1
|
Zhang Y, Yan J, Zhang Y, Liu H, Han B, Li W. Age-related alveolar bone maladaptation in adult orthodontics: finding new ways out. Int J Oral Sci 2024; 16:52. [PMID: 39085217 PMCID: PMC11291511 DOI: 10.1038/s41368-024-00319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 08/02/2024] Open
Abstract
Compared with teenage patients, adult patients generally show a slower rate of tooth movement and more pronounced alveolar bone loss during orthodontic treatment, indicating the maladaptation of alveolar bone homeostasis under orthodontic force. However, this phenomenon is not well-elucidated to date, leading to increased treatment difficulties and unsatisfactory treatment outcomes in adult orthodontics. Aiming to provide a comprehensive knowledge and further inspire insightful understanding towards this issue, this review summarizes the current evidence and underlying mechanisms. The age-related abatements in mechanosensing and mechanotransduction in adult cells and periodontal tissue may contribute to retarded and unbalanced bone metabolism, thus hindering alveolar bone reconstruction during orthodontic treatment. To this end, periodontal surgery, physical and chemical cues are being developed to reactivate or rejuvenate the aging periodontium and restore the dynamic equilibrium of orthodontic-mediated alveolar bone metabolism. We anticipate that this review will present a general overview of the role that aging plays in orthodontic alveolar bone metabolism and shed new light on the prospective ways out of the impasse.
Collapse
Affiliation(s)
- Yunfan Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Jiale Yan
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yuning Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Hao Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| | - Weiran Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
2
|
Chianese D, Bonora M, Sambataro M, Sambato L, Paola LD, Tremoli E, Cappucci IP, Scatto M, Pinton P, Picari M, Ferroni L, Zavan B. Exploring Mitochondrial Interactions with Pulsed Electromagnetic Fields: An Insightful Inquiry into Strategies for Addressing Neuroinflammation and Oxidative Stress in Diabetic Neuropathy. Int J Mol Sci 2024; 25:7783. [PMID: 39063025 PMCID: PMC11277522 DOI: 10.3390/ijms25147783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Pulsed electromagnetic fields (PEMFs) are recognized for their potential in regenerative medicine, offering a non-invasive avenue for tissue rejuvenation. While prior research has mainly focused on their effects on bone and dermo-epidermal tissues, the impact of PEMFs on nervous tissue, particularly in the context of neuropathy associated with the diabetic foot, remains relatively unexplored. Addressing this gap, our preliminary in vitro study investigates the effects of complex magnetic fields (CMFs) on glial-like cells derived from mesenchymal cell differentiation, serving as a model for neuropathy of the diabetic foot. Through assessments of cellular proliferation, hemocompatibility, mutagenicity, and mitochondrial membrane potential, we have established the safety profile of the system. Furthermore, the analysis of microRNAs (miRNAs) suggests that CMFs may exert beneficial effects on cell cycle regulation, as evidenced by the upregulation of the miRNAs within the 121, 127, and 142 families, which are known to be associated with mitochondrial function and cell cycle control. This exploration holds promise for potential applications in mitigating neuropathic complications in diabetic foot conditions.
Collapse
Affiliation(s)
- Diego Chianese
- Medical Sciences Department, University of Ferrara, 44133 Ferrara, Italy; (D.C.); (M.B.); (P.P.)
| | - Massimo Bonora
- Medical Sciences Department, University of Ferrara, 44133 Ferrara, Italy; (D.C.); (M.B.); (P.P.)
| | - Maria Sambataro
- Endocrine, Metabolism and Nutrition Disease Unit, Ca’ Foncello Sant Mary Hospital, 30193 Treviso, Italy (L.S.)
| | - Luisa Sambato
- Endocrine, Metabolism and Nutrition Disease Unit, Ca’ Foncello Sant Mary Hospital, 30193 Treviso, Italy (L.S.)
| | - Luca Dalla Paola
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (L.D.P.); (E.T.); (I.P.C.)
| | - Elena Tremoli
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (L.D.P.); (E.T.); (I.P.C.)
| | - Ilenia Pia Cappucci
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (L.D.P.); (E.T.); (I.P.C.)
| | - Marco Scatto
- Department of Economics, Science, Engineering and Design, San Marino University, 47890 Città di San Marino, San Marino;
| | - Paolo Pinton
- Medical Sciences Department, University of Ferrara, 44133 Ferrara, Italy; (D.C.); (M.B.); (P.P.)
| | - Massimo Picari
- Translational Medicine Department, University of Ferrara, 44133 Ferrara, Italy;
| | - Letizia Ferroni
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, 48033 Ravenna, Italy; (L.D.P.); (E.T.); (I.P.C.)
| | - Barbara Zavan
- Translational Medicine Department, University of Ferrara, 44133 Ferrara, Italy;
| |
Collapse
|
3
|
Thien ND, Hai-Nam N, Anh DT, Baecker D. Piezo1 and its inhibitors: Overview and perspectives. Eur J Med Chem 2024; 273:116502. [PMID: 38761789 DOI: 10.1016/j.ejmech.2024.116502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
The cation channel Piezo1, a crucial mechanotransducer found in various organs and tissues, has gained considerable attention as a therapeutic target in recent years. Following this trend, several Piezo1 inhibitors have been discovered and studied for potential pharmacological properties. This review provides an overview of the structural and functional importance of Piezo1, as well as discussing the biological activities of Piezo1 inhibitors based on their mechanism of action. The compounds addressed include the toxin GsMTx4, Aβ peptides, certain fatty acids, ruthenium red and gadolinium, Dooku1, as well as the natural products tubeimoside I, salvianolic acid B, jatrorrhzine, and escin. The findings revealed that misexpression of Piezo1 can be associated with a number of chronic diseases, including hypertension, cancer, and hemolytic anemia. Consequently, inhibiting Piezo1 and the subsequent calcium influx can have beneficial effects on various pathological processes, as shown by many in vitro and in vivo studies. However, the development of Piezo1 inhibitors is still in its beginnings, with many opportunities and challenges remaining to be explored.
Collapse
Affiliation(s)
- Nguyen Duc Thien
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 100000, Viet Nam
| | - Nguyen Hai-Nam
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 100000, Viet Nam
| | - Duong Tien Anh
- Hanoi University of Pharmacy, 13-15 Le Thanh Tong, Hanoi, 100000, Viet Nam.
| | - Daniel Baecker
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Straße 2+4, Berlin, 14195, Germany.
| |
Collapse
|
4
|
Lei L, Wen Z, Cao M, Zhang H, Ling SKK, Fu BSC, Qin L, Xu J, Yung PSH. The emerging role of Piezo1 in the musculoskeletal system and disease. Theranostics 2024; 14:3963-3983. [PMID: 38994033 PMCID: PMC11234281 DOI: 10.7150/thno.96959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/15/2024] [Indexed: 07/13/2024] Open
Abstract
Piezo1, a mechanosensitive ion channel, has emerged as a key player in translating mechanical stimuli into biological signaling. Its involvement extends beyond physiological and pathological processes such as lymphatic vessel development, axon growth, vascular development, immunoregulation, and blood pressure regulation. The musculoskeletal system, responsible for structural support, movement, and homeostasis, has recently attracted attention regarding the significance of Piezo1. This review aims to provide a comprehensive summary of the current research on Piezo1 in the musculoskeletal system, highlighting its impact on bone formation, myogenesis, chondrogenesis, intervertebral disc homeostasis, tendon matrix cross-linking, and physical activity. Additionally, we explore the potential of targeting Piezo1 as a therapeutic approach for musculoskeletal disorders, including osteoporosis, muscle atrophy, intervertebral disc degeneration, and osteoarthritis.
Collapse
Affiliation(s)
- Lei Lei
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zhenkang Wen
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mingde Cao
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Haozhi Zhang
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Samuel Ka-Kin Ling
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bruma Sai-Chuen Fu
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ling Qin
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Sir Yue-Kong Pao Cancer Centre, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- The Sir Yue-Kong Pao Cancer Centre, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Patrick Shu-Hang Yung
- Musculoskeletal Research Laboratory and Centre of Musculoskeletal Aging and Regeneration, Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
5
|
Su DB, Zhao ZX, Yin DC, Ye YJ. Promising application of pulsed electromagnetic fields on tissue repair and regeneration. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 187:36-50. [PMID: 38280492 DOI: 10.1016/j.pbiomolbio.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/14/2023] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
Tissue repair and regeneration is a vital biological process in organisms, which is influenced by various internal mechanisms and microenvironments. Pulsed electromagnetic fields (PEMFs) are becoming a potential medical technology due to its advantages of effectiveness and non-invasiveness. Numerous studies have demonstrated that PEMFs can stimulate stem cell proliferation and differentiation, regulate inflammatory reactions, accelerate wound healing, which is of great significance for tissue regeneration and repair, providing a solid basis for enlarging its clinical application. However, some important issues such as optimal parameter system and potential deep mechanisms remain to be resolved due to PEMFs window effect and biological complexity. Thus, it is of great importance to comprehensively summarizing and analyzing the literature related to the biological effects of PEMFs in tissue regeneration and repair. This review expounded the biological effects of PEMFs on stem cells, inflammation response, wound healing and musculoskeletal disorders in order to improve the application value of PEMFs in medicine. It is believed that with the continuous exploration of biological effects of PEMFs, it will be applied increasingly widely to tissue repair and other diseases.
Collapse
Affiliation(s)
- Dan-Bo Su
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zi-Xu Zhao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ya-Jing Ye
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
6
|
Chen G, Li Y, Zhang H, Xie H. [Role of Piezo mechanosensitive ion channels in the osteoarticular system]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:240-248. [PMID: 38385239 PMCID: PMC10882244 DOI: 10.7507/1002-1892.202310092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Objective To summarize the role of Piezo mechanosensitive ion channels in the osteoarticular system, in order to provide reference for subsequent research. Methods Extensive literature review was conducted to summarize the structural characteristics, gating mechanisms, activators and blockers of Piezo ion channels, as well as their roles in the osteoarticular systems. Results The osteoarticular system is the main load-bearing and motor tissue of the body, and its ability to perceive and respond to mechanical stimuli is one of the guarantees for maintaining normal physiological functions of bones and joints. The occurrence and development of many osteoarticular diseases are closely related to abnormal mechanical loads. At present, research shows that Piezo mechanosensitive ion channels differentiate towards osteogenesis by responding to stretching stimuli and regulating cellular Ca 2+ influx signals; and it affects the proliferation and migration of osteoblasts, maintaining bone homeostasis through cellular communication between osteoblasts-osteoclasts. Meanwhile, Piezo1 protein can indirectly participate in regulating the formation and activity of osteoclasts through its host cells, thereby regulating the process of bone remodeling. During mechanical stimulation, the Piezo1 ion channel maintains bone homeostasis by regulating the expressions of Akt and Wnt1 signaling pathways. The sensitivity of Piezo1/2 ion channels to high strain mechanical signals, as well as the increased sensitivity of Piezo1 ion channels to mechanical transduction mediated by Ca 2+ influx and inflammatory signals in chondrocytes, is expected to become a new entry point for targeted prevention and treatment of osteoarthritis. But the specific way mechanical stimuli regulate the physiological/pathological processes of bones and joints still needs to be clarified. Conclusion Piezo mechanosensitive ion channels give the osteoarticular system with important abilities to perceive and respond to mechanical stress, playing a crucial mechanical sensing role in its cellular fate, bone development, and maintenance of bone and cartilage homeostasis.
Collapse
Affiliation(s)
- Guohui Chen
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| | - Yaxing Li
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| | - Hui Zhang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| | - Huiqi Xie
- Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P. R. China
| |
Collapse
|
7
|
Linnemann C, Sahin F, Chen Y, Falldorf K, Ronniger M, Histing T, Nussler AK, Ehnert S. NET Formation Was Reduced via Exposure to Extremely Low-Frequency Pulsed Electromagnetic Fields. Int J Mol Sci 2023; 24:14629. [PMID: 37834077 PMCID: PMC10572227 DOI: 10.3390/ijms241914629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Fracture-healing is a highly complex and timely orchestrated process. Non-healing fractures are still a major clinical problem and treatment remains difficult. A 16 Hz extremely low-frequency pulsed electromagnetic field (ELF-PEMF) was identified as non-invasive adjunct therapy supporting bone-healing by inducing reactive oxygen species (ROS) and Ca2+-influx. However, ROS and Ca2+-influx may stimulate neutrophils, the first cells arriving at the wounded site, to excessively form neutrophil extracellular traps (NETs), which negatively affects the healing process. Thus, this study aimed to evaluate the effect of this 16 Hz ELF-PEMF on NET formation. Neutrophils were isolated from healthy volunteers and exposed to different NET-stimuli and the 16 Hz ELF-PEMF. NETs were quantified using Sytox Green Assay and immunofluorescence, Ca2+-influx and ROS with fluorescence probes. In contrast to mesenchymal cells, ELF-PEMF exposure did not induce ROS and Ca2+-influx in neutrophils. ELF-PEMF exposure did not result in basal or enhanced PMA-induced NET formation but did reduce the amount of DNA released. Similarly, NET formation induced by LPS and H2O2 was reduced through exposure to ELF-PEMF. As ELF-PEMF exposure did not induce NET release or negatively affect neutrophils, the ELF-PEMF exposure can be started immediately after fracture treatment.
Collapse
Affiliation(s)
- Caren Linnemann
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tübingen, Eberhard Karls Universität Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (C.L.); (A.K.N.)
| | - Filiz Sahin
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tübingen, Eberhard Karls Universität Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (C.L.); (A.K.N.)
| | - Yangmengfan Chen
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tübingen, Eberhard Karls Universität Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (C.L.); (A.K.N.)
| | - Karsten Falldorf
- Sachtleben GmbH, Haus Spectrum am UKE, Martinistraße 64, 20251 Hamburg, Germany
| | - Michael Ronniger
- Sachtleben GmbH, Haus Spectrum am UKE, Martinistraße 64, 20251 Hamburg, Germany
| | - Tina Histing
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tübingen, Eberhard Karls Universität Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (C.L.); (A.K.N.)
| | - Andreas K. Nussler
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tübingen, Eberhard Karls Universität Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (C.L.); (A.K.N.)
| | - Sabrina Ehnert
- Siegfried Weller Institute for Trauma Research, BG Unfallklinik Tübingen, Eberhard Karls Universität Tuebingen, Schnarrenbergstraße 95, 72076 Tuebingen, Germany; (C.L.); (A.K.N.)
| |
Collapse
|