1
|
Díaz CR, Hernández-Huerta MT, Mayoral LPC, Villegas MEA, Zenteno E, Cruz MM, Mayoral EPC, Del Socorro Pina Canseco M, Andrade GM, Castellanos MÁ, Matías Salvador JM, Cruz Parada E, Martínez Barras A, Cruz Fernández JN, Scott-Algara D, Pérez-Campos E. Non-Coding RNAs and Innate Immune Responses in Cancer. Biomedicines 2024; 12:2072. [PMID: 39335585 PMCID: PMC11429077 DOI: 10.3390/biomedicines12092072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Non-coding RNAs (ncRNAs) and the innate immune system are closely related, acting as defense mechanisms and regulating gene expression and innate immunity. Both are modulators in the initiation, development and progression of cancer. We aimed to review the major types of ncRNAs, including small interfering RNAs (siRNAs), microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), and long non-coding RNAs (lncRNAs), with a focus on cancer, innate immunity, and inflammation. We found that ncRNAs are closely related to innate immunity, epigenetics, chronic inflammation, and cancer and share properties such as inducibility, specificity, memory, and transfer. These similarities and interrelationships suggest that ncRNAs and modulators of trained immunity, together with the control of chronic inflammation, can be combined to develop novel therapeutic approaches for personalized cancer treatment. In conclusion, the close relationship between ncRNAs, the innate immune system, and inflammation highlights their importance in cancer pathways and their potential as targets for novel therapeutic strategies.
Collapse
Affiliation(s)
| | - María Teresa Hernández-Huerta
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT), Facultad de Medicina y Cirugía, Universidad Autónoma "Benito Juárez" de Oaxaca (UABJO), Oaxaca 68020, Mexico
| | - Laura Pérez-Campos Mayoral
- Centro de Investigación, Facultad de Medicina UNAM-UABJO, Universidad Autónoma "Benito Juárez" de Oaxaca (UABJO), Oaxaca 68020, Mexico
| | | | - Edgar Zenteno
- Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Ciudad de México 04510, Mexico
| | | | - Eduardo Pérez-Campos Mayoral
- Centro de Investigación, Facultad de Medicina UNAM-UABJO, Universidad Autónoma "Benito Juárez" de Oaxaca (UABJO), Oaxaca 68020, Mexico
| | - María Del Socorro Pina Canseco
- Centro de Investigación, Facultad de Medicina UNAM-UABJO, Universidad Autónoma "Benito Juárez" de Oaxaca (UABJO), Oaxaca 68020, Mexico
| | - Gabriel Mayoral Andrade
- Centro de Investigación, Facultad de Medicina UNAM-UABJO, Universidad Autónoma "Benito Juárez" de Oaxaca (UABJO), Oaxaca 68020, Mexico
| | | | | | - Eli Cruz Parada
- Tecnológico Nacional de México/IT Oaxaca, Oaxaca 68030, Mexico
| | | | - Jaydi Nora Cruz Fernández
- Centro de Investigación, Facultad de Medicina UNAM-UABJO, Universidad Autónoma "Benito Juárez" de Oaxaca (UABJO), Oaxaca 68020, Mexico
| | - Daniel Scott-Algara
- Unité de Biologie Cellulaire des Lymphocytes and Direction of International Affairs, Institut Pasteur, 75015 Paris, France
| | - Eduardo Pérez-Campos
- Tecnológico Nacional de México/IT Oaxaca, Oaxaca 68030, Mexico
- Laboratorio de Patología Clínica "Dr. Eduardo Pérez Ortega", Oaxaca 68000, Mexico
| |
Collapse
|
2
|
Deris Zayeri Z, Parsi A, Shahrabi S, Kargar M, Davari N, Saki N. Epigenetic and metabolic reprogramming in inflammatory bowel diseases: diagnostic and prognostic biomarkers in colorectal cancer. Cancer Cell Int 2023; 23:264. [PMID: 37936149 PMCID: PMC10631091 DOI: 10.1186/s12935-023-03117-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND AND AIM "Inflammatory bowel disease" (IBD) is a chronic, relapsing inflammatory disease of the intestinal tract that typically begins at a young age and might transit to colorectal cancer (CRC). In this manuscript, we discussed the epigenetic and metabolic change to present a extensive view of IBDs transition to CRC. This study discusses the possible biomarkers for evaluating the condition of IBDs patients, especially before the transition to CRC. RESEARCH APPROACH We searched "PubMed" and "Google Scholar" using the keywords from 2000 to 2022. DISCUSSION In this manuscript, interesting titles associated with IBD and CRC are discussed to present a broad view regarding the epigenetic and metabolic reprogramming and the biomarkers. CONCLUSION Epigenetics can be the main reason in IBD transition to CRC, and Hypermethylation of several genes, such as VIM, OSM4, SEPT9, GATA4 and GATA5, NDRG4, BMP3, ITGA4 and plus hypomethylation of LINE1 can be used in IBD and CRC management. Epigenetic, metabolisms and microbiome-derived biomarkers, such as Linoleic acid and 12 hydroxy 8,10-octadecadienoic acid, Serum M2-pyruvate kinase and Six metabolic genes (NAT2, XDH, GPX3, AKR1C4, SPHK and ADCY5) expression are valuable biomarkers for early detection and transition to CRC condition. Some miRs, such as miR-31, miR-139-5p, miR -155, miR-17, miR-223, miR-370-3p, miR-31, miR -106a, miR -135b and miR-320 can be used as biomarkers to estimate IBD transition to CRC condition.
Collapse
Affiliation(s)
- Zeinab Deris Zayeri
- Golestan Hospital Clinical Research Development Unit, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abazar Parsi
- Alimentary Tract Research Center, Clinical Sciences Research Inistitute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeid Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Masoud Kargar
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nader Davari
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
3
|
Chemek M, Kadi A, Merenkova S, Potoroko I, Messaoudi I. Improving Dietary Zinc Bioavailability Using New Food Fortification Approaches: A Promising Tool to Boost Immunity in the Light of COVID-19. BIOLOGY 2023; 12:biology12040514. [PMID: 37106716 PMCID: PMC10136047 DOI: 10.3390/biology12040514] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023]
Abstract
Zinc is a powerful immunomodulatory trace element, and its deficiency in the body is closely associated with changes in immune functions and viral infections, including SARS-CoV-2, the virus responsible for COVID-19. The creation of new forms of zinc delivery to target cells can make it possible to obtain smart chains of food ingredients. Recent evidence supports the idea that the optimal intake of zinc or bioactive compounds in appropriate supplements should be considered as part of a strategy to generate an immune response in the human body. Therefore, controlling the amount of this element in the diet is especially important for populations at risk of zinc deficiency, who are more susceptible to the severe progression of viral infection and disease, such as COVID-19. Convergent approaches such as micro- and nano-encapsulation develop new ways to treat zinc deficiency and make zinc more bioavailable.
Collapse
Affiliation(s)
- Marouane Chemek
- Department of Food and Biotechnology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Ammar Kadi
- Department of Food and Biotechnology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Svetlana Merenkova
- Department of Food and Biotechnology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Irina Potoroko
- Department of Food and Biotechnology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Imed Messaoudi
- Laboratoire LR11ES41 Génétique Biodiversité et Valorisation des Bio-Ressourcés, Institut Supérieur de Biotechnologie de Monastir, Universitéde Monastir, Monastir 5000, Tunisia
| |
Collapse
|
4
|
Sen R, Sarkar S, Chlamydas S, Garbati M, Barnes C. Epigenetic features, methods, and implementations associated with COVID-19. OMICS APPROACHES AND TECHNOLOGIES IN COVID-19 2023:161-175. [DOI: 10.1016/b978-0-323-91794-0.00008-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Francomano D, Sanguigni V, Capogrosso P, Deho F, Antonini G. New Insight into Molecular and Hormonal Connection in Andrology. Int J Mol Sci 2021; 22:ijms222111908. [PMID: 34769341 PMCID: PMC8584869 DOI: 10.3390/ijms222111908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Hormones and cytokines are known to regulate cellular functions in the testes. These biomolecules induce a broad spectrum of effects on various level of spermatogenesis, and among them is the modulation of cell junction restructuring between Sertoli cells and germ cells in the seminiferous epithelium. Cytokines and androgens are closely related, and both correct testicular development and the maintenance of spermatogenesis depend on their function. Cytokines also play a crucial role in the immune testicular system, activating and directing leucocytes across the endothelial barrier to the inflammatory site, as well as in increasing their adhesion to the vascular wall. The purpose of this review is to revise the most recent findings on molecular mechanisms that play a key role in male sexual function, focusing on three specific molecular patterns, namely, cytokines, miRNAs, and endothelial progenitor cells. Numerous reports on the interactions between the immune and endocrine systems can be found in the literature. However, there is not yet a multi-approach review of the literature underlying the role between molecular patterns and testicular and sexual function.
Collapse
Affiliation(s)
- Davide Francomano
- Division of Internal Medicine and Endocrinology, Madonna delle Grazie Hospital, 00049 Rome, Italy
- GCS Point Medical Center, 0010 Rome, Italy
- Correspondence:
| | - Valerio Sanguigni
- Department of Medicine of Systems, University of Rome Tor Vergata, 00100 Rome, Italy;
| | - Paolo Capogrosso
- ASST-Sette Laghi, Circolo & Fondazione Macchi Hospital, University of Insurbria, 21100 Varese, Italy; (P.C.); (F.D.)
| | - Federico Deho
- ASST-Sette Laghi, Circolo & Fondazione Macchi Hospital, University of Insurbria, 21100 Varese, Italy; (P.C.); (F.D.)
| | | |
Collapse
|
6
|
Entropy and Fractal Dimension Study of the TDP-43 Protein Low Complexity Domain Sequence in ALS Disease Severity and SARS-CoV-2 Gene Sequences in Virulence Variability. ENTROPY 2021; 23:e23081038. [PMID: 34441178 PMCID: PMC8393862 DOI: 10.3390/e23081038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/03/2022]
Abstract
The low complexity domain (LCD) sequence has been defined in terms of entropy using a 12 amino acid sliding window along a protein sequence in the study of disease-related genes. The amyotrophic lateral sclerosis (ALS)-related TDP-43 protein sequence with intra-LCD structural information based on cryo-EM data was published recently. An application of entropy and Higuchi fractal dimension calculations was described using the Znf521 and HAR1 sequences. A computational analysis of the intra-LCD sequence entropy and Higuchi fractal dimension values at the amino acid level and at the ATCG nucleotide level were conducted without the sliding window requirement. The computational results were consistent in predicting the intermediate entropy/fractal dimension value produced when two subsequences at two different entropy/fractal dimension values were combined. The computational method without the application of a sliding-window was extended to an analysis of the recently reported virulent genes—Orf6, Nsp6, and Orf7a—in SARS-CoV-2. The relationship between the virulence functionality and entropy values was found to have correlation coefficients between 0.84 and 0.99, using a 5% uncertainty on the cell viability data. The analysis found that the most virulent Orf6 gene sequence had the lowest nucleotide entropy and the highest protein fractal dimension, in line with extreme value theory. The Orf6 codon usage bias in relation to vaccine design was discussed.
Collapse
|