1
|
Ignatiou A, Pitsouli C. Host-diet-microbiota interplay in intestinal nutrition and health. FEBS Lett 2024; 598:2482-2517. [PMID: 38946050 DOI: 10.1002/1873-3468.14966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
The intestine is populated by a complex and dynamic assortment of microbes, collectively called gut microbiota, that interact with the host and contribute to its metabolism and physiology. Diet is considered a key regulator of intestinal microbiota, as ingested nutrients interact with and shape the resident microbiota composition. Furthermore, recent studies underscore the interplay of dietary and microbiota-derived nutrients, which directly impinge on intestinal stem cells regulating their turnover to ensure a healthy gut barrier. Although advanced sequencing methodologies have allowed the characterization of the human gut microbiome, mechanistic studies assessing diet-microbiota-host interactions depend on the use of genetically tractable models, such as Drosophila melanogaster. In this review, we first discuss the similarities between the human and fly intestines and then we focus on the effects of diet and microbiota on nutrient-sensing signaling cascades controlling intestinal stem cell self-renewal and differentiation, as well as disease. Finally, we underline the use of the Drosophila model in assessing the role of microbiota in gut-related pathologies and in understanding the mechanisms that mediate different whole-body manifestations of gut dysfunction.
Collapse
Affiliation(s)
- Anastasia Ignatiou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Chrysoula Pitsouli
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
2
|
Chen WL, Dong YZ, Zhang L, Liu ZS, He CF, Liu WB, Li XF. Xylooligosaccharides alleviate the carbohydrate-enriched diet-induced intestinal barrier dysfunction in carp Megalobrama amblycephala by promoting intestinal development, immunity and gut microbiota. Int J Biol Macromol 2024; 277:134346. [PMID: 39094883 DOI: 10.1016/j.ijbiomac.2024.134346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
To date, although the high-carbohydrate (HC) feed has been extensively adopted in the aquaculture industry, its effects on the intestinal function and development of aquatic animals still remain unclear. In addition, the corresponding nutritional intervention is still barely reported. This study aimed to evaluate the influence of xylooligosaccharides (XOS) on the intestinal health of Megalobrama amblycephala subjected to a HC feeding. Fish (average weight: 44.55 ± 0.15 g) were randomly offered 3 diets, including a control one (29 % carbohydrate), a HC one (41 % carbohydrate), and a XOS supplemented one (HC + 1.0 % XOS, HCX) respectively for 12 weeks. The HC feeding caused morphological abnormalities of intestine, an increased intestinal permeability, and the intestinal immunosuppression, all of which were markedly reversed by XOS administration. In addition, compared with the HC group, HCX feeding remarkably promoted the intestinal activities of digestive and brush border enzymes, and the expressions of cell proliferation-related proteins (Wnt10b and Cyclin D1). The 16s rDNA sequencing also revealed that XOS administration increased the abundance of beneficial bacteria, and decreased that of pathogenic ones. In conclusion, dietary supplementation of XOS improved the intestinal histomorphology, barrier function, cell proliferation and bacterial communities of carbohydrate-overloaded fish Megalobrama amblycephala.
Collapse
Affiliation(s)
- Wei-Liang Chen
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, PR China
| | - Yan-Zou Dong
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, PR China
| | - Ling Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, PR China
| | - Zi-Shang Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, PR China
| | - Chao-Fan He
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, PR China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, PR China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing 210095, PR China.
| |
Collapse
|
3
|
Sun H, Shami Shah A, Chiu DC, Bonfini A, Buchon N, Baskin JM. Wnt/β-catenin signaling within multiple cell types dependent upon kramer regulates Drosophila intestinal stem cell proliferation. iScience 2024; 27:110113. [PMID: 38952681 PMCID: PMC11215309 DOI: 10.1016/j.isci.2024.110113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/08/2024] [Accepted: 05/23/2024] [Indexed: 07/03/2024] Open
Abstract
The gut epithelium is subject to constant renewal, a process reliant upon intestinal stem cell (ISC) proliferation that is driven by Wnt/β-catenin signaling. Despite the importance of Wnt signaling within ISCs, the relevance of Wnt signaling within other gut cell types and the underlying mechanisms that modulate Wnt signaling in these contexts remain incompletely understood. Using challenge of the Drosophila midgut with a non-lethal enteric pathogen, we examine the cellular determinants of ISC proliferation, harnessing kramer, a recently identified regulator of Wnt signaling pathways, as a mechanistic tool. We find that Wnt signaling within Prospero-positive cells supports ISC proliferation and that kramer regulates Wnt signaling in this context by antagonizing kelch, a Cullin-3 E3 ligase adaptor that mediates Dishevelled polyubiquitination. This work establishes kramer as a physiological regulator of Wnt/β-catenin signaling in vivo and suggests enteroendocrine cells as a new cell type that regulates ISC proliferation via Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Hongyan Sun
- Weill Institute for Cell & Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Adnan Shami Shah
- Weill Institute for Cell & Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Din-Chi Chiu
- Weill Institute for Cell & Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Alessandro Bonfini
- Cornell Institute of Host Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, NY 14853, USA
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining 314400, P.R. China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | - Nicolas Buchon
- Cornell Institute of Host Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Jeremy M. Baskin
- Weill Institute for Cell & Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
4
|
Fleming SA, Reyes SM, Donovan SM, Hernell O, Jiang R, Lönnerdal B, Neu J, Steinman L, Sørensen ES, West CE, Kleinman R, Wallingford JC. An expert panel on the adequacy of safety data and physiological roles of dietary bovine osteopontin in infancy. Front Nutr 2024; 11:1404303. [PMID: 38919388 PMCID: PMC11197938 DOI: 10.3389/fnut.2024.1404303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/29/2024] [Indexed: 06/27/2024] Open
Abstract
Human milk, due to its unique composition, is the optimal standard for infant nutrition. Osteopontin (OPN) is abundant in human milk but not bovine milk. The addition of bovine milk osteopontin (bmOPN) to formula may replicate OPN's concentration and function in human milk. To address safety concerns, we convened an expert panel to assess the adequacy of safety data and physiological roles of dietary bmOPN in infancy. The exposure of breastfed infants to human milk OPN (hmOPN) has been well-characterized and decreases markedly over the first 6 months of lactation. Dietary bmOPN is resistant to gastric and intestinal digestion, absorbed and cleared from circulation within 8-24 h, and represents a small portion (<5%) of total plasma OPN. Label studies on hmOPN suggest that after 3 h, intact or digested OPN is absorbed into carcass (62%), small intestine (23%), stomach (5%), and small intestinal perfusate (4%), with <2% each found in the cecum, liver, brain, heart, and spleen. Although the results are heterogenous with respect to bmOPN's physiologic impact, no adverse impacts have been reported across growth, gastrointestinal, immune, or brain-related outcomes. Recombinant bovine and human forms demonstrate similar absorption in plasma as bmOPN, as well as effects on cognition and immunity. The panel recommended prioritization of trials measuring a comprehensive set of clinically relevant outcomes on immunity and cognition to confirm the safety of bmOPN over that of further research on its absorption, distribution, metabolism, and excretion. This review offers expert consensus on the adequacy of data available to assess the safety of bmOPN for use in infant formula, aiding evidence-based decisions on the formulation of infant formula.
Collapse
Affiliation(s)
| | | | - Sharon M. Donovan
- Department of Food Science and Human Nutrition, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Olle Hernell
- Department of Clinical Sciences and Pediatrics, Umeå University, Umeå, Sweden
| | - Rulan Jiang
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Bo Lönnerdal
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Josef Neu
- Department of Pediatrics, Division of Neonatology, University of Florida, Gainesville, FL, United States
| | - Lawrence Steinman
- Departments of Pediatrics and of Neurology and Neurological Sciences, Interdepartmental Program in Immunology, Beckman Center for Molecular Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Esben S. Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Christina E. West
- Department of Clinical Sciences and Pediatrics, Umeå University, Umeå, Sweden
| | - Ronald Kleinman
- Harvard Medical School, Boston, MA, United States
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, United States
| | | |
Collapse
|
5
|
Vieira Contreras F, Auger GM, Müller L, Richter V, Huetteroth W, Seufert F, Hildebrand PW, Scholz N, Thum AS, Ljaschenko D, Blanco-Redondo B, Langenhan T. The adhesion G-protein-coupled receptor mayo/CG11318 controls midgut development in Drosophila. Cell Rep 2024; 43:113640. [PMID: 38180839 DOI: 10.1016/j.celrep.2023.113640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/14/2023] [Accepted: 12/16/2023] [Indexed: 01/07/2024] Open
Abstract
Adhesion G-protein-coupled receptors (aGPCRs) form a large family of cell surface molecules with versatile tasks in organ development. Many aGPCRs still await their functional and pharmacological deorphanization. Here, we characterized the orphan aGPCR CG11318/mayo of Drosophila melanogaster and found it expressed in specific regions of the gastrointestinal canal and anal plates, epithelial specializations that control ion homeostasis. Genetic removal of mayo results in tachycardia, which is caused by hyperkalemia of the larval hemolymph. The hyperkalemic effect can be mimicked by a raise in ambient potassium concentration, while normal potassium levels in mayoKO mutants can be restored by pharmacological inhibition of potassium channels. Intriguingly, hyperkalemia and tachycardia are caused non-cell autonomously through mayo-dependent control of enterocyte proliferation in the larval midgut, which is the primary function of this aGPCR. These findings characterize the ancestral aGPCR Mayo as a homeostatic regulator of gut development.
Collapse
Affiliation(s)
- Fernando Vieira Contreras
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Genevieve M Auger
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Lena Müller
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Vincent Richter
- Institute of Biology, Department of Genetics, Faculty of Life Sciences, Leipzig University, Talstraße 33, 04103 Leipzig, Germany
| | - Wolf Huetteroth
- Institute of Biology, Department of Genetics, Faculty of Life Sciences, Leipzig University, Talstraße 33, 04103 Leipzig, Germany
| | - Florian Seufert
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Peter W Hildebrand
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Andreas S Thum
- Institute of Biology, Department of Genetics, Faculty of Life Sciences, Leipzig University, Talstraße 33, 04103 Leipzig, Germany
| | - Dmitrij Ljaschenko
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Beatriz Blanco-Redondo
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany.
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany; Institute of Biology, Faculty of Life Sciences, Leipzig University, Talstraße 33, 04103 Leipzig, Germany; Comprehensive Cancer Center Central Germany (CCCG), Germany.
| |
Collapse
|
6
|
Reyes-Rivera J, Grillo-Alvarado V, Soriano-López AE, García-Arrarás JE. Evidence of interactions among apoptosis, cell proliferation, and dedifferentiation in the rudiment during whole-organ intestinal regeneration in the sea cucumber. Dev Biol 2024; 505:99-109. [PMID: 37925124 PMCID: PMC11163280 DOI: 10.1016/j.ydbio.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 09/05/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
Sea cucumbers have an extraordinary regenerative capability. Under stressful conditions, Holothuria glaberrima can eviscerate their internal organs, including the digestive tract. From the mesentery, a rudiment grows and gives rise to a new intestine within a few weeks. In the last decades, the cellular events that occur during intestinal regeneration have been characterized, including apoptosis, cell proliferation, and muscle cell dedifferentiation. Nevertheless, their contribution to the formation and early growth of the rudiment is still unknown. Furthermore, these cellular events' relationship and potential interdependence remain a mystery. Using modulators to inhibit apoptosis and cell proliferation, we tested whether rudiment growth or other regenerative cellular events like muscle cell dedifferentiation were affected. We found that inhibition of apoptosis by zVAD and cell proliferation by aphidicolin and mitomycin did not affect the overall size of the rudiment seven days post-evisceration (7-dpe). Interestingly, animals treated with aphidicolin showed higher levels of muscle cell dedifferentiation in the distal mesentery, which could act as a compensatory mechanism. On the other hand, inhibition of apoptosis led to a decrease in cell proliferation in the rudiment and a delay in the spatiotemporal progression of muscle cell dedifferentiation throughout the rudiment-mesentery structure. Our findings suggest that neither apoptosis nor cell proliferation significantly contributes to early rudiment growth during intestinal regeneration in the sea cucumber. Nevertheless, apoptosis may play an essential role in modulating cell proliferation in the rudiment (a process known as apoptosis-induced proliferation) and the timing for the progression of muscle cell dedifferentiation. These findings provide new insights into the role and relationship of cellular events during intestinal regeneration in an emerging regeneration model.
Collapse
Affiliation(s)
- Josean Reyes-Rivera
- Department of Biology, University of Puerto Rico, Río Piedras, PR, USA; Molecular and Cell Biology Department, University of California, Berkeley, CA, USA
| | | | | | | |
Collapse
|
7
|
Liu Z, Liu X. Gut microbiome, metabolome and alopecia areata. Front Microbiol 2023; 14:1281660. [PMID: 38033589 PMCID: PMC10684942 DOI: 10.3389/fmicb.2023.1281660] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
Alopecia areata (AA) is a type of dermatological disease characterized by rapid and non-scarring hair loss of the scalp or body skin that may be related to genetic, immunological and physiological factors. It is now believed that AA is associated with oxidative stress, autoimmune disease, neuropsychological factors, pathogens, immune checkpoint inhibitors and microecological imbalance under the premise of host genetic susceptibility. In recent years, studies have revealed the significant role of the gut microbiome or metabolome in many aspects of human health. Diverse studies have revealed that the gut microbiome and metabolome have an important influence on skin conditions. This review highlights the relationship between AA and the gut microbiome or metabolome to provide novel directions for the prevention, clinical diagnosis and treatment of AA.
Collapse
Affiliation(s)
- Zhiyu Liu
- School of Medicine of Zhejiang University, Hangzhou, China
| | - Xiaoyan Liu
- Department of Dermatology, The First Affiliated Hospital, School of Medicine of Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Sun Q, Liu B, Lan Q, Su Z, Fu Q, Wang L, Deng Y, Li C, Xue VW, Liu S, Chen X, Yang G, Lu D. Antimicrobial agent chloroxylenol targets β‑catenin‑mediated Wnt signaling and exerts anticancer activity in colorectal cancer. Int J Oncol 2023; 63:121. [PMID: 37681484 PMCID: PMC10546378 DOI: 10.3892/ijo.2023.5569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/18/2023] [Indexed: 09/09/2023] Open
Abstract
Chloroxylenol is the active ingredient of the antibacterial agent Dettol. The anticancer effect and underlying mechanisms of this compound and other common antimicrobial agents have not been clearly elucidated. In the present study, the effects of chloroxylenol, benzalkonium chloride, benzethonium chloride, triclosan and triclocarban on β‑catenin‑mediated Wnt signaling in colorectal cancer were evaluated using the SuperTOPFlash reporter assay. It was demonstrated that chloroxylenol, but not the other antimicrobial agents tested, inhibited the Wnt/β‑catenin signaling pathway by decreasing the nuclear translocation of β‑catenin and disrupting β‑catenin/T‑cell factor 4 complex, which resulted in the downregulation of the Wnt target genes Axin2, Survivin and Leucine‑rich G protein‑coupled receptor‑5. Chloroxylenol effectively inhibited the viability, proliferation, migration and invasion, and sphere formation, and induced apoptosis in HCT116 and SW480 cells. Notably, chloroxylenol attenuated the growth of colorectal cancer in the MC38 cell xenograft model and inhibited organoid formation by the patient‑derived cells. Chloroxylenol also demonstrated inhibitory effects on the stemness of colorectal cancer cells. The results of the present study demonstrated that chloroxylenol could exert anti‑tumor activities in colorectal cancer by targeting the Wnt/β‑catenin signaling pathway, which provided an insight into its therapeutic potential as an anticancer agent.
Collapse
Affiliation(s)
- Qi Sun
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, Guangdong 518060, P.R. China
| | - Boxin Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, Guangdong 518060, P.R. China
| | - Quanxue Lan
- Shenzhen Longgang District Center for Disease Control and Prevention, Shenzhen, Guangdong 518100, P.R. China
| | - Zijie Su
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, Guangdong 518060, P.R. China
- Department of Research, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qiuxia Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, Guangdong 518060, P.R. China
| | - Lian Wang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, Guangdong 518060, P.R. China
| | - Yingying Deng
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, Guangdong 518060, P.R. China
| | - Chuanli Li
- Shenzhen Academy of Metrology and Quality Inspection, National Nutrition Food Testing Center, Shenzhen, Guangdong 518102, P.R. China
| | - Vivian Weiwen Xue
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, Guangdong 518060, P.R. China
| | - Shanshan Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, Guangdong 518060, P.R. China
| | - Xianxiong Chen
- Department of Physiology, Shenzhen University Medical School, Shenzhen, Guangdong 518060, P.R. China
| | - Guowu Yang
- Shenzhen Academy of Metrology and Quality Inspection, National Nutrition Food Testing Center, Shenzhen, Guangdong 518102, P.R. China
| | - Desheng Lu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Medical School, Shenzhen, Guangdong 518060, P.R. China
| |
Collapse
|
9
|
Spencer ZT, Ng VH, Benchabane H, Siddiqui GS, Duwadi D, Maines B, Bryant JM, Schwarzkopf A, Yuan K, Kassel SN, Mishra A, Pimentel A, Lebensohn AM, Rohatgi R, Gerber SA, Robbins DJ, Lee E, Ahmed Y. The USP46 deubiquitylase complex increases Wingless/Wnt signaling strength by stabilizing Arrow/LRP6. Nat Commun 2023; 14:6174. [PMID: 37798281 PMCID: PMC10556106 DOI: 10.1038/s41467-023-41843-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 09/20/2023] [Indexed: 10/07/2023] Open
Abstract
The control of Wnt receptor abundance is critical for animal development and to prevent tumorigenesis, but the mechanisms that mediate receptor stabilization remain uncertain. We demonstrate that stabilization of the essential Wingless/Wnt receptor Arrow/LRP6 by the evolutionarily conserved Usp46-Uaf1-Wdr20 deubiquitylase complex controls signaling strength in Drosophila. By reducing Arrow ubiquitylation and turnover, the Usp46 complex increases cell surface levels of Arrow and enhances the sensitivity of target cells to stimulation by the Wingless morphogen, thereby increasing the amplitude and spatial range of signaling responses. Usp46 inactivation in Wingless-responding cells destabilizes Arrow, reduces cytoplasmic accumulation of the transcriptional coactivator Armadillo/β-catenin, and attenuates or abolishes Wingless target gene activation, which prevents the concentration-dependent regulation of signaling strength. Consequently, Wingless-dependent developmental patterning and tissue homeostasis are disrupted. These results reveal an evolutionarily conserved mechanism that mediates Wnt/Wingless receptor stabilization and underlies the precise activation of signaling throughout the spatial range of the morphogen gradient.
Collapse
Affiliation(s)
- Zachary T Spencer
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Victoria H Ng
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Hassina Benchabane
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Ghalia Saad Siddiqui
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Deepesh Duwadi
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Ben Maines
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Jamal M Bryant
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Anna Schwarzkopf
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Kai Yuan
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Sara N Kassel
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
| | - Anant Mishra
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Ashley Pimentel
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA
| | - Andres M Lebensohn
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Rajat Rohatgi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Scott A Gerber
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03766, USA
| | - David J Robbins
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 20057, USA
| | - Ethan Lee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| | - Yashi Ahmed
- Department of Molecular and Systems Biology and the Dartmouth Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
10
|
Yang L, Fang C, Song C, Zhang Y, Zhang R, Zhou S. Mesenchymal Stem Cell-Derived Exosomes are Effective for Radiation Enteritis and Essential for the Proliferation and Differentiation of Lgr5 + Intestinal Epithelial Stem Cells by Regulating Mir-195/Akt/β-Catenin Pathway. Tissue Eng Regen Med 2023; 20:739-751. [PMID: 37326937 PMCID: PMC10352229 DOI: 10.1007/s13770-023-00541-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Radiation enteritis (RE) is a common complication of abdominal or pelvic radiotherapy, which when severe, could be life-threatening. Currently, there are no effective treatments. Studies have shown that mesenchymal stem cells (MSCs)-derived exosomes (MSC-exos) exhibit promising therapeutic effects in inflammatory diseases. However, the specific role of MSC-exos in RE and the regulatory mechanisms remain elusive. METHODS In vivo assay was carried out by injecting MSC-exos into the total abdominal irradiation (TAI)-induced RE mouse model. For in vitro assay, Lgr5-positive intestinal epithelial stem cells (Lgr5+ IESC) were extracted from mice, followed by irradiation along with MSC-exos treatment. HE staining was performed to measure histopathological changes. mRNA expression of inflammatory factors TNF-α and IL-6 and stem cell markers LGR5, and OCT4 were quantified by RT-qPCR. EdU and TUNEL staining was performed to estimate cell proliferation and apoptosis. MiR-195 expression in TAI mice and radiation-induced Lgr5+ IESC was tested. RESULTS We found that the injection of MSC-exos inhibited inflammatory reaction, increased stem cell marker expression, and maintained intestinal epithelial integrity in TAI mice. Furthermore, MSC-exos treatment increased the proliferation and simultaneously suppressed apoptosis in radiation-stimulated Lgr5+ IESC. MiR-195 expression increased by radiation exposure was decreased by MSC-exos therapy. MiR-195 overexpression facilitated the progress of RE by counteracting the effect of MSC-exos. Mechanistically, the Akt and Wnt/β-catenin pathways inhibited by MSC-exos were activated by miR-195 upregulation. CONCLUSION MSC-Exos are effective in treating RE and are essential for the proliferation and differentiation of Lgr5+ IESCs. Moreover, MSC-exos mediates its function by regulating miR-195 Akt β-catenin pathways.
Collapse
Affiliation(s)
- Leilei Yang
- Department of Gastrointestinal Surgery, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, No. 150, Ximen Street, Linhai, Taizhou, 317000, Zhejiang, China
| | - Chengfeng Fang
- Department of Gastrointestinal Surgery, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, No. 150, Ximen Street, Linhai, Taizhou, 317000, Zhejiang, China
| | - Caifang Song
- Department of Gastrointestinal Surgery, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, No. 150, Ximen Street, Linhai, Taizhou, 317000, Zhejiang, China
| | - Yaya Zhang
- Department of Gastrointestinal Surgery, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, No. 150, Ximen Street, Linhai, Taizhou, 317000, Zhejiang, China
| | - Ruili Zhang
- Department of Gastrointestinal Surgery, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, No. 150, Ximen Street, Linhai, Taizhou, 317000, Zhejiang, China.
| | - Shenkang Zhou
- Department of Gastrointestinal Surgery, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, No. 150, Ximen Street, Linhai, Taizhou, 317000, Zhejiang, China.
| |
Collapse
|
11
|
Erazo-Oliveras A, Muñoz-Vega M, Mlih M, Thiriveedi V, Salinas ML, Rivera-Rodríguez JM, Kim E, Wright RC, Wang X, Landrock KK, Goldsby JS, Mullens DA, Roper J, Karpac J, Chapkin RS. Mutant APC reshapes Wnt signaling plasma membrane nanodomains by altering cholesterol levels via oncogenic β-catenin. Nat Commun 2023; 14:4342. [PMID: 37468468 PMCID: PMC10356786 DOI: 10.1038/s41467-023-39640-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
Although the role of the Wnt pathway in colon carcinogenesis has been described previously, it has been recently demonstrated that Wnt signaling originates from highly dynamic nano-assemblies at the plasma membrane. However, little is known regarding the role of oncogenic APC in reshaping Wnt nanodomains. This is noteworthy, because oncogenic APC does not act autonomously and requires activation of Wnt effectors upstream of APC to drive aberrant Wnt signaling. Here, we demonstrate the role of oncogenic APC in increasing plasma membrane free cholesterol and rigidity, thereby modulating Wnt signaling hubs. This results in an overactivation of Wnt signaling in the colon. Finally, using the Drosophila sterol auxotroph model, we demonstrate the unique ability of exogenous free cholesterol to disrupt plasma membrane homeostasis and drive Wnt signaling in a wildtype APC background. Collectively, these findings provide a link between oncogenic APC, loss of plasma membrane homeostasis and CRC development.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Mohamed Mlih
- Department of Cell Biology and Genetics, Texas A&M University, School of Medicine, Bryan, TX, 77807, USA
| | - Venkataramana Thiriveedi
- Department of Medicine, Division of Gastroenterology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Michael L Salinas
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Jaileen M Rivera-Rodríguez
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Eunjoo Kim
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, 80045, USA
| | - Rachel C Wright
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Kerstin K Landrock
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Jennifer S Goldsby
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Destiny A Mullens
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA
| | - Jatin Roper
- Department of Medicine, Division of Gastroenterology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jason Karpac
- Department of Cell Biology and Genetics, Texas A&M University, School of Medicine, Bryan, TX, 77807, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, 77843, USA.
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA.
- CPRIT Regional Center of Excellence in Cancer Research, Texas A&M University, College Station, TX, 77843, USA.
- Center for Environmental Health Research, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
12
|
He K, Gan WJ. Wnt/β-Catenin Signaling Pathway in the Development and Progression of Colorectal Cancer. Cancer Manag Res 2023; 15:435-448. [PMID: 37250384 PMCID: PMC10224676 DOI: 10.2147/cmar.s411168] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023] Open
Abstract
The Wnt/β-catenin signaling pathway is a growth control pathway involved in various biological processes as well as the development and progression of cancer. Colorectal cancer (CRC) is one of the most common malignancies in the world. The hyperactivation of Wnt signaling is observed in almost all CRC and plays a crucial role in cancer-related processes such as cancer stem cell (CSC) propagation, angiogenesis, epithelial-mesenchymal transition (EMT), chemoresistance, and metastasis. This review will discuss how the Wnt/β-catenin signaling pathway is involved in the carcinogenesis and progression of CRC and related therapeutic approaches.
Collapse
Affiliation(s)
- Kuang He
- Department of Pathology, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| | - Wen-Juan Gan
- Department of Pathology, Dushu Lake Hospital Affiliated of Soochow University, Suzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
13
|
Sun H, Shah AS, Bonfini A, Buchon NS, Baskin JM. Wnt/β-catenin signaling within multiple cell types dependent upon kramer regulates Drosophila intestinal stem cell proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529411. [PMID: 36865263 PMCID: PMC9980071 DOI: 10.1101/2023.02.21.529411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The gut epithelium is subject to constant renewal, a process reliant upon intestinal stem cell (ISC) proliferation that is driven by Wnt/β-catenin signaling. Despite the importance of Wnt signaling within ISCs, the relevance of Wnt signaling within other gut cell types and the underlying mechanisms that modulate Wnt signaling in these contexts remain incompletely understood. Using challenge of the Drosophila midgut with a non-lethal enteric pathogen, we examine the cellular determinants of ISC proliferation, harnessing kramer, a recently identified regulator of Wnt signaling pathways, as a mechanistic tool. We find that Wnt signaling within Prospero-positive cells supports ISC proliferation and that kramer regulates Wnt signaling in this context by antagonizing kelch, a Cullin-3 E3 ligase adaptor that mediates Dishevelled polyubiquitination. This work establishes kramer as a physiological regulator of Wnt/β-catenin signaling in vivo and suggests enteroendocrine cells as a new cell type that regulates ISC proliferation via Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Hongyan Sun
- Weill Institute for Cell & Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Adnan Shami Shah
- Weill Institute for Cell & Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Alessandro Bonfini
- Cornell Institute of Host Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Nicolas S. Buchon
- Cornell Institute of Host Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | - Jeremy M. Baskin
- Weill Institute for Cell & Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Chemistry & Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
14
|
Auger NA, Medina-Feliciano JG, Quispe-Parra DJ, Colón-Marrero S, Ortiz-Zuazaga H, García-Arrarás JE. Characterization and Expression of Holothurian Wnt Signaling Genes during Adult Intestinal Organogenesis. Genes (Basel) 2023; 14:309. [PMID: 36833237 PMCID: PMC9957329 DOI: 10.3390/genes14020309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Wnt signaling has been shown to play multiple roles in regenerative processes, one of the most widely studied of which is the regeneration of the intestinal luminal epithelia. Most studies in this area have focused on self-renewal of the luminal stem cells; however, Wnt signaling may also have more dynamic functions, such as facilitating intestinal organogenesis. To explore this possibility, we employed the sea cucumber Holothuria glaberrima that can regenerate a full intestine over the course of 21 days after evisceration. We collected RNA-seq data from various intestinal tissues and regeneration stages and used these data to define the Wnt genes present in H. glaberrima and the differential gene expression (DGE) patterns during the regenerative process. Twelve Wnt genes were found, and their presence was confirmed in the draft genome of H. glaberrima. The expressions of additional Wnt-associated genes, such as Frizzled and Disheveled, as well as genes from the Wnt/β-catenin and Wnt/Planar Cell Polarity (PCP) pathways, were also analyzed. DGE showed unique distributions of Wnt in early- and late-stage intestinal regenerates, consistent with the Wnt/β-catenin pathway being upregulated during early-stages and the Wnt/PCP pathway being upregulated during late-stages. Our results demonstrate the diversity of Wnt signaling during intestinal regeneration, highlighting possible roles in adult organogenesis.
Collapse
Affiliation(s)
- Noah A. Auger
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan 00925, Puerto Rico
| | | | - David J. Quispe-Parra
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan 00925, Puerto Rico
| | - Stephanie Colón-Marrero
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan 00925, Puerto Rico
| | - Humberto Ortiz-Zuazaga
- Department of Computer Science, University of Puerto Rico, Rio Piedras Campus, San Juan 00925, Puerto Rico
| | - José E. García-Arrarás
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan 00925, Puerto Rico
| |
Collapse
|
15
|
Xiu M, Wang Y, Yang D, Zhang X, Dai Y, Liu Y, Lin X, Li B, He J. Using Drosophila melanogaster as a suitable platform for drug discovery from natural products in inflammatory bowel disease. Front Pharmacol 2022; 13:1072715. [PMID: 36545307 PMCID: PMC9760693 DOI: 10.3389/fphar.2022.1072715] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/24/2022] [Indexed: 12/07/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and life-treating inflammatory disease that can occur in multiple parts of the human intestine and has become a worldwide problem with a continually increasing incidence. Because of its mild early symptoms, most of them will not attract people's attention and may cause more serious consequences. There is an urgent need for new therapeutics to prevent disease progression. Natural products have a variety of active ingredients, diverse biological activities, and low toxicity or side effects, which are the new options for preventing and treating the intestinal inflammatory diseases. Because of multiple genetic models, less ethical concerns, conserved signaling pathways with mammals, and low maintenance costs, the fruit fly Drosophila melanogaster has become a suitable model for studying mechanism and treatment strategy of IBD. Here, we review the advantages of fly model as screening platform in drug discovery, describe the conserved molecular pathways as therapetic targets for IBD between mammals and flies, dissect the feasibility of Drosophila model in IBD research, and summarize the natural products for IBD treatment using flies. This review comprehensively elaborates that the benefit of flies as a perfact model to evaluate the therapeutic potential of phytochemicals against IBD.
Collapse
Affiliation(s)
- Minghui Xiu
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China,Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
| | - Yixuan Wang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Dan Yang
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xueyan Zhang
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yuting Dai
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yongqi Liu
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
| | - Xingyao Lin
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China
| | - Botong Li
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jianzheng He
- Provincial-level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China,Key Laboratory of Dunhuang Medicine, Ministry of Education, Lanzhou, China,College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China,*Correspondence: Jianzheng He,
| |
Collapse
|
16
|
Jiang H, Kimura T, Hai H, Yamamura R, Sonoshita M. Drosophila as a toolkit to tackle cancer and its metabolism. Front Oncol 2022; 12:982751. [PMID: 36091180 PMCID: PMC9458318 DOI: 10.3389/fonc.2022.982751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer is one of the most severe health problems worldwide accounting for the second leading cause of death. Studies have indicated that cancers utilize different metabolic systems as compared with normal cells to produce extra energy and substances required for their survival, which contributes to tumor formation and progression. Recently, the fruit fly Drosophila has been attracting significant attention as a whole-body model for elucidating the cancer mechanisms including metabolism. This tiny organism offers a valuable toolkit with various advantages such as high genetic conservation and similar drug response to mammals. In this review, we introduce flies modeling for cancer patient genotypes which have pinpointed novel therapeutic targets and drug candidates in the salivary gland, thyroid, colon, lung, and brain. Furthermore, we introduce fly models for metabolic diseases such as diabetes mellitus, obesity, and cachexia. Diabetes mellitus and obesity are widely acknowledged risk factors for cancer, while cachexia is a cancer-related metabolic condition. In addition, we specifically focus on two cancer metabolic alterations: the Warburg effect and redox metabolism. Indeed, flies proved useful to reveal the relationship between these metabolic changes and cancer. Such accumulating achievements indicate that Drosophila offers an efficient platform to clarify the mechanisms of cancer as a systemic disease.
Collapse
Affiliation(s)
- Hui Jiang
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Taku Kimura
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Department of Oral Diagnosis and Medicine, Graduate school of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Han Hai
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Ryodai Yamamura
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
- *Correspondence: Ryodai Yamamura, ; Masahiro Sonoshita,
| | - Masahiro Sonoshita
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo, Japan
- *Correspondence: Ryodai Yamamura, ; Masahiro Sonoshita,
| |
Collapse
|
17
|
Murphy P, Armit C, Hill B, Venkataraman S, Frankel P, Baldock RA, Davidson DR. Integrated analysis of Wnt signalling system component gene expression. Development 2022; 149:276001. [PMID: 35831952 PMCID: PMC9481969 DOI: 10.1242/dev.200312] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022]
Abstract
Wnt signalling controls patterning and differentiation across many tissues and organs of the developing embryo through temporally and spatially restricted expression of multi-gene families encoding ligands, receptors, pathway modulators and intracellular components. Here, we report an integrated analysis of key genes in the 3D space of the mouse embryo across multiple stages of development. We applied a method for 3D/3D image transformation to map all gene expression patterns to a single reference embryo for each stage, providing both visual analysis and volumetric mapping allowing computational methods to interrogate the combined expression patterns. We identify territories where multiple Wnt and Fzd genes are co-expressed and cross-compare all patterns, including all seven Wnt paralogous gene pairs. The comprehensive analysis revealed regions in the embryo where no Wnt or Fzd gene expression is detected, and where single Wnt genes are uniquely expressed. This work provides insight into a previously unappreciated level of organisation of expression patterns, as well as presenting a resource that can be utilised further by the research community for whole-system analysis. Summary: A systematic analysis of integrated expression patterns of Wnt signalling pathway component-encoding genes and canonical pathway read-out, spatially mapped in 3D to mouse embryo models identifies co-expression territories.
Collapse
Affiliation(s)
- Paula Murphy
- School of Natural Sciences, Department of Zoology, Trinity College Dublin, The University of Dublin 1 , Dublin 2 , Ireland
| | - Chris Armit
- Institute of Cancer and Genetics, University of Edinburgh 2 MRC Human Genetics Unit , , Crewe Road, Edinburgh EH4 2XU , UK
| | - Bill Hill
- Institute of Cancer and Genetics, University of Edinburgh 2 MRC Human Genetics Unit , , Crewe Road, Edinburgh EH4 2XU , UK
| | - Shanmugasundaram Venkataraman
- Institute of Cancer and Genetics, University of Edinburgh 2 MRC Human Genetics Unit , , Crewe Road, Edinburgh EH4 2XU , UK
| | - Patrick Frankel
- School of Natural Sciences, Department of Zoology, Trinity College Dublin, The University of Dublin 1 , Dublin 2 , Ireland
| | - Richard A. Baldock
- Institute of Cancer and Genetics, University of Edinburgh 2 MRC Human Genetics Unit , , Crewe Road, Edinburgh EH4 2XU , UK
| | - Duncan R. Davidson
- Institute of Cancer and Genetics, University of Edinburgh 2 MRC Human Genetics Unit , , Crewe Road, Edinburgh EH4 2XU , UK
| |
Collapse
|
18
|
Nutrient Sensing via Gut in Drosophila melanogaster. Int J Mol Sci 2022; 23:ijms23052694. [PMID: 35269834 PMCID: PMC8910450 DOI: 10.3390/ijms23052694] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023] Open
Abstract
Nutrient-sensing mechanisms in animals' sense available nutrients to generate a physiological regulatory response involving absorption, digestion, and regulation of food intake and to maintain glucose and energy homeostasis. During nutrient sensing via the gastrointestinal tract, nutrients interact with receptors on the enteroendocrine cells in the gut, which in return respond by secreting various hormones. Sensing of nutrients by the gut plays a critical role in transmitting food-related signals to the brain and other tissues informing the composition of ingested food to digestive processes. These signals modulate feeding behaviors, food intake, metabolism, insulin secretion, and energy balance. The increasing significance of fly genetics with the availability of a vast toolbox for studying physiological function, expression of chemosensory receptors, and monitoring the gene expression in specific cells of the intestine makes the fly gut the most useful tissue for studying the nutrient-sensing mechanisms. In this review, we emphasize on the role of Drosophila gut in nutrient-sensing to maintain metabolic homeostasis and gut-brain cross talk using endocrine and neuronal signaling pathways stimulated by internal state or the consumption of various dietary nutrients. Overall, this review will be useful in understanding the post-ingestive nutrient-sensing mechanisms having a physiological and pathological impact on health and diseases.
Collapse
|
19
|
Bernardes RC, Botina LL, da Silva FP, Fernandes KM, Lima MAP, Martins GF. Toxicological assessment of agrochemicals on bees using machine learning tools. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127344. [PMID: 34607030 DOI: 10.1016/j.jhazmat.2021.127344] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Machine learning (ML) is a branch of artificial intelligence (AI) that enables the analysis of complex multivariate data. ML has significant potential in risk assessments of non-target insects for modeling the multiple factors affecting insect health, including the adverse effects of agrochemicals. Here, the potential of ML for risk assessments of glyphosate (herbicide; formulation) and imidacloprid (insecticide, neonicotinoid; formulation) on the stingless bee Melipona quadrifasciata was explored. The collective behavior of forager bees was analyzed after in vitro exposure to agrochemicals. ML algorithms were applied to identify the agrochemicals that the bees have been exposed to based on multivariate behavioral features. Changes in the in situ detection of different proteins in the midgut were also studied. Imidacloprid exposure leads to the greatest changes in behavior. The ML algorithms achieved a higher accuracy (up to 91%) in identifying agrochemical contamination. The two agrochemicals altered the detection of cells positive for different proteins, which can be detrimental to midgut physiology. This study provides a holistic assessment of the sublethal effects of glyphosate and imidacloprid on a key pollinator. The procedures used here can be applied in future studies to monitor and predict multiple environmental factors affecting insect health in the field.
Collapse
Affiliation(s)
| | - Lorena Lisbetd Botina
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - Kenner Morais Fernandes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | |
Collapse
|
20
|
Abstract
In adult insects, as in vertebrates, the gut epithelium is a highly regenerative tissue that can renew itself rapidly in response to changing inputs from nutrition, the gut microbiota, ingested toxins, and signals from other organs. Because of its cellular and genetic similarities to the mammalian intestine, and its relevance as a target for the control of insect pests and disease vectors, many researchers have used insect intestines to address fundamental questions about stem cell functions during tissue maintenance and regeneration. In Drosophila, where most of the experimental work has been performed, not only are intestinal cell types and behaviors well characterized, but numerous cell signaling interactions have been detailed that mediate gut epithelial regeneration. A prevailing model for regenerative responses in the insect gut invokes stress sensing by damaged enterocytes (ECs) as a principal source for signaling that activates the division of intestinal stem cells (ISCs) and the growth and differentiation of their progeny. However, extant data also reveal alternative mechanisms for regeneration that involve ISC-intrinsic functions, active culling of healthy epithelial cells, enhanced EC growth, and even cytoplasmic shedding by infected ECs. This article reviews current knowledge of the molecular mechanisms involved in gut regeneration in several insect models (Drosophila and Aedes of the order Diptera, and several Lepidoptera).
Collapse
Affiliation(s)
- Peng Zhang
- Huntsman Cancer Institute, University of Utah
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| | - Bruce A Edgar
- Huntsman Cancer Institute, University of Utah
- Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
21
|
Drosophila Accessory Gland: A Complementary In Vivo Model to Bring New Insight to Prostate Cancer. Cells 2021; 10:cells10092387. [PMID: 34572036 PMCID: PMC8468328 DOI: 10.3390/cells10092387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer is the most common cancer in aging men. Despite recent progress, there are still few effective treatments to cure its aggressive and metastatic stages. A better understanding of the molecular mechanisms driving disease initiation and progression appears essential to support the development of more efficient therapies and improve patient care. To do so, multiple research models, such as cell culture and mouse models, have been developed over the years and have improved our comprehension of the biology of the disease. Recently, a new model has been added with the use of the Drosophila accessory gland. With a high level of conservation of major signaling pathways implicated in human disease, this functional equivalent of the prostate represents a powerful, inexpensive, and rapid in vivo model to study epithelial carcinogenesis. The purpose of this review is to quickly overview the existing prostate cancer models, including their strengths and limitations. In particular, we discuss how the Drosophila accessory gland can be integrated as a convenient complementary model by bringing new understanding in the mechanisms driving prostate epithelial tumorigenesis, from initiation to metastatic formation.
Collapse
|
22
|
Zhang H, Lin M, Dong C, Tang Y, An L, Ju J, Wen F, Chen F, Wang M, Wang W, Chen M, Zhao Y, Li J, Hou SX, Lin X, Hu L, Bu W, Wu D, Li L, Jiao S, Zhou Z. An MST4-pβ-Catenin Thr40 Signaling Axis Controls Intestinal Stem Cell and Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004850. [PMID: 34240584 PMCID: PMC8425901 DOI: 10.1002/advs.202004850] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/01/2021] [Indexed: 06/04/2023]
Abstract
Elevated Wnt/β-catenin signaling has been commonly associated with tumorigenesis especially colorectal cancer (CRC). Here, an MST4-pβ-cateninThr40 signaling axis essential for intestinal stem cell (ISC) homeostasis and CRC development is uncovered. In response to Wnt3a stimulation, the kinase MST4 directly phosphorylates β-catenin at Thr40 to block its Ser33 phosphorylation by GSK3β. Thus, MST4 mediates an active process that prevents β-catenin from binding to and being degraded by β-TrCP, leading to accumulation and full activation of β-catenin. Depletion of MST4 causes loss of ISCs and inhibits CRC growth. Mice bearing either MST4T178E mutation with constitutive kinase activity or β-cateninT40D mutation mimicking MST4-mediated phosphorylation show overly increased ISCs/CSCs and exacerbates CRC. Furthermore, the MST4-pβ-cateninThr40 axis is upregulated and correlated with poor prognosis of human CRC. Collectively, this work establishes a previously undefined machinery for β-catenin activation, and further reveals its function in stem cell and tumor biology, opening new opportunities for targeted therapy of CRC.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Moubin Lin
- Department of General SurgeryYangpu HospitalTongji University School of MedicineShanghai200090China
| | - Chao Dong
- Department of the Second Medical OncologyThe 3rd Affiliated Hospital of Kunming Medical UniversityYunnan Tumor HospitalKunming650118China
| | - Yang Tang
- Department of Medical UltrasoundTongji University Cancer CenterShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Liwei An
- Department of Medical UltrasoundTongji University Cancer CenterShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Junyi Ju
- Department of Medical UltrasoundTongji University Cancer CenterShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghai200072China
| | - Fuping Wen
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Fan Chen
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Meng Wang
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Wenjia Wang
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Min Chen
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Yun Zhao
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Jixi Li
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Steven X. Hou
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Xinhua Lin
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Lulu Hu
- Fudan University Shanghai Cancer CenterInstitutes of Biomedical SciencesState Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical EpigeneticsShanghai Medical College of Fudan UniversityShanghai200032China
| | - Wenbo Bu
- Department of Materials ScienceFudan UniversityShanghai200433China
| | - Dianqing Wu
- Department of PharmacologyYale School of MedicineNew HavenCT06520USA
| | - Lin Li
- State Key Laboratory of Molecular BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Shi Jiao
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic EngineeringDepartment of Cell and Developmental BiologySchool of Life SciencesZhongshan HospitalFudan UniversityShanghai200438China
| |
Collapse
|
23
|
Ewen-Campen B, Comyn T, Vogt E, Perrimon N. No Evidence that Wnt Ligands Are Required for Planar Cell Polarity in Drosophila. Cell Rep 2021; 32:108121. [PMID: 32905771 PMCID: PMC7641474 DOI: 10.1016/j.celrep.2020.108121] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/04/2020] [Accepted: 08/18/2020] [Indexed: 11/05/2022] Open
Abstract
The frizzled (fz) and dishevelled (dsh) genes are highly conserved members of both the planar cell polarity (PCP) pathway and the Wnt signaling pathway. Given these dual functions, several studies have examined whether Wnt ligands provide a tissue-scale orientation cue for PCP establishment during development, and these studies have reached differing conclusions. Here, we re-examine this issue in the Drosophila melanogaster wing and notum using split-Gal4 co-expression analysis, multiplex somatic CRISPR, and double RNAi experiments. Pairwise loss-of-function experiments targeting wg together with other Wnt genes, via somatic CRISPR or RNAi, do not produce PCP defects in the wing or notum. In addition, somatic CRISPR against evi (aka wntless), which is required for the secretion of Wnt ligands, did not produce detectable PCP phenotypes. Altogether, our results do not support the hypothesis that Wnt ligands contribute to PCP signaling in the Drosophila wing or notum. Previous studies have come to differing conclusions on whether Wnt ligands provide a tissue-level orientation cue for the planar cell polarity pathway. Ewen-Campen et al. re-examine this question in Drosophila using multiplex in vivo CRISPR and double RNAi against Wnt ligands and find no evidence that Wnts are required for PCP patterning.
Collapse
Affiliation(s)
- Ben Ewen-Campen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Typhaine Comyn
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Eric Vogt
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| |
Collapse
|
24
|
Ferguson M, Foley E. Microbial recognition regulates intestinal epithelial growth in homeostasis and disease. FEBS J 2021; 289:3666-3691. [PMID: 33977656 DOI: 10.1111/febs.15910] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/06/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
The intestine is constantly exposed to a dynamic community of microbes. Intestinal epithelial cells respond to microbes through evolutionarily conserved recognition pathways, such as the immune deficiency (IMD) pathway of Drosophila, the Toll-like receptor (TLR) response of flies and vertebrates, and the vertebrate nucleotide-binding oligomerization domain (NOD) pathway. Microbial recognition pathways are tightly controlled to respond effectively to pathogens, tolerate the microbiome, and limit intestinal disease. In this review, we focus on contributions of different model organisms to our understanding of how epithelial microbe recognition impacts intestinal proliferation and differentiation in homeostasis and disease. In particular, we compare how microbes and subsequent recognition by the intestine influences barrier integrity, intestinal repair and tumorigenesis in Drosophila, zebrafish, mice, and organoids. In addition, we discuss the importance of microbial recognition in homeostatic intestinal growth and discuss how immune pathways directly impact stem cell and crypt dynamics.
Collapse
Affiliation(s)
- Meghan Ferguson
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Edan Foley
- Department of Medical Microbiology and Immunology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
25
|
Caspi M, Wittenstein A, Kazelnik M, Shor-Nareznoy Y, Rosin-Arbesfeld R. Therapeutic targeting of the oncogenic Wnt signaling pathway for treating colorectal cancer and other colonic disorders. Adv Drug Deliv Rev 2021; 169:118-136. [PMID: 33346022 DOI: 10.1016/j.addr.2020.12.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 02/08/2023]
Abstract
The canonical Wnt pathway is one of the key cellular signaling cascades that regulates, via the transcriptional co-activator β-catenin, numerous embryogenic developmental processes, as well as tissue homeostasis. It is therefore not surprising that misregulation of the Wnt/β-catenin pathway has been implicated in carcinogenesis. Aberrant Wnt signaling has been reported in a variety of malignancies, and its role in both hereditary and sporadic colorectal cancer (CRC), has been the subject of intensive study. Interestingly, the vast majority of colorectal tumors harbor mutations in the tumor suppressor gene adenomatous polyposis coli (APC). The Wnt pathway is complex, and despite decades of research, the mechanisms that underlie its functions are not completely known. Thus, although the Wnt cascade is an attractive target for therapeutic intervention against CRC, one of the malignancies with the highest morbidity and mortality rates, achieving efficacy and safety is yet extremely challenging. Here, we review the current knowledge of the Wnt different epistatic signaling components and the mechanism/s by which the signal is transduced in both health and disease, focusing on CRC. We address some of the important questions in the field and describe various therapeutic strategies designed to combat unregulated Wnt signaling, the development of targeted therapy approaches and the emerging challenges that are associated with these advanced methods.
Collapse
|
26
|
Ngo S, Liang J, Su YH, O'Brien LE. Disruption of EGF Feedback by Intestinal Tumors and Neighboring Cells in Drosophila. Curr Biol 2020; 30:1537-1546.e3. [PMID: 32243854 PMCID: PMC7409949 DOI: 10.1016/j.cub.2020.01.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 12/11/2019] [Accepted: 01/29/2020] [Indexed: 12/20/2022]
Abstract
In healthy adult organs, robust feedback mechanisms control cell turnover to enforce homeostatic equilibrium between cell division and death [1, 2]. Nascent tumors must subvert these mechanisms to achieve cancerous overgrowth [3-7]. Elucidating the nature of this subversion can reveal how cancers become established and may suggest strategies to prevent tumor progression. In adult Drosophila intestine, a well-studied model of homeostatic cell turnover, the linchpin of cell equilibrium is feedback control of the epidermal growth factor (EGF) protease Rhomboid (Rho). Expression of Rho in apoptotic cells enables them to secrete EGFs, which stimulate nearby stem cells to undergo replacement divisions [8]. As in mammals, loss of adenomatous polyposis coli (APC) causes Drosophila intestinal stem cells to form adenomas [9]. Here, we demonstrate that Drosophila APC-/- tumors trigger widespread Rho expression in non-apoptotic cells, resulting in chronic EGF signaling. Initially, nascent APC-/- tumors induce rho in neighboring wild-type cells via acute, non-autonomous activation of Jun N-terminal kinase (JNK). During later growth and multilayering, APC-/- tumors induce rho in tumor cells by autonomous downregulation of E-cadherin (E-cad) and consequent activity of p120-catenin. This sequential dysregulation of tumor non-autonomous and -autonomous EGF signaling converts tissue-level feedback into feed-forward activation that drives cancerous overgrowth. Because Rho, EGF receptor (EGFR), and E-cad are associated with colorectal cancer in humans [10-17], our findings may shed light on how human colorectal tumors progress.
Collapse
Affiliation(s)
- Sang Ngo
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jackson Liang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yu-Han Su
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lucy Erin O'Brien
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
27
|
Cohen E, Sawyer JK, Peterson NG, Dow JAT, Fox DT. Physiology, Development, and Disease Modeling in the Drosophila Excretory System. Genetics 2020; 214:235-264. [PMID: 32029579 PMCID: PMC7017010 DOI: 10.1534/genetics.119.302289] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
The insect excretory system contains two organ systems acting in concert: the Malpighian tubules and the hindgut perform essential roles in excretion and ionic and osmotic homeostasis. For over 350 years, these two organs have fascinated biologists as a model of organ structure and function. As part of a recent surge in interest, research on the Malpighian tubules and hindgut of Drosophila have uncovered important paradigms of organ physiology and development. Further, many human disease processes can be modeled in these organs. Here, focusing on discoveries in the past 10 years, we provide an overview of the anatomy and physiology of the Drosophila excretory system. We describe the major developmental events that build these organs during embryogenesis, remodel them during metamorphosis, and repair them following injury. Finally, we highlight the use of the Malpighian tubules and hindgut as accessible models of human disease biology. The Malpighian tubule is a particularly excellent model to study rapid fluid transport, neuroendocrine control of renal function, and modeling of numerous human renal conditions such as kidney stones, while the hindgut provides an outstanding model for processes such as the role of cell chirality in development, nonstem cell-based injury repair, cancer-promoting processes, and communication between the intestine and nervous system.
Collapse
Affiliation(s)
| | - Jessica K Sawyer
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, and
| | | | - Julian A T Dow
- Institute of Molecular, Cell, and Systems Biology, University of Glasgow, G12 8QQ, United Kingdom
| | - Donald T Fox
- Department of Cell Biology and
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, and
| |
Collapse
|
28
|
Capo F, Wilson A, Di Cara F. The Intestine of Drosophila melanogaster: An Emerging Versatile Model System to Study Intestinal Epithelial Homeostasis and Host-Microbial Interactions in Humans. Microorganisms 2019; 7:microorganisms7090336. [PMID: 31505811 PMCID: PMC6780840 DOI: 10.3390/microorganisms7090336] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/16/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022] Open
Abstract
In all metazoans, the intestinal tract is an essential organ to integrate nutritional signaling, hormonal cues and immunometabolic networks. The dysregulation of intestinal epithelium functions can impact organism physiology and, in humans, leads to devastating and complex diseases, such as inflammatory bowel diseases, intestinal cancers, and obesity. Two decades ago, the discovery of an immune response in the intestine of the genetic model system, Drosophila melanogaster, sparked interest in using this model organism to dissect the mechanisms that govern gut (patho) physiology in humans. In 2007, the finding of the intestinal stem cell lineage, followed by the development of tools available for its manipulation in vivo, helped to elucidate the structural organization and functions of the fly intestine and its similarity with mammalian gastrointestinal systems. To date, studies of the Drosophila gut have already helped to shed light on a broad range of biological questions regarding stem cells and their niches, interorgan communication, immunity and immunometabolism, making the Drosophila a promising model organism for human enteric studies. This review summarizes our current knowledge of the structure and functions of the Drosophila melanogaster intestine, asserting its validity as an emerging model system to study gut physiology, regeneration, immune defenses and host-microbiota interactions.
Collapse
Affiliation(s)
- Florence Capo
- Department of Microbiology and Immunology, IWK Research Centre, Dalhousie University, 5850/5980 University Avenue, Halifax, NS B3K 6R8, Canada.
| | - Alexa Wilson
- Department of Microbiology and Immunology, IWK Research Centre, Dalhousie University, 5850/5980 University Avenue, Halifax, NS B3K 6R8, Canada.
| | - Francesca Di Cara
- Department of Microbiology and Immunology, IWK Research Centre, Dalhousie University, 5850/5980 University Avenue, Halifax, NS B3K 6R8, Canada.
| |
Collapse
|
29
|
Tian A, Duwadi D, Benchabane H, Ahmed Y. Essential long-range action of Wingless/Wnt in adult intestinal compartmentalization. PLoS Genet 2019; 15:e1008111. [PMID: 31194729 PMCID: PMC6563961 DOI: 10.1371/journal.pgen.1008111] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 03/26/2019] [Indexed: 12/13/2022] Open
Abstract
Signal transduction activated by Wingless/Wnt ligands directs cell proliferation and fate specification in metazoans, and its overactivation underlies the development of the vast majority of colorectal cancers. In the conventional model, the secretion and movement of Wingless to cells distant from its source of synthesis are essential for long-range signaling in tissue patterning. However, this model was upended recently by an unanticipated finding: replacement of wild-type Drosophila Wingless with a membrane-tethered form produced viable adults with largely normal external morphology, which suggested that Wingless secretion and movement are dispensable for tissue patterning. Herein, we tested this foundational principle in the adult intestine, where Wingless signaling gradients coincide with all major boundaries between compartments. We find that the critical roles of Wingless during adult intestinal development, which include regulation of target gene activation, boundary formation, stem cell proliferation, epithelial cell fate specification, muscle differentiation, gut folding, and signaling crosstalk with the Decapentaplegic pathway, are all disrupted by Wingless tethering. These findings provide new evidence that supports the requirement for the direct, long-range action of Wingless in tissue patterning, with relevance for animal development, tissue homeostasis and Wnt-driven disease.
Collapse
Affiliation(s)
- Ai Tian
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Deepesh Duwadi
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Hassina Benchabane
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| | - Yashi Ahmed
- Department of Molecular and Systems Biology and the Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, Hanover, NH, United States of America
| |
Collapse
|
30
|
Mirzoyan Z, Sollazzo M, Allocca M, Valenza AM, Grifoni D, Bellosta P. Drosophila melanogaster: A Model Organism to Study Cancer. Front Genet 2019; 10:51. [PMID: 30881374 PMCID: PMC6405444 DOI: 10.3389/fgene.2019.00051] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/21/2019] [Indexed: 12/26/2022] Open
Abstract
Cancer is a multistep disease driven by the activation of specific oncogenic pathways concomitantly with the loss of function of tumor suppressor genes that act as sentinels to control physiological growth. The conservation of most of these signaling pathways in Drosophila, and the ability to easily manipulate them genetically, has made the fruit fly a useful model organism to study cancer biology. In this review we outline the basic mechanisms and signaling pathways conserved between humans and flies responsible of inducing uncontrolled growth and cancer development. Second, we describe classic and novel Drosophila models used to study different cancers, with the objective to discuss their strengths and limitations on their use to identify signals driving growth cell autonomously and within organs, drug discovery and for therapeutic approaches.
Collapse
Affiliation(s)
- Zhasmine Mirzoyan
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Manuela Sollazzo
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Mariateresa Allocca
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | | | - Daniela Grifoni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Paola Bellosta
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.,Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.,Department of Biosciences, University of Milan, Milan, Italy.,Department of Medicine, NYU Langone Medical Center, New York, NY, United States
| |
Collapse
|