatology, First Faculty of Medicine, Charles University, General University Hospital in Prague, Katerinska 32, 12801 Prague 2, Czech Republic.,Institute of Anatomy, First Faculty of Medicine, Charles University, U Nemocnice 3, Prague 2, 128 00, Czech Republic
| | - Pavel Hurnik
- Department of Pathology, University Hospital Ostrava, 17. listopadu 1790, Ostrava-Poruba, 708 52, Czech Republic.,Department of Pathology at Faculty of Medicine, University of Ostrava, Syllabova 19, Ostrava-Zabreh, 703 00, Czech Republic
| | - Jiri Stransky
- Department of Oral and Maxillofacial Surgery, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava-Poruba, Czech Republic
| | - Jan Stembirek
- Department of Oral and Maxillofacial Surgery, University Hospital Ostrava, 17. listopadu 1790, 708 52 Ostrava-Poruba, Czech Republic.,Institute of Animal Physiology and Genetics, v.v.i., Czech Academy of Sciences, Veveri 97, 602 00, Brno 2, Czech Republic
| | - Abigail S Tucker
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| |
Collapse
|
24
|
Olaru M, Sachelarie L, Calin G. Hard Dental Tissues Regeneration-Approaches and Challenges. MATERIALS 2021; 14:ma14102558. [PMID: 34069265 PMCID: PMC8156070 DOI: 10.3390/ma14102558] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
With the development of the modern concept of tissue engineering approach and the discovery of the potential of stem cells in dentistry, the regeneration of hard dental tissues has become a reality and a priority of modern dentistry. The present review reports the recent advances on stem-cell based regeneration strategies for hard dental tissues and analyze the feasibility of stem cells and of growth factors in scaffolds-based or scaffold-free approaches in inducing the regeneration of either the whole tooth or only of its component structures.
Collapse
Affiliation(s)
- Mihaela Olaru
- “Petru Poni” Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania;
| | - Liliana Sachelarie
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 2 Muzicii Str., 700399 Iasi, Romania;
- Correspondence:
| | - Gabriela Calin
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 2 Muzicii Str., 700399 Iasi, Romania;
| |
Collapse
|
25
|
Bertonnier-Brouty L, Viriot L, Joly T, Charles C. Gene expression patterns associated with dental replacement in the rabbit, a new model for the mammalian dental replacement mechanisms. Dev Dyn 2021; 250:1494-1504. [PMID: 33760336 DOI: 10.1002/dvdy.335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/28/2021] [Accepted: 03/23/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Unlike many vertebrates with continuous dental replacement, mammals have a maximum of two dental generations. Due to the absence of dental replacement in the laboratory mouse, the mechanisms of the mammalian tooth replacement system are poorly known. In this study, we use the European rabbit as a model for mammalian tooth development and replacement. RESULTS We provide data on some key regulators of tooth development. We detected the presence of SOX2 in both the replacement dental lamina and the rudimentary successional dental lamina of unreplaced molars, indicating that SOX2 may not be sufficient to initiate and maintain tooth replacement. We showed that Shh does not seem to be directly involved in tooth replacement. The transient presence of the rudimentary successional dental lamina in the molar allowed us to identify genes that could be essential for the initiation or the maintenance of tooth replacement. Hence, the locations of Sostdc1, RUNX2, and LEF1 vary between the deciduous premolar, the replacement premolar, and the molar, indicating possible roles in tooth replacement. CONCLUSION According to our observations, initiation and the maintenance of tooth replacement correlate with the presence of LEF1+ cells and the absence of both mesenchymal RUNX2 and epithelial Sostdc1+ cells.
Collapse
Affiliation(s)
- Ludivine Bertonnier-Brouty
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Laurent Viriot
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Laboratoire de Biologie tissulaire et Ingénierie thérapeutique, Université de Lyon, CNRS UMR5305, Université Claude Bernard Lyon 1, Lyon, France
| | - Thierry Joly
- Université de Lyon, VetAgro Sup Isara, Marcy l'Etoile, France
| | - Cyril Charles
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
26
|
Koutlas IG, Anbinder AL, Alshagroud R, Rodrigues Cavalcante AS, Al Kindi M, Crenshaw MM, Sapp JC, Kondolf H, Lindhurst MJ, Dudley JN, Johnston JJ, Ryan E, Rafferty K, Ganguly A, Biesecker LG. Orofacial overgrowth with peripheral nerve enlargement and perineuriomatous pseudo-onion bulb proliferations is part of the PIK3CA-related overgrowth spectrum. HGG ADVANCES 2020; 1:100009. [PMID: 35047831 PMCID: PMC8756490 DOI: 10.1016/j.xhgg.2020.100009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/07/2020] [Indexed: 01/19/2023] Open
Abstract
Individuals with orofacial asymmetry due to mucosal overgrowths, ipsilateral bone and dental aberrations with perineurial hyperplasia and/or perineuriomatous pseudo-onion bulb proliferations, comprise a recognizable clinical entity. In this article, we describe three individuals with this clinical entity and mosaic PIK3CA variants c.3140A>G (p. His1047Arg), c.328_330delGAA (p. Glu110del), and c.1353_1364del (p.Glu453_Leu456del). We conclude that the identification of these mosaic variants in individuals with orofacial asymmetry presenting histopathologically perineurial hyperplasia and/or intraneural pseudo-onion bulb perineurial cell proliferations supports the inclusion of this clinical entity in the PIK3CA-related overgrowth spectrum.
Collapse
Affiliation(s)
- Ioannis G. Koutlas
- Division of Oral and Maxillofacial Pathology, University of Minnesota, Minneapolis, MN, USA
- Corresponding author
| | - Ana-Lia Anbinder
- São Paulo State University (Unesp), Institute of Science and Technology, São José dos Campos, SP, Brazil
| | | | | | | | - Molly M. Crenshaw
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Julie C. Sapp
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Hannah Kondolf
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Marjorie J. Lindhurst
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Jeffrey N. Dudley
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Jennifer J. Johnston
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Elyse Ryan
- Genetic Diagnostic Laboratory, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Keith Rafferty
- Genetic Diagnostic Laboratory, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Arupa Ganguly
- Genetic Diagnostic Laboratory, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Leslie G. Biesecker
- Medical Genomics and Metabolic Genetics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| |
Collapse
|
27
|
Stojanov IJ, Schaefer IM, Menon RS, Wasman J, Gokozan HN, Garcia EP, Baur DA, Woo SB, Sholl LM. Biallelic PTCH1 Inactivation Is a Dominant Genomic Change in Sporadic Keratocystic Odontogenic Tumors. Am J Surg Pathol 2020; 44:553-560. [PMID: 31725470 DOI: 10.1097/pas.0000000000001407] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Keratocystic odontogenic tumors (KCOTs) are locally aggressive odontogenic neoplasms with recurrence rates of up to 60%. Approximately 5% of KCOTs are associated with nevoid basal cell carcinoma (Gorlin) syndrome and 90% of these show genomic inactivation of the PTCH1 gene encoding Patched 1. Sporadic KCOTs reportedly have PTCH1 mutations in 30% of cases, but previous genomic analyses have been limited by low tumor DNA yield. The aim of this study was to identify recurrent genomic aberrations in sporadic KCOTs using a next-generation sequencing panel with complete exonic coverage of sonic hedgehog (SHH) pathway members PTCH1, SMO, SUFU, GLI1, and GLI2. Included were 44 sporadic KCOTs from 23 female and 21 male patients with a median age of 50 years (range, 10 to 82 y) and located in the mandible (N=33) or maxilla (N=11). Sequencing identified PTCH1 inactivating mutations in 41/44 (93%) cases, with biallelic inactivation in 35 (80%) cases; 9q copy neutral loss of heterozygosity targeting the PTCH1 locus was identified in 15 (34%) cases. No genomic aberrations were identified in other sequenced SHH pathway members. In summary, we demonstrate PTCH1 inactivating mutations in 93% of sporadic KCOTs, indicating that SHH pathway alterations are a near-universal event in these benign but locally aggressive neoplasms. The high frequency of complete PTCH1 loss of function may provide a rational target for SHH pathway inhibitors to be explored in future studies.
Collapse
Affiliation(s)
- Ivan J Stojanov
- Departments of Oral and Maxillofacial Medicine.,Department of Pathology, Case Western Reserve University School of Medicine
| | - Inga-Marie Schaefer
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School
| | - Reshma S Menon
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston
| | - Jay Wasman
- Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Hamza N Gokozan
- Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Elizabeth P Garcia
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School
| | - Dale A Baur
- Oral and Maxillofacial Surgery, Case Western Reserve University School of Dental Medicine
| | - Sook-Bin Woo
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston.,Center for Oral Pathology, StrataDx Inc., Lexington, MA
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School
| |
Collapse
|
28
|
Neupane S, Aryal YP, Kim TY, Yeon CY, An CH, Kim JY, Yamamoto H, Lee Y, Sohn WJ, Kim JY. Signaling Modulations of miR-206-3p in Tooth Morphogenesis. Int J Mol Sci 2020; 21:E5251. [PMID: 32722078 PMCID: PMC7432545 DOI: 10.3390/ijms21155251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 01/06/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of naturally occurring small non-coding RNAs that post-transcriptionally regulate gene expression in organisms. Most mammalian miRNAs influence biological processes, including developmental changes, tissue morphogenesis and the maintenance of tissue identity, cell growth, differentiation, apoptosis, and metabolism. The miR-206-3p has been correlated with cancer; however, developmental roles of this miRNA are unclear. In this study, we examined the expression pattern and evaluated the developmental regulation of miR-206-3p during tooth morphogenesis using ex-vivo culture method. The expression pattern of miR-206-3p was examined in the epithelium and mesenchyme of developing tooth germ with stage-specific manners. Perturbation of the expression of miR-206-3p clearly altered expression patterns of dental-development-related signaling molecules, including Axin2, Bmp2, Fgf4, Lef1 and Shh. The gene expression complemented with change in cellular events including, apoptosis and proliferation which caused altered crown and pulp morphogenesis in renal-capsule-calcified teeth. Especially, mislocalization of β-Catenin and SMAD1/5/8 were observed alongside dramatic alterations in the expression patterns of Fgf4 and Shh. Overall, our data suggest that the miR-206-3p regulate the cellular physiology during tooth morphogenesis through modulation of the Wnt, Bmp, Fgf, and Shh signaling pathways to form proper tooth pulp and crown.
Collapse
Affiliation(s)
- Sanjiv Neupane
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu 41940, Korea; (Y.P.A.); (T.-Y.K.); (C.-Y.Y.); (Y.L.)
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Yam Prasad Aryal
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu 41940, Korea; (Y.P.A.); (T.-Y.K.); (C.-Y.Y.); (Y.L.)
| | - Tae-Young Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu 41940, Korea; (Y.P.A.); (T.-Y.K.); (C.-Y.Y.); (Y.L.)
| | - Chang-Yeol Yeon
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu 41940, Korea; (Y.P.A.); (T.-Y.K.); (C.-Y.Y.); (Y.L.)
| | - Chang-Hyeon An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea;
| | - Ji-Youn Kim
- Department of Dental Hygiene, College of Health Science, Gachon University, Incheon 21936, Korea;
| | - Hitoshi Yamamoto
- Department of Histology and Developmental Biology, Tokyo Dental College, Tokyo 101-0061, Japan;
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu 41940, Korea; (Y.P.A.); (T.-Y.K.); (C.-Y.Y.); (Y.L.)
| | - Wern-Joo Sohn
- Pre-Major of Cosmetics and Pharmaceutics, Daegu Haany University, Gyeongsan 38610, Korea;
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu 41940, Korea; (Y.P.A.); (T.-Y.K.); (C.-Y.Y.); (Y.L.)
| |
Collapse
|
29
|
Baranova J, Büchner D, Götz W, Schulze M, Tobiasch E. Tooth Formation: Are the Hardest Tissues of Human Body Hard to Regenerate? Int J Mol Sci 2020; 21:E4031. [PMID: 32512908 PMCID: PMC7312198 DOI: 10.3390/ijms21114031] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
With increasing life expectancy, demands for dental tissue and whole-tooth regeneration are becoming more significant. Despite great progress in medicine, including regenerative therapies, the complex structure of dental tissues introduces several challenges to the field of regenerative dentistry. Interdisciplinary efforts from cellular biologists, material scientists, and clinical odontologists are being made to establish strategies and find the solutions for dental tissue regeneration and/or whole-tooth regeneration. In recent years, many significant discoveries were done regarding signaling pathways and factors shaping calcified tissue genesis, including those of tooth. Novel biocompatible scaffolds and polymer-based drug release systems are under development and may soon result in clinically applicable biomaterials with the potential to modulate signaling cascades involved in dental tissue genesis and regeneration. Approaches for whole-tooth regeneration utilizing adult stem cells, induced pluripotent stem cells, or tooth germ cells transplantation are emerging as promising alternatives to overcome existing in vitro tissue generation hurdles. In this interdisciplinary review, most recent advances in cellular signaling guiding dental tissue genesis, novel functionalized scaffolds and drug release material, various odontogenic cell sources, and methods for tooth regeneration are discussed thus providing a multi-faceted, up-to-date, and illustrative overview on the tooth regeneration matter, alongside hints for future directions in the challenging field of regenerative dentistry.
Collapse
Affiliation(s)
- Juliana Baranova
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Avenida Professor Lineu Prestes 748, Vila Universitária, São Paulo 05508-000, Brazil;
| | - Dominik Büchner
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, NRW, Germany; (D.B.); (M.S.)
| | - Werner Götz
- Oral Biology Laboratory, Department of Orthodontics, Dental Hospital of the University of Bonn, Welschnonnenstraße 17, 53111 Bonn, NRW, Germany;
| | - Margit Schulze
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, NRW, Germany; (D.B.); (M.S.)
| | - Edda Tobiasch
- Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, von-Liebig-Straße 20, 53359 Rheinbach, NRW, Germany; (D.B.); (M.S.)
| |
Collapse
|
30
|
Hosoya A, Shalehin N, Takebe H, Shimo T, Irie K. Sonic Hedgehog Signaling and Tooth Development. Int J Mol Sci 2020; 21:ijms21051587. [PMID: 32111038 PMCID: PMC7084732 DOI: 10.3390/ijms21051587] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 12/11/2022] Open
Abstract
Sonic hedgehog (Shh) is a secreted protein with important roles in mammalian embryogenesis. During tooth development, Shh is primarily expressed in the dental epithelium, from initiation to the root formation stages. A number of studies have analyzed the function of Shh signaling at different stages of tooth development and have revealed that Shh signaling regulates the formation of various tooth components, including enamel, dentin, cementum, and other soft tissues. In addition, dental mesenchymal cells positive for Gli1, a downstream transcription factor of Shh signaling, have been found to have stem cell properties, including multipotency and the ability to self-renew. Indeed, Gli1-positive cells in mature teeth appear to contribute to the regeneration of dental pulp and periodontal tissues. In this review, we provide an overview of recent advances related to the role of Shh signaling in tooth development, as well as the contribution of this pathway to tooth homeostasis and regeneration.
Collapse
Affiliation(s)
- Akihiro Hosoya
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
- Correspondence: ; Tel.: +81-133-23-1938; Fax: +81-133-23-1236
| | - Nazmus Shalehin
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
| | - Hiroaki Takebe
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
| | - Tsuyoshi Shimo
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan;
| | - Kazuharu Irie
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido 061-0293, Japan; (N.S.); (H.T.); (K.I.)
| |
Collapse
|
31
|
Li S, Wei Z, Li G, Zhang Q, Niu S, Xu D, Mao N, Chen S, Gao X, Cai W, Zhu Y, Zhang G, Li D, Yi X, Yang F, Xu H. Silica Perturbs Primary Cilia and Causes Myofibroblast Differentiation during Silicosis by Reduction of the KIF3A-Repressor GLI3 Complex. Theranostics 2020; 10:1719-1732. [PMID: 32042332 PMCID: PMC6993221 DOI: 10.7150/thno.37049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/04/2019] [Indexed: 02/07/2023] Open
Abstract
The purpose of this study was to determine the effects of Kinesin family member 3A (KIF3A) on primary cilia and myofibroblast differentiation during silicosis by regulating Sonic hedgehog (SHH) signalling. Methods: Changes in primary cilia during silicosis and myofibroblast differentiation were detected in silicotic patients, experimental silicotic rats, and a myofibroblast differentiation model induced by SiO2. We also explored the mechanisms underlying KIF3A regulation of Glioma-associated oncogene homologs (GLIs) involved in myofibroblast differentiation. Results: Primary cilia (marked by ARL13B and Ac-α-Tub) and ciliary-related proteins (IFT 88 and KIF3A) were increased initially and then decreased as silicosis progressed. Loss and shedding of primary cilia were also found during silicosis. Treatment of MRC-5 fibroblasts with silica and then transfection of KIF3A-siRNA blocked activation of SHH signalling, but increased GLI2FL as a transcriptional activator of SRF, and reduced the inhibitory effect of GLI3R on ACTA2. Conclusion: Our findings indicate that primary cilia are markedly altered during silicosis and the loss of KIF3A may promote myofibroblast differentiation induced by SiO2.
Collapse
|
32
|
Kumar S, Reynolds K, Ji Y, Gu R, Rai S, Zhou CJ. Impaired neurodevelopmental pathways in autism spectrum disorder: a review of signaling mechanisms and crosstalk. J Neurodev Disord 2019; 11:10. [PMID: 31202261 PMCID: PMC6571119 DOI: 10.1186/s11689-019-9268-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
Background The development of an autistic brain is a highly complex process as evident from the involvement of various genetic and non-genetic factors in the etiology of the autism spectrum disorder (ASD). Despite being a multifactorial neurodevelopmental disorder, autistic patients display a few key characteristics, such as the impaired social interactions and elevated repetitive behaviors, suggesting the perturbation of specific neuronal circuits resulted from abnormal signaling pathways during brain development in ASD. A comprehensive review for autistic signaling mechanisms and interactions may provide a better understanding of ASD etiology and treatment. Main body Recent studies on genetic models and ASD patients with several different mutated genes revealed the dysregulation of several key signaling pathways, such as WNT, BMP, SHH, and retinoic acid (RA) signaling. Although no direct evidence of dysfunctional FGF or TGF-β signaling in ASD has been reported so far, a few examples of indirect evidence can be found. This review article summarizes how various genetic and non-genetic factors which have been reported contributing to ASD interact with WNT, BMP/TGF-β, SHH, FGF, and RA signaling pathways. The autism-associated gene ubiquitin-protein ligase E3A (UBE3A) has been reported to influence WNT, BMP, and RA signaling pathways, suggesting crosstalk between various signaling pathways during autistic brain development. Finally, the article comments on what further studies could be performed to gain deeper insights into the understanding of perturbed signaling pathways in the etiology of ASD. Conclusion The understanding of mechanisms behind various signaling pathways in the etiology of ASD may help to facilitate the identification of potential therapeutic targets and design of new treatment methods.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Biochemistry and Molecular Medicine, Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA, 95817, USA.
| | - Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Ran Gu
- Department of Biochemistry and Molecular Medicine, Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Sunil Rai
- Department of Biochemistry and Molecular Medicine, Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Chengji J Zhou
- Department of Biochemistry and Molecular Medicine, Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis School of Medicine, 2425 Stockton Blvd, Sacramento, CA, 95817, USA.
| |
Collapse
|
33
|
Craniofacial malformations and their association with brain development: the importance of a multidisciplinary approach for treatment. Odontology 2019; 108:1-15. [PMID: 31172336 DOI: 10.1007/s10266-019-00433-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 05/22/2019] [Indexed: 02/08/2023]
Abstract
The craniofacial complex develops mainly in the first trimester of pregnancy, but its final shaping and the development of the teeth extend into the second and third trimesters. It is intimately connected with the development of the brain because of the crucial role the cranial neural crest cells play and the fact that many signals which control craniofacial development originate in the brain and vice versa. As a result, malformations of one organ may affect the development of the other. Similarly, there are developmental connections between the craniofacial complex and the teeth. Craniofacial anomalies are either isolated, resulting from abnormal development of the first two embryonic pharyngeal arches, or part of multiple malformation syndromes affecting many other organs. They may stem from gene mutations, chromosomal aberrations or from environmental causes induced by teratogens. The craniofacial morphologic changes are generally cosmetic, but they often interfere with important functions such as chewing, swallowing and respiration. In addition, they may cause hearing or visual impairment. In this review we discussed only a small number of craniofacial malformations and barely touched upon related anomalies of dentition. Following a brief description of the craniofacial development, we discussed oral clefts, craniofacial microsomia, teratogens that may interfere with craniofacial development resulting in different malformations, the genetically determined craniosynostoses syndromes and few other relatively common syndromes that, in addition to the craniofacial complex, also affect other organs. The understanding of these malformations is important in dentistry as dentists play an integral role in their diagnosis and multidisciplinary treatment.
Collapse
|
34
|
Abramyan J. Hedgehog Signaling and Embryonic Craniofacial Disorders. J Dev Biol 2019; 7:E9. [PMID: 31022843 PMCID: PMC6631594 DOI: 10.3390/jdb7020009] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Since its initial discovery in a Drosophila mutagenesis screen, the Hedgehog pathway has been revealed to be instrumental in the proper development of the vertebrate face. Vertebrates possess three hedgehog paralogs: Sonic hedgehog (Shh), Indian hedgehog (Ihh), and Desert hedgehog (Dhh). Of the three, Shh has the broadest range of functions both in the face and elsewhere in the embryo, while Ihh and Dhh play more limited roles. The Hedgehog pathway is instrumental from the period of prechordal plate formation early in the embryo, until the fusion of the lip and secondary palate, which complete the major patterning events of the face. Disruption of Hedgehog signaling results in an array of developmental disorders in the face, ranging from minor alterations in the distance between the eyes to more serious conditions such as severe clefting of the lip and palate. Despite its critical role, Hedgehog signaling seems to be disrupted through a number of mechanisms that may either be direct, as in mutation of a downstream target of the Hedgehog ligand, or indirect, such as mutation in a ciliary protein that is otherwise seemingly unrelated to the Hedgehog pathway. A number of teratogens such as alcohol, statins and steroidal alkaloids also disrupt key aspects of Hedgehog signal transduction, leading to developmental defects that are similar, if not identical, to those of Hedgehog pathway mutations. The aim of this review is to highlight the variety of roles that Hedgehog signaling plays in developmental disorders of the vertebrate face.
Collapse
Affiliation(s)
- John Abramyan
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI 48128, USA.
| |
Collapse
|
35
|
Zhang R, Yang Q, Qu J, Hong Y, Liu P, Li T. The BRAF p.V600E mutation is a common event in ameloblastomas but is absent in odontogenic keratocysts. Oral Surg Oral Med Oral Pathol Oral Radiol 2019; 129:229-235. [PMID: 31987674 DOI: 10.1016/j.oooo.2019.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/10/2019] [Accepted: 04/06/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Odontogenic keratocysts (OKCs) are jaw lesions with a tendency to recur. PTCH1 gene mutations are common events in most OKCs; however, other genetic alterations underlying OKC pathogenesis have not yet been elucidated. BRAF p.V600E mutations have recently been detected in some odontogenic tumors, such as ameloblastoma and ameloblastic fibroma, although their involvement in OKC is still unclear. In this study we aimed to clarify the presence and/or frequency of BRAF p.V600E mutations in OKCs. STUDY DESIGN Thirty-five cases of OKCs, 13 of which were associated with Gorlin syndrome, were evaluated for BRAF p.V600E mutations by direct sequencing of the formalin-fixed, paraffin-embedded, and frozen tissue samples. Seventeen cases of ameloblastoma and six cases of dentinogenic ghost cell tumor were also included in this study for comparative purposes. RESULTS BRAF p.V600E mutations were not detected in any of the OKCs or dentinogenic ghost cell tumors. In contrast, 14 of 17 cases of ameloblastoma (82.35%) were proven to harbor BRAF p.V600E mutations. CONCLUSION BRAF p.V600E mutations were common in ameloblastomas, as previously reported, but were absent in OKCs and dentinogenic ghost cell tumors. These results further confirmed the noninvolvement of BRAF in OKCs and suggested different pathogenic mechanisms involved in various odontogenic lesions.
Collapse
Affiliation(s)
- Ran Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Qiaolin Yang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Jiafei Qu
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Yingying Hong
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Peng Liu
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, PR China
| | - Tiejun Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, PR China.
| |
Collapse
|
36
|
Xiong Y, Fang Y, Qian Y, Liu Y, Yang X, Huang H, Huang H, Li Y, Zhang X, Zhang Z, Dong M, Qiu M, Zhu XJ, Zhang Z. Wnt Production in Dental Epithelium Is Crucial for Tooth Differentiation. J Dent Res 2019; 98:580-588. [PMID: 30894046 DOI: 10.1177/0022034519835194] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The Wnt ligands display varied spatiotemporal expression in the epithelium and mesenchyme in the developing tooth. Thus far, the actions of these differentially expressed Wnt ligands on tooth development are not clear. Shh expression specifies the odontogenic epithelium during initiation and is consistently restricted to the dental epithelium during tooth development. In this study, we inactivate Wntless ( Wls), the key regulator for Wnt trafficking, by Shh-Cre to investigate how the Wnt ligands produced in the dental epithelium lineage act on tooth development. We find that conditional knockout of Wls by Shh-Cre leads to defective ameloblast and odontoblast differentiation. WlsShh-Cre teeth display reduced canonical Wnt signaling activity in the inner enamel epithelium and the underlying mesenchyme at the early bell stage, as exhibited by target gene expression and BAT-gal staining. The expression of Wnt5a and Wnt10b is not changed in WlsShh-Cre teeth. By contrast, Wnt10a expression is significantly increased in response to epithelial Wls deficiency. In addition, the expression of Hedgehog signaling pathway components Shh, Gli1, and Patched1 was greatly decreased in WlsShh-Cre teeth. Epithelial Wls loss of function in Shh lineage also leads to aberrant cell proliferation in dental epithelium and mesenchyme at embryonic day 16.5; however, the cell apoptosis is unaffected. Moreover, we find that Decorin and Col1a1, the key markers for odontoblast differentiation that are downregulated in WlsShh-Cre teeth, act as direct downstream targets of the canonical Wnt signaling pathway by chromatin immunoprecipitation analysis. Additionally, Decorin and Col1a1 expression can be increased by lithium chloride (LiCl) treatment in the in vitro tooth explants. Taken together, our results suggest that the spatial expression of Wnt ligands within the dental epithelial lineage regulates the differentiation of tooth structures in later stages.
Collapse
Affiliation(s)
- Y Xiong
- 1 Institute of Life Sciences, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - Y Fang
- 1 Institute of Life Sciences, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - Y Qian
- 2 Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Y Liu
- 3 The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - X Yang
- 1 Institute of Life Sciences, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - H Huang
- 1 Institute of Life Sciences, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - H Huang
- 1 Institute of Life Sciences, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - Y Li
- 1 Institute of Life Sciences, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - X Zhang
- 1 Institute of Life Sciences, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - Z Zhang
- 4 Department of Ophthalmology, Tulane Medical Center, Tulane University, New Orleans, LA, USA
| | - M Dong
- 2 Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - M Qiu
- 1 Institute of Life Sciences, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - X J Zhu
- 1 Institute of Life Sciences, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - Z Zhang
- 1 Institute of Life Sciences, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| |
Collapse
|
37
|
Yao Q, Liu J, Xiao L, Wang N. Sonic hedgehog signaling instigates high-fat diet-induced insulin resistance by targeting PPARγ stability. J Biol Chem 2019; 294:3284-3293. [PMID: 30573683 PMCID: PMC6398147 DOI: 10.1074/jbc.ra118.004411] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 11/29/2018] [Indexed: 12/13/2022] Open
Abstract
Obesity is a major risk for patients with chronic metabolic disorders including type 2 diabetes. Sonic hedgehog (Shh) is a morphogen that regulates the pancreas and adipose tissue formation during embryonic development. Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the nuclear receptor superfamily and one of the most important regulators of insulin action. Here, we evaluated the role and mechanism of Shh signaling in obesity-associated insulin resistance and characterized its effect on PPARγ. We showed that Shh expression was up-regulated in subcutaneous fat from obese mice. In differentiated 3T3-L1 and primary cultured adipocytes from rats, recombinant Shh protein and SAG (an agonist of Shh signaling) activated an extracellular signal-regulated kinase (ERK)-dependent noncanonical pathway and induced PPARγ phosphorylation at serine 112, which decreased PPARγ activity. Meanwhile, Shh signaling degraded PPARγ protein via binding of PPARγ to neural precursor cell-expressed developmentally down-regulated protein 4-1 (NEDD4-1). Furthermore, vismodegib, an inhibitor of Shh signaling, attenuated ERK phosphorylation induced by a high fat diet (HFD) and restored PPARγ protein level, thus ameliorating glucose intolerance and insulin resistance in obese mice. Our finding suggests that Shh in subcutaneous fat decreases PPARγ activity and stability via activation of an ERK-dependent noncanonical pathway, resulting in impaired insulin action. Inhibition of Shh may serve as a potential therapeutic approach to treat obesity-related diabetes.
Collapse
Affiliation(s)
- Qinyu Yao
- From the Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061 and
| | - Jia Liu
- From the Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061 and
| | - Lei Xiao
- From the Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061 and
| | - Nanping Wang
- the Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
38
|
Calamari ZT, Kuang-Hsien Hu J, Klein OD. Tissue Mechanical Forces and Evolutionary Developmental Changes Act Through Space and Time to Shape Tooth Morphology and Function. Bioessays 2018; 40:e1800140. [PMID: 30387177 PMCID: PMC6516060 DOI: 10.1002/bies.201800140] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/06/2018] [Indexed: 12/24/2022]
Abstract
Efforts from diverse disciplines, including evolutionary studies and biomechanical experiments, have yielded new insights into the genetic, signaling, and mechanical control of tooth formation and functions. Evidence from fossils and non-model organisms has revealed that a common set of genes underlie tooth-forming potential of epithelia, and changes in signaling environments subsequently result in specialized dentitions, maintenance of dental stem cells, and other phenotypic adaptations. In addition to chemical signaling, tissue forces generated through epithelial contraction, differential growth, and skeletal constraints act in parallel to shape the tooth throughout development. Here recent advances in understanding dental development from these studies are reviewed and important gaps that can be filled through continued application of evolutionary and biomechanical approaches are discussed.
Collapse
Affiliation(s)
- Zachary T. Calamari
- Department of Natural Sciences, Baruch College, City University of New York, New York City, New York, 10010, USA
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, California, 94143, USA
| | - Jimmy Kuang-Hsien Hu
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, California, 94143, USA
| | - Ophir D. Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, San Francisco, California, 94143, USA
- Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco, California, 94143, USA
| |
Collapse
|
39
|
Hedgehog Signaling in Cancer: A Prospective Therapeutic Target for Eradicating Cancer Stem Cells. Cells 2018; 7:cells7110208. [PMID: 30423843 PMCID: PMC6262325 DOI: 10.3390/cells7110208] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/03/2018] [Accepted: 11/05/2018] [Indexed: 02/07/2023] Open
Abstract
The Hedgehog (Hh) pathway is a signaling cascade that plays a crucial role in many fundamental processes, including embryonic development and tissue homeostasis. Moreover, emerging evidence has suggested that aberrant activation of Hh is associated with neoplastic transformations, malignant tumors, and drug resistance of a multitude of cancers. At the molecular level, it has been shown that Hh signaling drives the progression of cancers by regulating cancer cell proliferation, malignancy, metastasis, and the expansion of cancer stem cells (CSCs). Thus, a comprehensive understanding of Hh signaling during tumorigenesis and development of chemoresistance is necessary in order to identify potential therapeutic strategies to target various human cancers and their relapse. In this review, we discuss the molecular basis of the Hh signaling pathway and its abnormal activation in several types of human cancers. We also highlight the clinical development of Hh signaling inhibitors for cancer therapy as well as CSC-targeted therapy.
Collapse
|
40
|
Brinkmann F, Mercker M, Richter T, Marciniak-Czochra A. Post-Turing tissue pattern formation: Advent of mechanochemistry. PLoS Comput Biol 2018; 14:e1006259. [PMID: 29969460 PMCID: PMC6047832 DOI: 10.1371/journal.pcbi.1006259] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 07/16/2018] [Accepted: 06/01/2018] [Indexed: 12/22/2022] Open
Abstract
Chemical and mechanical pattern formation is fundamental during embryogenesis and tissue development. Yet, the underlying molecular and cellular mechanisms are still elusive in many cases. Most current theories assume that tissue development is driven by chemical processes: either as a sequence of chemical patterns each depending on the previous one, or by patterns spontaneously arising from specific chemical interactions (such as “Turing-patterns”). Within both theories, mechanical patterns are usually regarded as passive by-products of chemical pre-patters. However, several experiments question these theories, and an increasing number of studies shows that tissue mechanics can actively influence chemical patterns during development. In this study, we thus focus on the interplay between chemical and mechanical processes during tissue development. On one hand, based on recent experimental data, we develop new mechanochemical simulation models of evolving tissues, in which the full 3D representation of the tissue appears to be critical for obtaining a realistic mechanochemical behaviour. The presented modelling approach is flexible and numerically studied using state of the art finite element methods. Thus, it may serve as a basis to combine simulations with new experimental methods in tissue development. On the other hand, we apply the developed approach and demonstrate that even simple interactions between tissue mechanics and chemistry spontaneously lead to robust and complex mechanochemical patterns. Especially, we demonstrate that the main contradictions arising in the framework of purely chemical theories are naturally and automatically resolved using the mechanochemical patterning theory. During embryogenesis, biological tissues gradually increase their complexity by self-organised creation of diverse chemical and mechanical patterns. Detailed mechanisms driving and controlling these patterns are not well understood. Previous theories mostly assume that these patterns are driven by chemical processes. Based on these theories, mechanical patterns are usually considered being mainly determined by chemical pre-patterns. However, experimental evidence for these theories is sparse, and several inconsistencies have been discovered. Furthermore, an increasing amount of data shows that tissue mechanics plays an important role in pattern formation. In this study, we present 3D computer simulations of evolving tissues to investigate the capacity of mechanochemical interactions for pattern formation. We show that even simple interactions between tissue mechanics and tissue chemistry spontaneously lead to robust chemical and mechanical pattern formation. We additionally demonstrate that main contradictions arising in the framework of purely chemical theories are naturally and automatically resolved using the mechanochemical patterning theory. The presented modelling approach can be used to combine simulations with recent experimental developments, to help unravel one of the big mysteries in biology: The mechanisms of self-organised pattern formation during embryogenesis.
Collapse
Affiliation(s)
- Felix Brinkmann
- Institute of Applied Mathematics, BioQuant and Interdisciplinary Center of Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Moritz Mercker
- Institute of Applied Mathematics, BioQuant and Interdisciplinary Center of Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
- * E-mail:
| | - Thomas Richter
- Magdeburg University, Institute for Analysis and Numerics, Magdeburg, Germany
| | - Anna Marciniak-Czochra
- Institute of Applied Mathematics, BioQuant and Interdisciplinary Center of Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
41
|
Abstract
The basement membrane is a thin but dense, sheet-like specialized type of extracellular matrix that has remarkably diverse functions tailored to individual tissues and organs. Tightly controlled spatial and temporal changes in its composition and structure contribute to the diversity of basement membrane functions. These different basement membranes undergo dynamic transformations throughout animal life, most notably during development. Numerous developmental mechanisms are regulated or mediated by basement membranes, often by a combination of molecular and mechanical processes. A particularly important process involves cell transmigration through a basement membrane because of its link to cell invasion in disease. While developmental and disease processes share some similarities, what clearly distinguishes the two is dysregulation of cells and extracellular matrices in disease. With its relevance to many developmental and disease processes, the basement membrane is a vitally important area of research that may provide novel insights into biological mechanisms and development of innovative therapeutic approaches. Here we present a review of developmental and disease dynamics of basement membranes in Caenorhabditis elegans, Drosophila, and vertebrates.
Collapse
|